Blame view

SRC/MTL_ANALYTIC_SOLUTION/frequency_domain_MTL_solution.F90 28.3 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE frequency_domain_MTL_solution
! SUBROUTINE frequency_domain_MTL_solution_V
!
! NAME
!     frequency_domain_MTL_solution
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine implements the analytic solution for analysis of
!     multi-conductor transmission lines with resistive terminations
!     and voltages soruces at a single frequency. 
!     The subroutine returns the voltage of the specified conductor at 
!     the specified end of the transmission line
!
!     The comments in this file make reference to the project theory manual.
!     
! COMMENTS
!     Revised comments related to the theory docuemnt are incomplete - the theory
!     document needs to be completed.
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     12/1/2016        CJS: Use fortran intrinsic functions for matrix algebra
!     19/1/2016        CJS: Include comments which refer to the project theory document.
!     22/6/2016        CJS: Include incident field excitation. Note that this initial implementation 
!                           does NOT take proper account of shielded cables.
!     28/6/2016        CJS: Include a ground plane in the incident field excitation 
!     15/7/2016        CJS: Start to include solution for incident field excitation of shielded cables
!     7/3/2017         CJS: Add resistance and voltage source onto the reference coonductor 
!     8/5/2017         CJS: Include references to Theory_Manual
!
SUBROUTINE frequency_domain_MTL_solution(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                                         Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,xcoord,ycoord,  &
                                         ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, & 
                                         length,Vs1,Z1,Vs2,Z2,is_shielded,f, &
                                         output_end,output_conductor,output_conductor_ref,Vout)

USE type_specifications
USE general_module
USE constants
USE cable_module
USE cable_bundle_module
USE spice_cable_bundle_module
USE maths

IMPLICIT NONE

! variables passed to the subroutine

integer,intent(IN)         :: dim                ! dimension of matrix system

complex(dp),intent(IN)     :: Z_domain(dim,dim)  ! domain based impedance matrix
complex(dp),intent(IN)     :: Y_domain(dim,dim)  ! domain based admittance matrix
complex(dp),intent(IN)     :: MV(dim,dim)        ! domain voltage decomposition matrix
complex(dp),intent(IN)     :: MVI(dim,dim)       ! inverse domain voltage decomposition matrix
complex(dp),intent(IN)     :: MI(dim,dim)        ! domain current decomposition matrix
complex(dp),intent(IN)     :: MII(dim,dim)       ! inverse domain current decomposition matrix

complex(dp),intent(IN) :: Eamplitude                        ! incident field amplitude
real(dp),intent(IN)    :: Ex                                ! Ex component of incident field
real(dp),intent(IN)    :: Ey                                ! Ey component of incident field
real(dp),intent(IN)    :: Ez                                ! Ez component of incident field
real(dp),intent(IN)    :: Hx                                ! Hx component of incident field
real(dp),intent(IN)    :: Hy                                ! Hy component of incident field
real(dp),intent(IN)    :: Hz                                ! Hz component of incident field
real(dp),intent(IN)    :: kx                                ! x component of incident field propagation vector
real(dp),intent(IN)    :: ky                                ! y component of incident field propagation vector
real(dp),intent(IN)    :: kz                                ! z component of incident field propagation vector

real(dp),intent(IN)    :: xcoord(dim+1)                     ! list of conductor x coordinates in bundle cross section
real(dp),intent(IN)    :: ycoord(dim+1)                     ! list of conductor x coordinates in bundle cross section

logical,intent(IN)     :: ground_plane_present              ! flag indicating the presence of a ground plane 
real(dp),intent(IN)    :: ground_plane_x,ground_plane_y     ! input: x and y coordinates of a point on the ground plane
real(dp),intent(IN)    :: ground_plane_theta                ! input: angle of the ground plane from the x axis

real(dp),intent(IN)    :: length                            ! length of bundle (m)

complex(dp),intent(IN)     :: Vs1(dim)                    ! list of voltage sources in end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Z1(dim,dim)                 ! impedance matrix for end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Vs2(dim)                    ! list of voltage sources in end 2 of transmission line termination circuit
complex(dp),intent(IN)     :: Z2(dim,dim)                 ! impedance matrix for end 2 of transmission line termination circuit

logical,intent(IN)         :: is_shielded(dim+1)            ! flag to indicate shielded conductors (i.e. those not illuminated by the incident field)

real(dp),intent(IN)        :: f                             ! frequency

integer,intent(IN)         :: output_end                    ! end of transmission line for conductor voltage output
integer,intent(IN)         :: output_conductor              ! conductor number for conductor voltage output
integer,intent(IN)         :: output_conductor_ref          ! conductor number for conductor voltage output reference
complex(dp),intent(OUT)    :: Vout                          ! conductor voltage output to be returned

! local variables

complex(dp)     :: Z(dim,dim)     ! glabal based impedance matrix
complex(dp)     :: Y(dim,dim)     ! glabal based admittance matrix

complex(dp)     :: YZ(dim,dim)    ! product of Y and Z matrices

complex(dp)     :: TV(dim,dim)     ! modal decomposition matrix            [Z][Y]=[TV][GAMMA_SQR][TVI]
complex(dp)     :: TVI(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: TI(dim,dim)     ! modal decomposition matrix            [Y][Z]=[TI][GAMMA_SQR][TII]
complex(dp)     :: TII(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: GAMMA_SQR(dim)  ! diagonal matrix elements in YZ/ ZY diagonalisation 

complex(dp)     :: Zm(dim,dim)     ! modal characteristic impedance matrix
complex(dp)     :: Ym(dim,dim)     ! modal characteristic admittance matrix
complex(dp)     :: Zmd(dim)        ! modal characteristic impedance list
complex(dp)     :: Ymd(dim)        ! modal characteristic impedance list

complex(dp)     :: GAMMA_C(dim)    ! complex square root of GAMMA_SQR
real(dp)        :: gamma_r(dim)    ! real part of the complex square root of GAMMA_SQR

complex(dp)     :: ZC(dim,dim)     ! Characteristic impedance matrix
complex(dp)     :: YC(dim,dim)     ! Characteristic admittance matrix

complex(dp)     :: Exp_p_gamma_l(dim,dim)  ! propagation matrix for modes in the +z direction
complex(dp)     :: Exp_m_gamma_l(dim,dim)  ! propagation matrix for modes in the -z direction

! Temporary matrices used in the matrix solution of the transmission line equations with 
! termination conditions appplied.

complex(dp)     :: D(dim,dim)
complex(dp)     :: sqrtDI(dim,dim)

complex(dp)     :: T1(dim,dim)
complex(dp)     :: T2(dim,dim)

complex(dp)     :: MC11(dim,dim)
complex(dp)     :: MC12(dim,dim)
complex(dp)     :: MC21(dim,dim)
complex(dp)     :: MC22(dim,dim)
complex(dp)     :: TC1(dim,dim)
complex(dp)     :: TC2(dim,dim)
complex(dp)     :: TC3(dim,dim)
complex(dp)     :: MC22I(dim,dim)

complex(dp)     :: TM1(dim,dim)

! Temporary vectors used in the matrix solution of the transmission line equations with 
! termination conditions appplied.
complex(dp)     :: VSC(dim)
complex(dp)     :: VLC(dim)
complex(dp)     :: Imp(dim)
complex(dp)     :: Imm(dim)

complex(dp)     :: TV1(dim)
complex(dp)     :: TV2(dim)
complex(dp)     :: TV3(dim)

! Conductor voltages at ends 1 and 2 referred to the reference conductor voltage at that end
complex(dp)     :: Vend1(dim)
complex(dp)     :: Vend2(dim)

complex(dp)     :: Vout_ref  ! voltage on the output reference conductor

! incident field excitation sources

complex(dp)     :: VFT(dim)
complex(dp)     :: IFT(dim)

real(dp)        :: w  ! angular frequency

! loop variables
integer :: row,col
integer :: i

! integer error indicator for the matrix inverse 
integer :: ierr

! START

! angular frequency
  w=2d0*pi*f                 

! calculate the global impedance matrix (Theory_Manual_Eqn 2.4,2.5) from the domain based impedance matrix
! and the domain decomposition matrices using Theory_Manual_Eqn 3.1 and 3.4 and the 
! definition of the voltages/ currents for the domain based impedance matrix 
! (V_domain)=[Z_domain] (I_domain), (V_domain)=[MV] (V_global), (I_domain)=[MI] )I_global) so
! [MV] (V_global)=[Z_domain] (I_domain)=[MI] )I_global)
! thus (V_global)=[MV^-1][Z_domain] [MI] (I_global)

  TM1=MATMUL(MVI,Z_domain)
  Z=MATMUL(TM1,MI)
    

! calculate the global admittance matrix  (Theory_Manual_Eqn 2.4,2.5) from the domain based admittance matrix
! and the domain decomposition matrices using Theory_Manual_Eqn 3.1 and 3.4 and the 
! definition of the voltages/ currents for the domain based admittance matrix 
! (I_domain)=[Y_domain] (V_domain), (V_domain)=[MV] (V_global), (I_domain)=[MI] )I_global) so
! [MI] (I_global)=[Y_domain] (V_domain)=[MV] )V_global)
! thus (I_global)=[MI^-1][Y_domain][MV] (V_global)

  TM1=MATMUL(MII,Y_domain)
  Y=MATMUL(TM1,MV)
  
! perform a modal decomposition on the YZ product Theory_Manual_Eqn 2.33, 2.36, 2.41 (characteristic impedance)

  CALL modal_decomposition_global(dim,Z_domain,Y_domain,MV,MVI,MI,MII,                                      &
                                  Y,Z,TI,TII,TV,TVI,GAMMA_C,GAMMA_SQR,gamma_r,D,sqrtDI,ZC,YC,Zm,Ym,Zmd,Ymd)
  
! We have assembled all the matrices required in the analysis so we can now solve for the termination voltages
  
! calculate diagonal modal propagation matrices for the modes as in Theory_Manual_Eqn 2.34,2.38
  Exp_p_gamma_l(:,:)=(0d0,0d0)
  Exp_m_gamma_l(:,:)=(0d0,0d0)
  do row=1,dim
     Exp_p_gamma_l(row,row)=exp( GAMMA_C(row)*length)
     Exp_m_gamma_l(row,row)=exp(-GAMMA_C(row)*length)
  end do
  
! Calculate the sources due to the incident field excitation on all conductors Theory_Manual_Eqn 2.60

  CALL calculate_lumped_incident_field_sources(xcoord,ycoord,is_shielded,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,          &
                                               ground_plane_present,    &
                                               length,f,VFT,IFT,dim,TI,TII,Y,Z,ZC,YC,GAMMA_C)

! end1 voltage source
  VSC(:)=Vs1(:)
  
! end2 voltage source
! We add the incident field terms  [Z2](IFT) - (VFT)  at the load end. Theory_Manual_Eqn 2.62
  TV1=matmul(Z2,IFT)
  VLC(:)=Vs2(:)+TV1(:)-VFT(:)

! Fill the LHS matrix elements in Theory_Manual_Eqn 2.43, 2.44

! M11
  TC1(:,:)=Zc(:,:)+Z1(:,:)
  MC11=matmul(TC1,TI)

! M12
  TC1(:,:)=Zc(:,:)-Z1(:,:)
  MC12=matmul(TC1,TI)

! M21
  TC1(:,:)=Zc(:,:)-Z2(:,:)
  TC2=matmul(TC1,TI)
  MC21=matmul(TC2,Exp_m_gamma_l)

! M22
  TC1(:,:)=Zc(:,:)+Z2(:,:)
  TC2=matmul(TC1,TI)
  MC22=matmul(TC2,Exp_p_gamma_l)
  
! Solve the matrix system for Imp intially  Theory_Manual_Eqn 2.46
  if(verbose) write(*,*)'Invert MC22'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(MC22,dim,MC22I,dim,ierr) 
  if(verbose) write(*,*)'Done: invert MC22'
  
  TC1=matmul(MC12,MC22I)  ! note Keep TC1 for use later
  TC2=matmul(TC1,MC21)

  TC3(:,:)=MC11(:,:)-TC2(:,:)
  
  if(verbose) write(*,*)'Invert TC3'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TC3,dim,TC2,dim,ierr) 
  if(verbose) write(*,*)'Done: invert TC3'
  
  TV1=matmul(TC1,VLC)
  
  TV2(:)=VSC(:)-TV1(:)
  
  Imp=matmul(TC2,TV2)
  
! next solve for Imm    Theory_Manual_Eqn 2.47
  TV1=matmul(MC21,Imp)
  
  TV2(:)=VLC(:)-TV1(:)
  Imm=matmul(MC22I,TV2)
  
! now solve for the source end voltages  Theory_Manual_Eqn  2.40 at z=0

  TC1=matmul(ZC,TI) 
  
  TV2(:)=Imm(:)+Imp(:)
  Vend1=matmul(TC1,TV2)
  
  
! now solve for the load end voltages  Theory_Manual_Eqn  2.40 at z=L
  TV1=matmul(Exp_m_gamma_l,Imp)
  TV2=matmul(Exp_p_gamma_l,Imm)
  
  TV3(:)=TV1(:)+TV2(:)
  Vend2=matmul(TC1,TV3)
  
! at this point Vend2 may include lumped sources due to the
! incident field excitation so we must remove these ( Theory_Manual_Eqn  2.62  )
  Vend2(:)=Vend2(:)+VFT(:)     
  
! From the conductor voltages, calculate the output voltage requested which may be the 
! voltage between any two conductors.

  Vout_ref=(0d0,0d0)    ! assume the output reference conductor is the transmission line reference conductor for now
  
  if (output_end.EQ.1) then
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend1(output_conductor_ref)
    Vout=Vend1(output_conductor)-Vout_ref
  else
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend2(output_conductor_ref)
    Vout=Vend2(output_conductor)-Vout_ref
    
  end if
  
! END OF THE CALCULATION, OPTIONAL OUTPUT FOR CHECKING FOLLOWS...
  if (.NOT.verbose) RETURN
  
  write(*,*)'YZ'

  YZ=matmul(Y,Z)
  CALL write_cmatrix(YZ,dim,0)
  
  write(*,*)'GAMMA_SQR'
  do i=1,dim
    write(*,*)i,GAMMA_SQR(i)
  end do
  write(*,*)'TI'
  CALL write_cmatrix(TI,dim,0)
  
  write(*,*)'Gamma_r'
  do row=1,dim
    write(*,*)row,gamma_r(row)
  end do

  write(*,*)'Mode velocities'
  do row=1,dim
    write(*,*)row,w/(gamma_r(row))
  end do

  write(*,*)'ZC'
  CALL write_cmatrix(ZC,dim,0)
  write(*,*)'YC'
  CALL write_cmatrix(YC,dim,0)
  
  write(*,*)'Z1:'
  CALL write_cmatrix_re(Z1,dim,0)

  write(*,*)'Vs1'
  do row=1,dim
    write(*,*)real(Vs1(row))
  end do
  
  write(*,*)'Z2:'
  CALL write_cmatrix_re(Z2,dim,0)

  write(*,*)'Vs2'
  do row=1,dim
    write(*,*)real(Vs2(row))
  end do
  
  write(*,*)'ZC:'
  CALL write_cmatrix(ZC,dim,0)
  
  write(*,*)'TI:'
  CALL write_cmatrix_re(TI,dim,0)
  
  write(*,*)'TII:'
  CALL write_cmatrix_re(TII,dim,0)
  
  write(*,*)'TV:'
  CALL write_cmatrix_re(TV,dim,0)
  
  write(*,*)'TVI:'
  CALL write_cmatrix_re(TVI,dim,0)

  write(*,*)'gamma'
  do row=1,dim
    write(*,*)GAMMA_C(row)
  end do
  
  write(*,*)'Check modal decomposition YZ=TI GAMMA_SQR TII'
  
  do row=1,dim
    do col=1,dim
      TC1(row,col)=TII(row,col)*GAMMA_C(row)*GAMMA_C(row)
    end do
  end do
  TC2=matmul(TI,TC1)
 
  write(*,*)'YZ'
  
  CALL write_cmatrix(YZ,dim,0)
  write(*,*)'TI GAMMA TII'
  CALL write_cmatrix(TC2,dim,0)
   
  write(*,*)'Zm:'
  CALL write_cmatrix(Zm,dim,0)
   
  write(*,*)'Ym:'
  CALL write_cmatrix(Ym,dim,0)
  
  write(*,*)'transmission line length'
  write(*,*)length,' (m)'
  
  write(*,*)'Mode Transmission Delay'
  do row=1,dim
    write(*,*)abs( length*sqrt(Zmd(row)*Ymd(row)/(-w*w)) )
  end do
  
  write(*,*)'Mode Transmission Delay 2'
  do row=1,dim
    write(*,*)length*GAMMA_C(row)/(j*w)
  end do
  
  write(*,*)'exp j gamma L:'
  CALL write_cmatrix(Exp_p_gamma_l,dim,0)
  
  write(*,*)'exp-j gamma L:'
  CALL write_cmatrix(Exp_m_gamma_l,dim,0)
  
  write(*,*)'VSc:'
  do row=1,dim
    write(*,*)VSC(row)
  end do
  
  write(*,*)'VLc:'
  do row=1,dim
    write(*,*)VLC(row)
  end do
    
  RETURN

END SUBROUTINE frequency_domain_MTL_solution
!
! NAME
!     frequency_domain_MTL_solution_V
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine implements the analytic solution for analysis of
!     multi-conductor transmission lines with resistive terminations
!     and voltages soruces at a single frequency. 
!     The subroutine returns the voltage of the specified conductor at 
!     the specified end of the transmission line
!
!     The comments in this file make reference to the project theory manual.
!
!     This solution differs from the solution in frequency_domain_MTL_solution
!     in that we diagonalise the ZY product and base the calculations on modal voltages.
!     
! COMMENTS
!     This is used as a check only and is not the default solution for the
!     validation test cases, the theory is not in the Theory Manual however it
!     closely resembles the solution based on modal currents impemented in 
!     SUBROUTINE frequency_domain_MTL_solution
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     12/1/2016        CJS: Use fortran intrinsic functions for matrix algebra
!     19/1/2016        CJS: Include comments which refer to the project theory document.
!     22/6/2016        CJS: Include incident field excitation. Note that this initial implementation 
!                           does NOT take proper account of shielded cables.
!     28/6/2016        CJS: Include a ground plane in the incident field excitation 
!     15/7/2016        CJS: Start to include solution for incident field excitation of shielded cables
!     7/3/2017         CJS: Add resistance and voltage source onto the reference coonductor 
!     21/4/2017        CJS: Adapt the original frequency_domain_MTL_solution to work with modal voltages
!                           as an independent check of the solution
!
SUBROUTINE frequency_domain_MTL_solution_V(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                                         Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,xcoord,ycoord,  &
                                         ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, & 
                                         length,Vs1,Z1,Vs2,Z2,is_shielded,f, &
                                         output_end,output_conductor,output_conductor_ref,Vout)

USE type_specifications
USE general_module
USE constants
USE cable_module
USE cable_bundle_module
USE spice_cable_bundle_module
USE maths

IMPLICIT NONE

! variables passed to the subroutine

integer,intent(IN)         :: dim                ! dimension of matrix system

complex(dp),intent(IN)     :: Z_domain(dim,dim)  ! domain based impedance matrix
complex(dp),intent(IN)     :: Y_domain(dim,dim)  ! domain based admittance matrix
complex(dp),intent(IN)     :: MV(dim,dim)        ! domain voltage decomposition matrix
complex(dp),intent(IN)     :: MVI(dim,dim)       ! inverse domain voltage decomposition matrix
complex(dp),intent(IN)     :: MI(dim,dim)        ! domain current decomposition matrix
complex(dp),intent(IN)     :: MII(dim,dim)       ! inverse domain current decomposition matrix

complex(dp),intent(IN) :: Eamplitude                        ! incident field amplitude
real(dp),intent(IN)    :: Ex                                ! Ex component of incident field
real(dp),intent(IN)    :: Ey                                ! Ey component of incident field
real(dp),intent(IN)    :: Ez                                ! Ez component of incident field
real(dp),intent(IN)    :: Hx                                ! Hx component of incident field
real(dp),intent(IN)    :: Hy                                ! Hy component of incident field
real(dp),intent(IN)    :: Hz                                ! Hz component of incident field
real(dp),intent(IN)    :: kx                                ! x component of incident field propagation vector
real(dp),intent(IN)    :: ky                                ! y component of incident field propagation vector
real(dp),intent(IN)    :: kz                                ! z component of incident field propagation vector

real(dp),intent(IN)    :: xcoord(dim+1)                     ! list of conductor x coordinates in bundle cross section
real(dp),intent(IN)    :: ycoord(dim+1)                     ! list of conductor x coordinates in bundle cross section

logical,intent(IN)     :: ground_plane_present              ! flag indicating the presence of a ground plane 
real(dp),intent(IN)    :: ground_plane_x,ground_plane_y     ! input: x and y coordinates of a point on the ground plane
real(dp),intent(IN)    :: ground_plane_theta                ! input: angle of the ground plane from the x axis

real(dp),intent(IN)    :: length                            ! length of bundle (m)

complex(dp),intent(IN)     :: Vs1(dim)                    ! list of voltage sources in end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Z1(dim,dim)                 ! impedance matrix for end 1 of transmission line termination circuit
complex(dp),intent(IN)     :: Vs2(dim)                    ! list of voltage sources in end 2 of transmission line termination circuit
complex(dp),intent(IN)     :: Z2(dim,dim)                 ! impedance matrix for end 2 of transmission line termination circuit

logical,intent(IN)         :: is_shielded(dim+1)            ! flag to indicate shielded conductors (i.e. those not illuminated by the incident field)

real(dp),intent(IN)        :: f                             ! frequency

integer,intent(IN)         :: output_end                    ! end of transmission line for conductor voltage output
integer,intent(IN)         :: output_conductor              ! conductor number for conductor voltage output
integer,intent(IN)         :: output_conductor_ref          ! conductor number for conductor voltage output reference
complex(dp),intent(OUT)    :: Vout                          ! conductor voltage output to be returned

! local variables

complex(dp)     :: Z(dim,dim)     ! glabal based impedance matrix
complex(dp)     :: Y(dim,dim)     ! glabal based admittance matrix

complex(dp)     :: ZY(dim,dim)     ! product of Z and Y matrices

complex(dp)     :: TV(dim,dim)     ! modal decomposition matrix            [Z][Y]=[TV][GAMMA_SQR][TVI]
complex(dp)     :: TVI(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: TI(dim,dim)     ! modal decomposition matrix            [Y][Z]=[TI][GAMMA_SQR][TII]
complex(dp)     :: TII(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: GAMMA_SQR(dim)  ! diagonal matrix elements in YZ/ ZY diagonalisation 

complex(dp)     :: Zm(dim,dim)     ! modal characteristic impedance matrix
complex(dp)     :: Ym(dim,dim)     ! modal characteristic admittance matrix
complex(dp)     :: Zmd(dim)        ! modal characteristic impedance list
complex(dp)     :: Ymd(dim)        ! modal characteristic impedance list

complex(dp)     :: GAMMA_C(dim)    ! complex square root of GAMMA_SQR
real(dp)        :: gamma_r(dim)    ! real part of the complex square root of GAMMA_SQR

complex(dp)     :: ZC(dim,dim)     ! Characteristic impedance matrix
complex(dp)     :: YC(dim,dim)     ! Characteristic admittance matrix

complex(dp)     :: Exp_p_gamma_l(dim,dim)  ! propagation matrix for modes in the +z direction
complex(dp)     :: Exp_m_gamma_l(dim,dim)  ! propagation matrix for modes in the -z direction

! Temporary matrices used in the matrix solution of the transmission line equations with 
! termination conditions appplied.

complex(dp)     :: D(dim,dim)
complex(dp)     :: sqrtDI(dim,dim)

complex(dp)     :: T1(dim,dim)
complex(dp)     :: T2(dim,dim)

complex(dp)     :: MC11(dim,dim)
complex(dp)     :: MC12(dim,dim)
complex(dp)     :: MC21(dim,dim)
complex(dp)     :: MC22(dim,dim)
complex(dp)     :: TC1(dim,dim)
complex(dp)     :: TC2(dim,dim)
complex(dp)     :: TC3(dim,dim)
complex(dp)     :: MC22I(dim,dim)

complex(dp)     :: TM1(dim,dim)

! Temporary vectors used in the matrix solution of the transmission line equations with 
! termination conditions appplied.
complex(dp)     :: VSC(dim)
complex(dp)     :: VLC(dim)
complex(dp)     :: Vmp(dim)
complex(dp)     :: Vmm(dim)

complex(dp)     :: TV1(dim)
complex(dp)     :: TV2(dim)
complex(dp)     :: TV3(dim)

! Conductor voltages at ends 1 and 2 referred to the reference conductor voltage at that end
complex(dp)     :: Vend1(dim)
complex(dp)     :: Vend2(dim)

complex(dp)     :: Vout_ref  ! voltage on the output reference conductor

! incident field excitation sources

complex(dp)     :: VFT(dim)
complex(dp)     :: IFT(dim)

real(dp)        :: w  ! angular frequency

! loop variables
integer :: row,col
integer :: i

! integer error indicator for the matrix inverse 
integer :: ierr

! START

! angular frequency
  w=2d0*pi*f                 

! calculate the global impedance matrix from the domain based impedance matrix
! and the domain decomposition matrices
  TM1=MATMUL(MVI,Z_domain)
  Z=MATMUL(TM1,MI)
    

! calculate the global admittance matrix from the domain based admittance matrix
! and the domain decomposition matrices
  TM1=MATMUL(MII,Y_domain)
  Y=MATMUL(TM1,MV)
  
! perform a modal decomposition on the ZY product

  CALL modal_decomposition_global_ZY(dim,Z_domain,Y_domain,MV,MVI,MI,MII,                                      &
                                  Y,Z,TI,TII,TV,TVI,GAMMA_C,GAMMA_SQR,gamma_r,D,sqrtDI,ZC,YC,Zm,Ym,Zmd,Ymd)
  
! We have assembled all the matrices required in the analysis so we can now solve for the termination voltages
      
! calculate diagonal modal propagation matrices for the modes
  Exp_p_gamma_l(:,:)=(0d0,0d0)
  Exp_m_gamma_l(:,:)=(0d0,0d0)
  do row=1,dim
     Exp_p_gamma_l(row,row)=exp( GAMMA_C(row)*length)
     Exp_m_gamma_l(row,row)=exp(-GAMMA_C(row)*length)
  end do
  
! Calculate the sources due to the incident field excitation on all conductors

  CALL calculate_lumped_incident_field_sources(xcoord,ycoord,is_shielded,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,          &
                                               ground_plane_present,    &
                                               length,f,VFT,IFT,dim,TI,TII,Y,Z,ZC,YC,GAMMA_C)

! end1 voltage source
  VSC(:)=Vs1(:)
  
! end2 voltage source
! We add the incident field terms  [Z2](IFT) - (VFT)  at the load end
  TV1=matmul(Z2,IFT)
  VLC(:)=Vs2(:)+TV1(:)-VFT(:)

! Fill the LHS matrix elements in eqn

! M11
  TC1=matmul(Z1,Yc)
  TC2=matmul(TC1,TV)
  MC11(:,:)=TV(:,:)+TC2(:,:)

! M12
  TC1=matmul(Z1,Yc)
  TC2=matmul(TC1,TV)
  MC12(:,:)=TV(:,:)-TC2(:,:)

! M21
  TC1=matmul(Tv,Exp_m_gamma_l)
  TC2=matmul(Yc,TC1)
  TC3=matmul(Z2,TC2)
  MC21(:,:)=TC1(:,:)-TC3(:,:)

! M22
  TC1=matmul(Tv,Exp_p_gamma_l)
  TC2=matmul(Yc,TC1)
  TC3=matmul(Z2,TC2)
  MC22(:,:)=TC1(:,:)+TC3(:,:)
  
! Solve the matrix system for Vmp intially
  if(verbose) write(*,*)'Invert MC22'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(MC22,dim,MC22I,dim,ierr) 
  if(verbose) write(*,*)'Done: invert MC22'
  
  TC1=matmul(MC12,MC22I)  ! note Keep TC1 for use later
  TC2=matmul(TC1,MC21)

  TC3(:,:)=MC11(:,:)-TC2(:,:)
  
  if(verbose) write(*,*)'Invert TC3'
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TC3,dim,TC2,dim,ierr) 
  if(verbose) write(*,*)'Done: invert TC3'
  
  TV1=matmul(TC1,VLC)
  
  TV2(:)=VSC(:)-TV1(:)
  
  Vmp=matmul(TC2,TV2)
  
! next solve for Vmm
  TV1=matmul(MC21,Vmp)
  
  TV2(:)=VLC(:)-TV1(:)
  Vmm=matmul(MC22I,TV2)
  
! now solve for the source end voltages
  
  TV2(:)=Vmm(:)+Vmp(:)
  Vend1=matmul(TV,TV2)
  
  TV1=matmul(Exp_m_gamma_l,Vmp)
  TV2=matmul(Exp_p_gamma_l,Vmm)
  TV3(:)=TV1(:)+TV2(:)
  Vend2=matmul(TV,TV3)
  
! at this point Vend2 may include lumped sources due to the
! incident field excitation so we must remove these
  Vend2(:)=Vend2(:)+VFT(:) 
  
  Vout_ref=(0d0,0d0)    ! assume the output reference conductor is the transmission line reference conductor for now
  
  if (output_end.EQ.1) then
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend1(output_conductor_ref)
    Vout=Vend1(output_conductor)-Vout_ref
  else
  
    if (output_conductor_ref.LE.dim) Vout_ref=Vend2(output_conductor_ref)
    Vout=Vend2(output_conductor)-Vout_ref
    
  end if
    
  RETURN

END SUBROUTINE frequency_domain_MTL_solution_V