frequency_domain_MTL_solution.F90 28.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE frequency_domain_MTL_solution
! SUBROUTINE frequency_domain_MTL_solution_V
!
! NAME
!     frequency_domain_MTL_solution
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine implements the analytic solution for analysis of
!     multi-conductor transmission lines with resistive terminations
!     and voltages soruces at a single frequency. 
!     The subroutine returns the voltage of the specified conductor at 
!     the specified end of the transmission line
!
!     The comments in this file make reference to the project theory manual.
!     
! COMMENTS
!     Revised comments related to the theory docuemnt are incomplete - the theory
!     document needs to be completed.
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     12/1/2016        CJS: Use fortran intrinsic functions for matrix algebra
!     19/1/2016        CJS: Include comments which refer to the project theory document.
!     22/6/2016        CJS: Include incident field excitation. Note that this initial implementation 
!                           does NOT take proper account of shielded cables.
!     28/6/2016        CJS: Include a ground plane in the incident field excitation 
!     15/7/2016        CJS: Start to include solution for incident field excitation of shielded cables
!     7/3/2017         CJS: Add resistance and voltage source onto the reference coonductor 
!     8/5/2017         CJS: Include references to Theory_Manual
!
SUBROUTINE frequency_domain_MTL_solution(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                                         Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,xcoord,ycoord,  &
                                         ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, & 
                                         length,Vs1,Z1,Vs2,Z2,is_shielded,f, &
                                         output_end,output_conductor,output_conductor_ref,Vout)

USE type_specifications
USE general_module
USE constants
USE cable_module
USE cable_bundle_module
USE spice_cable_bundle_module
USE maths

IMPLICIT NONE

! variables passed to the subroutine

integer,intent(IN)         :: dim                ! dimension of matrix system

complex(dp),intent(IN)     :: Z_domain(dim,dim)  ! domain based impedance matrix
complex(dp),intent(IN)     :: Y_domain(dim,dim)  ! domain based admittance matrix
complex(dp),intent(IN)     :: MV(dim,dim)        ! domain voltage decomposition matrix
complex(dp),intent(IN)     :: MVI(dim,dim)       ! inverse domain voltage decomposition matrix
complex(dp),intent(IN)     :: MI(dim,dim)        ! domain current decomposition matrix
complex(dp),intent(IN)     :: MII(dim,dim)       ! inverse domain current decomposition matrix

complex(dp),intent(IN) :: Eamplitude                        ! incident field amplitude
real(dp),intent(IN)    :: Ex                                ! Ex component of incident field
real(dp),intent(IN)    :: Ey                                ! Ey component of incident field
real(dp),intent(IN)    :: Ez                                ! Ez component of incident field
real(dp),intent(IN)    :: Hx                                ! Hx component of incident field
real(dp),intent(IN)    :: Hy                                ! Hy component of incident field
real(dp),intent(IN)    :: Hz                                ! Hz component of incident field
real(dp),intent(IN)    :: kx                                ! x component of incident field propagation vector
real(dp),intent(IN)    :: ky                                ! y component of incident field propagation vector
real(dp),intent(IN)    :: kz                                ! z component of incident field propagation vector

real(dp),intent(IN)    :: xcoord(dim+1)                     ! list of conductor x coordinates in bundle cross section
real(dp),intent(IN)    :: ycoord(dim+1)                     ! list of conductor x coordinates in bundle cross section

logical,intent(IN)     :: ground_plane_present              ! flag indicating the presence of a ground plane 
real(dp),intent(IN)    :: ground_plane_x,ground_plane_y     ! input: x and y coordinates of a point on the ground plane
real(dp),intent(IN)    :: ground_plane_theta                ! input: angle of the ground plane from the x axis

real(dp),intent(IN)    :: length                            ! length of bundle (m)

complex(dp),intent(IN)     :: Vs1(dim)                    ! list of voltage sources in end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Z1(dim,dim)                 ! impedance matrix for end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Vs2(dim)                    ! list of voltage sources in end 2 of transmission line termination circuit
complex(dp),intent(IN)     :: Z2(dim,dim)                 ! impedance matrix for end 2 of transmission line termination circuit

logical,intent(IN)         :: is_shielded(dim+1)            ! flag to indicate shielded conductors (i.e. those not illuminated by the incident field)

real(dp),intent(IN)        :: f                             ! frequency

integer,intent(IN)         :: output_end                    ! end of transmission line for conductor voltage output
integer,intent(IN)         :: output_conductor              ! conductor number for conductor voltage output
integer,intent(IN)         :: output_conductor_ref          ! conductor number for conductor voltage output reference
complex(dp),intent(OUT)    :: Vout                          ! conductor voltage output to be returned

! local variables

complex(dp)     :: Z(dim,dim)     ! glabal based impedance matrix
complex(dp)     :: Y(dim,dim)     ! glabal based admittance matrix

complex(dp)     :: YZ(dim,dim)    ! product of Y and Z matrices

complex(dp)     :: TV(dim,dim)     ! modal decomposition matrix            [Z][Y]=[TV][GAMMA_SQR][TVI]
complex(dp)     :: TVI(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: TI(dim,dim)     ! modal decomposition matrix            [Y][Z]=[TI][GAMMA_SQR][TII]
complex(dp)     :: TII(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: GAMMA_SQR(dim)  ! diagonal matrix elements in YZ/ ZY diagonalisation 

complex(dp)     :: Zm(dim,dim)     ! modal characteristic impedance matrix
complex(dp)     :: Ym(dim,dim)     ! modal characteristic admittance matrix
complex(dp)     :: Zmd(dim)        ! modal characteristic impedance list
complex(dp)     :: Ymd(dim)        ! modal characteristic impedance list

complex(dp)     :: GAMMA_C(dim)    ! complex square root of GAMMA_SQR
real(dp)        :: gamma_r(dim)    ! real part of the complex square root of GAMMA_SQR

complex(dp)     :: ZC(dim,dim)     ! Characteristic impedance matrix
complex(dp)     :: YC(dim,dim)     ! Characteristic admittance matrix

complex(dp)     :: Exp_p_gamma_l(dim,dim)  ! propagation matrix for modes in the +z direction
complex(dp)     :: Exp_m_gamma_l(dim,dim)  ! propagation matrix for modes in the -z direction

! Temporary matrices used in the matrix solution of the transmission line equations with 
! termination conditions appplied.

complex(dp)     :: D(dim,dim)
complex(dp)     :: sqrtDI(dim,dim)

complex(dp)     :: T1(dim,dim)
complex(dp)     :: T2(dim,dim)

complex(dp)     :: MC11(dim,dim)
complex(dp)     :: MC12(dim,dim)
complex(dp)     :: MC21(dim,dim)
complex(dp)     :: MC22(dim,dim)
complex(dp)     :: TC1(dim,dim)
complex(dp)     :: TC2(dim,dim)
complex(dp)     :: TC3(dim,dim)
complex(dp)     :: MC22I(dim,dim)

complex(dp)     :: TM1(dim,dim)

! Temporary vectors used in the matrix solution of the transmission line equations with 
! termination conditions appplied.
complex(dp)     :: VSC(dim)
complex(dp)     :: VLC(dim)
complex(dp)     :: Imp(dim)
complex(dp)     :: Imm(dim)

complex(dp)     :: TV1(dim)
complex(dp)     :: TV2(dim)
complex(dp)     :: TV3(dim)

! Conductor voltages at ends 1 and 2 referred to the reference conductor voltage at that end
complex(dp)     :: Vend1(dim)
complex(dp)     :: Vend2(dim)

complex(dp)     :: Vout_ref  ! voltage on the output reference conductor

! incident field excitation sources

complex(dp)     :: VFT(dim)
complex(dp)     :: IFT(dim)

real(dp)        :: w  ! angular frequency

! loop variables
integer :: row,col
integer :: i

! integer error indicator for the matrix inverse 
integer :: ierr

! START

! angular frequency
  w=2d0*pi*f                 

! calculate the global impedance matrix (Theory_Manual_Eqn 2.4,2.5) from the domain based impedance matrix
! and the domain decomposition matrices using Theory_Manual_Eqn 3.1 and 3.4 and the 
! definition of the voltages/ currents for the domain based impedance matrix 
! (V_domain)=[Z_domain] (I_domain), (V_domain)=[MV] (V_global), (I_domain)=[MI] )I_global) so
! [MV] (V_global)=[Z_domain] (I_domain)=[MI] )I_global)
! thus (V_global)=[MV^-1][Z_domain] [MI] (I_global)

  TM1=MATMUL(MVI,Z_domain)
  Z=MATMUL(TM1,MI)
    

! calculate the global admittance matrix  (Theory_Manual_Eqn 2.4,2.5) from the domain based admittance matrix
! and the domain decomposition matrices using Theory_Manual_Eqn 3.1 and 3.4 and the 
! definition of the voltages/ currents for the domain based admittance matrix 
! (I_domain)=[Y_domain] (V_domain), (V_domain)=[MV] (V_global), (I_domain)=[MI] )I_global) so
! [MI] (I_global)=[Y_domain] (V_domain)=[MV] )V_global)
! thus (I_global)=[MI^-1][Y_domain][MV] (V_global)

  TM1=MATMUL(MII,Y_domain)
  Y=MATMUL(TM1,MV)
  
! perform a modal decomposition on the YZ product Theory_Manual_Eqn 2.33, 2.36, 2.41 (characteristic impedance)

  CALL modal_decomposition_global(dim,Z_domain,Y_domain,MV,MVI,MI,MII,                                      &
                                  Y,Z,TI,TII,TV,TVI,GAMMA_C,GAMMA_SQR,gamma_r,D,sqrtDI,ZC,YC,Zm,Ym,Zmd,Ymd)
  
! We have assembled all the matrices required in the analysis so we can now solve for the termination voltages
  
! calculate diagonal modal propagation matrices for the modes as in Theory_Manual_Eqn 2.34,2.38
  Exp_p_gamma_l(:,:)=(0d0,0d0)
  Exp_m_gamma_l(:,:)=(0d0,0d0)
  do row=1,dim
     Exp_p_gamma_l(row,row)=exp( GAMMA_C(row)*length)
     Exp_m_gamma_l(row,row)=exp(-GAMMA_C(row)*length)
  end do
  
! Calculate the sources due to the incident field excitation on all conductors Theory_Manual_Eqn 2.60

  CALL calculate_lumped_incident_field_sources(xcoord,ycoord,is_shielded,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,          &
                                               ground_plane_present,    &
                                               length,f,VFT,IFT,dim,TI,TII,Y,Z,ZC,YC,GAMMA_C)

! end1 voltage source
  VSC(:)=Vs1(:)
  
! end2 voltage source
! We add the incident field terms  [Z2](IFT) - (VFT)  at the load end. Theory_Manual_Eqn 2.62
  TV1=matmul(Z2,IFT)
  VLC(:)=Vs2(:)+TV1(:)-VFT(:)

! Fill the LHS matrix elements in Theory_Manual_Eqn 2.43, 2.44

! M11
  TC1(:,:)=Zc(:,:)+Z1(:,:)
  MC11=matmul(TC1,TI)

! M12
  TC1(:,:)=Zc(:,:)-Z1(:,:)
  MC12=matmul(TC1,TI)

! M21
  TC1(:,:)=Zc(:,:)-Z2(:,:)
  TC2=matmul(TC1,TI)
  MC21=matmul(TC2,Exp_m_gamma_l)

! M22
  TC1(:,:)=Zc(:,:)+Z2(:,:)
  TC2=matmul(TC1,TI)
  MC22=matmul(TC2,Exp_p_gamma_l)
  
! Solve the matrix system for Imp intially  Theory_Manual_Eqn 2.46
  if(verbose) write(*,*)'Invert MC22'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(MC22,dim,MC22I,dim,ierr) 
  if(verbose) write(*,*)'Done: invert MC22'
  
  TC1=matmul(MC12,MC22I)  ! note Keep TC1 for use later
  TC2=matmul(TC1,MC21)

  TC3(:,:)=MC11(:,:)-TC2(:,:)
  
  if(verbose) write(*,*)'Invert TC3'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TC3,dim,TC2,dim,ierr) 
  if(verbose) write(*,*)'Done: invert TC3'
  
  TV1=matmul(TC1,VLC)
  
  TV2(:)=VSC(:)-TV1(:)
  
  Imp=matmul(TC2,TV2)
  
! next solve for Imm    Theory_Manual_Eqn 2.47
  TV1=matmul(MC21,Imp)
  
  TV2(:)=VLC(:)-TV1(:)
  Imm=matmul(MC22I,TV2)
  
! now solve for the source end voltages  Theory_Manual_Eqn  2.40 at z=0

  TC1=matmul(ZC,TI) 
  
  TV2(:)=Imm(:)+Imp(:)
  Vend1=matmul(TC1,TV2)
  
  
! now solve for the load end voltages  Theory_Manual_Eqn  2.40 at z=L
  TV1=matmul(Exp_m_gamma_l,Imp)
  TV2=matmul(Exp_p_gamma_l,Imm)
  
  TV3(:)=TV1(:)+TV2(:)
  Vend2=matmul(TC1,TV3)
  
! at this point Vend2 may include lumped sources due to the
! incident field excitation so we must remove these ( Theory_Manual_Eqn  2.62  )
  Vend2(:)=Vend2(:)+VFT(:)     
  
! From the conductor voltages, calculate the output voltage requested which may be the 
! voltage between any two conductors.

  Vout_ref=(0d0,0d0)    ! assume the output reference conductor is the transmission line reference conductor for now
  
  if (output_end.EQ.1) then
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend1(output_conductor_ref)
    Vout=Vend1(output_conductor)-Vout_ref
  else
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend2(output_conductor_ref)
    Vout=Vend2(output_conductor)-Vout_ref
    
  end if
  
! END OF THE CALCULATION, OPTIONAL OUTPUT FOR CHECKING FOLLOWS...
  if (.NOT.verbose) RETURN
  
  write(*,*)'YZ'

  YZ=matmul(Y,Z)
  CALL write_cmatrix(YZ,dim,0)
  
  write(*,*)'GAMMA_SQR'
  do i=1,dim
    write(*,*)i,GAMMA_SQR(i)
  end do
  write(*,*)'TI'
  CALL write_cmatrix(TI,dim,0)
  
  write(*,*)'Gamma_r'
  do row=1,dim
    write(*,*)row,gamma_r(row)
  end do

  write(*,*)'Mode velocities'
  do row=1,dim
    write(*,*)row,w/(gamma_r(row))
  end do

  write(*,*)'ZC'
  CALL write_cmatrix(ZC,dim,0)
  write(*,*)'YC'
  CALL write_cmatrix(YC,dim,0)
  
  write(*,*)'Z1:'
  CALL write_cmatrix_re(Z1,dim,0)

  write(*,*)'Vs1'
  do row=1,dim
    write(*,*)real(Vs1(row))
  end do
  
  write(*,*)'Z2:'
  CALL write_cmatrix_re(Z2,dim,0)

  write(*,*)'Vs2'
  do row=1,dim
    write(*,*)real(Vs2(row))
  end do
  
  write(*,*)'ZC:'
  CALL write_cmatrix(ZC,dim,0)
  
  write(*,*)'TI:'
  CALL write_cmatrix_re(TI,dim,0)
  
  write(*,*)'TII:'
  CALL write_cmatrix_re(TII,dim,0)
  
  write(*,*)'TV:'
  CALL write_cmatrix_re(TV,dim,0)
  
  write(*,*)'TVI:'
  CALL write_cmatrix_re(TVI,dim,0)

  write(*,*)'gamma'
  do row=1,dim
    write(*,*)GAMMA_C(row)
  end do
  
  write(*,*)'Check modal decomposition YZ=TI GAMMA_SQR TII'
  
  do row=1,dim
    do col=1,dim
      TC1(row,col)=TII(row,col)*GAMMA_C(row)*GAMMA_C(row)
    end do
  end do
  TC2=matmul(TI,TC1)
 
  write(*,*)'YZ'
  
  CALL write_cmatrix(YZ,dim,0)
  write(*,*)'TI GAMMA TII'
  CALL write_cmatrix(TC2,dim,0)
   
  write(*,*)'Zm:'
  CALL write_cmatrix(Zm,dim,0)
   
  write(*,*)'Ym:'
  CALL write_cmatrix(Ym,dim,0)
  
  write(*,*)'transmission line length'
  write(*,*)length,' (m)'
  
  write(*,*)'Mode Transmission Delay'
  do row=1,dim
    write(*,*)abs( length*sqrt(Zmd(row)*Ymd(row)/(-w*w)) )
  end do
  
  write(*,*)'Mode Transmission Delay 2'
  do row=1,dim
    write(*,*)length*GAMMA_C(row)/(j*w)
  end do
  
  write(*,*)'exp j gamma L:'
  CALL write_cmatrix(Exp_p_gamma_l,dim,0)
  
  write(*,*)'exp-j gamma L:'
  CALL write_cmatrix(Exp_m_gamma_l,dim,0)
  
  write(*,*)'VSc:'
  do row=1,dim
    write(*,*)VSC(row)
  end do
  
  write(*,*)'VLc:'
  do row=1,dim
    write(*,*)VLC(row)
  end do
    
  RETURN

END SUBROUTINE frequency_domain_MTL_solution
!
! NAME
!     frequency_domain_MTL_solution_V
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine implements the analytic solution for analysis of
!     multi-conductor transmission lines with resistive terminations
!     and voltages soruces at a single frequency. 
!     The subroutine returns the voltage of the specified conductor at 
!     the specified end of the transmission line
!
!     The comments in this file make reference to the project theory manual.
!
!     This solution differs from the solution in frequency_domain_MTL_solution
!     in that we diagonalise the ZY product and base the calculations on modal voltages.
!     
! COMMENTS
!     This is used as a check only and is not the default solution for the
!     validation test cases, the theory is not in the Theory Manual however it
!     closely resembles the solution based on modal currents impemented in 
!     SUBROUTINE frequency_domain_MTL_solution
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     12/1/2016        CJS: Use fortran intrinsic functions for matrix algebra
!     19/1/2016        CJS: Include comments which refer to the project theory document.
!     22/6/2016        CJS: Include incident field excitation. Note that this initial implementation 
!                           does NOT take proper account of shielded cables.
!     28/6/2016        CJS: Include a ground plane in the incident field excitation 
!     15/7/2016        CJS: Start to include solution for incident field excitation of shielded cables
!     7/3/2017         CJS: Add resistance and voltage source onto the reference coonductor 
!     21/4/2017        CJS: Adapt the original frequency_domain_MTL_solution to work with modal voltages
!                           as an independent check of the solution
!
SUBROUTINE frequency_domain_MTL_solution_V(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                                         Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,xcoord,ycoord,  &
                                         ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, & 
                                         length,Vs1,Z1,Vs2,Z2,is_shielded,f, &
                                         output_end,output_conductor,output_conductor_ref,Vout)

USE type_specifications
USE general_module
USE constants
USE cable_module
USE cable_bundle_module
USE spice_cable_bundle_module
USE maths

IMPLICIT NONE

! variables passed to the subroutine

integer,intent(IN)         :: dim                ! dimension of matrix system

complex(dp),intent(IN)     :: Z_domain(dim,dim)  ! domain based impedance matrix
complex(dp),intent(IN)     :: Y_domain(dim,dim)  ! domain based admittance matrix
complex(dp),intent(IN)     :: MV(dim,dim)        ! domain voltage decomposition matrix
complex(dp),intent(IN)     :: MVI(dim,dim)       ! inverse domain voltage decomposition matrix
complex(dp),intent(IN)     :: MI(dim,dim)        ! domain current decomposition matrix
complex(dp),intent(IN)     :: MII(dim,dim)       ! inverse domain current decomposition matrix

complex(dp),intent(IN) :: Eamplitude                        ! incident field amplitude
real(dp),intent(IN)    :: Ex                                ! Ex component of incident field
real(dp),intent(IN)    :: Ey                                ! Ey component of incident field
real(dp),intent(IN)    :: Ez                                ! Ez component of incident field
real(dp),intent(IN)    :: Hx                                ! Hx component of incident field
real(dp),intent(IN)    :: Hy                                ! Hy component of incident field
real(dp),intent(IN)    :: Hz                                ! Hz component of incident field
real(dp),intent(IN)    :: kx                                ! x component of incident field propagation vector
real(dp),intent(IN)    :: ky                                ! y component of incident field propagation vector
real(dp),intent(IN)    :: kz                                ! z component of incident field propagation vector

real(dp),intent(IN)    :: xcoord(dim+1)                     ! list of conductor x coordinates in bundle cross section
real(dp),intent(IN)    :: ycoord(dim+1)                     ! list of conductor x coordinates in bundle cross section

logical,intent(IN)     :: ground_plane_present              ! flag indicating the presence of a ground plane 
real(dp),intent(IN)    :: ground_plane_x,ground_plane_y     ! input: x and y coordinates of a point on the ground plane
real(dp),intent(IN)    :: ground_plane_theta                ! input: angle of the ground plane from the x axis

real(dp),intent(IN)    :: length                            ! length of bundle (m)

complex(dp),intent(IN)     :: Vs1(dim)                    ! list of voltage sources in end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Z1(dim,dim)                 ! impedance matrix for end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Vs2(dim)                    ! list of voltage sources in end 2 of transmission line termination circuit
complex(dp),intent(IN)     :: Z2(dim,dim)                 ! impedance matrix for end 2 of transmission line termination circuit

logical,intent(IN)         :: is_shielded(dim+1)            ! flag to indicate shielded conductors (i.e. those not illuminated by the incident field)

real(dp),intent(IN)        :: f                             ! frequency

integer,intent(IN)         :: output_end                    ! end of transmission line for conductor voltage output
integer,intent(IN)         :: output_conductor              ! conductor number for conductor voltage output
integer,intent(IN)         :: output_conductor_ref          ! conductor number for conductor voltage output reference
complex(dp),intent(OUT)    :: Vout                          ! conductor voltage output to be returned

! local variables

complex(dp)     :: Z(dim,dim)     ! glabal based impedance matrix
complex(dp)     :: Y(dim,dim)     ! glabal based admittance matrix

complex(dp)     :: ZY(dim,dim)     ! product of Z and Y matrices

complex(dp)     :: TV(dim,dim)     ! modal decomposition matrix            [Z][Y]=[TV][GAMMA_SQR][TVI]
complex(dp)     :: TVI(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: TI(dim,dim)     ! modal decomposition matrix            [Y][Z]=[TI][GAMMA_SQR][TII]
complex(dp)     :: TII(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: GAMMA_SQR(dim)  ! diagonal matrix elements in YZ/ ZY diagonalisation 

complex(dp)     :: Zm(dim,dim)     ! modal characteristic impedance matrix
complex(dp)     :: Ym(dim,dim)     ! modal characteristic admittance matrix
complex(dp)     :: Zmd(dim)        ! modal characteristic impedance list
complex(dp)     :: Ymd(dim)        ! modal characteristic impedance list

complex(dp)     :: GAMMA_C(dim)    ! complex square root of GAMMA_SQR
real(dp)        :: gamma_r(dim)    ! real part of the complex square root of GAMMA_SQR

complex(dp)     :: ZC(dim,dim)     ! Characteristic impedance matrix
complex(dp)     :: YC(dim,dim)     ! Characteristic admittance matrix

complex(dp)     :: Exp_p_gamma_l(dim,dim)  ! propagation matrix for modes in the +z direction
complex(dp)     :: Exp_m_gamma_l(dim,dim)  ! propagation matrix for modes in the -z direction

! Temporary matrices used in the matrix solution of the transmission line equations with 
! termination conditions appplied.

complex(dp)     :: D(dim,dim)
complex(dp)     :: sqrtDI(dim,dim)

complex(dp)     :: T1(dim,dim)
complex(dp)     :: T2(dim,dim)

complex(dp)     :: MC11(dim,dim)
complex(dp)     :: MC12(dim,dim)
complex(dp)     :: MC21(dim,dim)
complex(dp)     :: MC22(dim,dim)
complex(dp)     :: TC1(dim,dim)
complex(dp)     :: TC2(dim,dim)
complex(dp)     :: TC3(dim,dim)
complex(dp)     :: MC22I(dim,dim)

complex(dp)     :: TM1(dim,dim)

! Temporary vectors used in the matrix solution of the transmission line equations with 
! termination conditions appplied.
complex(dp)     :: VSC(dim)
complex(dp)     :: VLC(dim)
complex(dp)     :: Vmp(dim)
complex(dp)     :: Vmm(dim)

complex(dp)     :: TV1(dim)
complex(dp)     :: TV2(dim)
complex(dp)     :: TV3(dim)

! Conductor voltages at ends 1 and 2 referred to the reference conductor voltage at that end
complex(dp)     :: Vend1(dim)
complex(dp)     :: Vend2(dim)

complex(dp)     :: Vout_ref  ! voltage on the output reference conductor

! incident field excitation sources

complex(dp)     :: VFT(dim)
complex(dp)     :: IFT(dim)

real(dp)        :: w  ! angular frequency

! loop variables
integer :: row,col
integer :: i

! integer error indicator for the matrix inverse 
integer :: ierr

! START

! angular frequency
  w=2d0*pi*f                 

! calculate the global impedance matrix from the domain based impedance matrix
! and the domain decomposition matrices
  TM1=MATMUL(MVI,Z_domain)
  Z=MATMUL(TM1,MI)
    

! calculate the global admittance matrix from the domain based admittance matrix
! and the domain decomposition matrices
  TM1=MATMUL(MII,Y_domain)
  Y=MATMUL(TM1,MV)
  
! perform a modal decomposition on the ZY product

  CALL modal_decomposition_global_ZY(dim,Z_domain,Y_domain,MV,MVI,MI,MII,                                      &
                                  Y,Z,TI,TII,TV,TVI,GAMMA_C,GAMMA_SQR,gamma_r,D,sqrtDI,ZC,YC,Zm,Ym,Zmd,Ymd)
  
! We have assembled all the matrices required in the analysis so we can now solve for the termination voltages
      
! calculate diagonal modal propagation matrices for the modes
  Exp_p_gamma_l(:,:)=(0d0,0d0)
  Exp_m_gamma_l(:,:)=(0d0,0d0)
  do row=1,dim
     Exp_p_gamma_l(row,row)=exp( GAMMA_C(row)*length)
     Exp_m_gamma_l(row,row)=exp(-GAMMA_C(row)*length)
  end do
  
! Calculate the sources due to the incident field excitation on all conductors

  CALL calculate_lumped_incident_field_sources(xcoord,ycoord,is_shielded,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,          &
                                               ground_plane_present,    &
                                               length,f,VFT,IFT,dim,TI,TII,Y,Z,ZC,YC,GAMMA_C)

! end1 voltage source
  VSC(:)=Vs1(:)
  
! end2 voltage source
! We add the incident field terms  [Z2](IFT) - (VFT)  at the load end
  TV1=matmul(Z2,IFT)
  VLC(:)=Vs2(:)+TV1(:)-VFT(:)

! Fill the LHS matrix elements in eqn

! M11
  TC1=matmul(Z1,Yc)
  TC2=matmul(TC1,TV)
  MC11(:,:)=TV(:,:)+TC2(:,:)

! M12
  TC1=matmul(Z1,Yc)
  TC2=matmul(TC1,TV)
  MC12(:,:)=TV(:,:)-TC2(:,:)

! M21
  TC1=matmul(Tv,Exp_m_gamma_l)
  TC2=matmul(Yc,TC1)
  TC3=matmul(Z2,TC2)
  MC21(:,:)=TC1(:,:)-TC3(:,:)

! M22
  TC1=matmul(Tv,Exp_p_gamma_l)
  TC2=matmul(Yc,TC1)
  TC3=matmul(Z2,TC2)
  MC22(:,:)=TC1(:,:)+TC3(:,:)
  
! Solve the matrix system for Vmp intially
  if(verbose) write(*,*)'Invert MC22'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(MC22,dim,MC22I,dim,ierr) 
  if(verbose) write(*,*)'Done: invert MC22'
  
  TC1=matmul(MC12,MC22I)  ! note Keep TC1 for use later
  TC2=matmul(TC1,MC21)

  TC3(:,:)=MC11(:,:)-TC2(:,:)
  
  if(verbose) write(*,*)'Invert TC3'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TC3,dim,TC2,dim,ierr) 
  if(verbose) write(*,*)'Done: invert TC3'
  
  TV1=matmul(TC1,VLC)
  
  TV2(:)=VSC(:)-TV1(:)
  
  Vmp=matmul(TC2,TV2)
  
! next solve for Vmm
  TV1=matmul(MC21,Vmp)
  
  TV2(:)=VLC(:)-TV1(:)
  Vmm=matmul(MC22I,TV2)
  
! now solve for the source end voltages
  
  TV2(:)=Vmm(:)+Vmp(:)
  Vend1=matmul(TV,TV2)
  
  TV1=matmul(Exp_m_gamma_l,Vmp)
  TV2=matmul(Exp_p_gamma_l,Vmm)
  TV3(:)=TV1(:)+TV2(:)
  Vend2=matmul(TV,TV3)
  
! at this point Vend2 may include lumped sources due to the
! incident field excitation so we must remove these
  Vend2(:)=Vend2(:)+VFT(:) 
  
  Vout_ref=(0d0,0d0)    ! assume the output reference conductor is the transmission line reference conductor for now
  
  if (output_end.EQ.1) then
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend1(output_conductor_ref)
    Vout=Vend1(output_conductor)-Vout_ref
  else
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend2(output_conductor_ref)
    Vout=Vend2(output_conductor)-Vout_ref
    
  end if
    
  RETURN

END SUBROUTINE frequency_domain_MTL_solution_V