include_BRUNE_test.F90 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2018 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
!
!
! SUBROUTINE BRUNE_test(H,type,CFtype,R,L1out,C,L2out,K,found,HR,remainder_OK,remainder_zero)
! SUBROUTINE LC_test_BRUNE(H_PR,L,C,found,HR,remainder_OK,remainder_zero)
! SUBROUTINE L_test_BRUNE(H_PR,L,found,HR,remainder_OK,remainder_zero)
!
! 
! NAME
!     BRUNE_test
!
! DESCRIPTION
!       look for a viable BRUNE branch in a given impedance function
!       See sections 7.2.4 of the Theory manual
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE BRUNE_test(H,type,CFtype,R,L1out,C,L2out,K,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter),INTENT(INOUT) :: H
  integer :: type
  integer :: CFtype
  real(dp):: R,L1out,L2out,C,K
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  real(dp) :: w0,f0
  complex(dp) :: Xw0
  
  type(Sfilter) :: Z2,Y2
  type(Sfilter_PR) :: Y2_PR
  type(Sfilter) :: Y3
  type(Sfilter) :: Z3
  type(Sfilter_PR) :: Z3_PR
  type(Sfilter) :: temp_filter
  real(dp):: L1,L2,L3,M
  

!START

  if (verbose) write(*,*)'CALLED: BRUNE_test'
  
  found=.FALSE.
  
! Calculate the resistance which reduces H_PR to a minimum resistive impedance function
! and the frequency at which the resistance is zero

  CALL calculate_min_resistance_function(H,R,w0)

! evaluate the min_resistance filter at w0. At this frequency the response is purely imaginary.
  f0=w0/(2d0*pi)
  

  f0=w0*H%wnorm/(2d0*pi)
  if (abs(f0).LT.zero_test_small) then
    w0=zero_test_small
    f0=w0*H%wnorm/(2d0*pi)
  end if
  Xw0=evaluate_Sfilter_frequency_response(H,f0)
  
  L1=aimag(Xw0)/w0
  if (verbose) then
    write(*,*)'L1=',L1
  end if

! subtract this inductive impedance from the filter function Z2(s)=H(s)-L1*s

  temp_filter=allocate_Sfilter(1,0)
  temp_filter%wnorm=H%wnorm
  temp_filter%a%coeff(0)=0d0
  temp_filter%a%coeff(1)=-L1
  temp_filter%b%coeff(0)=1d0
  
  Z2=AddSfilter(H,temp_filter)
  CALL get_min_order_poly(Z2%a)
  
  if (verbose) then
    write(*,*)'Z2 filter function:'
    CALL write_Sfilter(Z2,0)
  end if
  
  Y2=reciprocal_Sfilter(Z2)
  
  if (verbose) then
    write(*,*)'Y2 filter function:'
    CALL write_Sfilter(Y2,0)
  end if
  
! now extract an L-C series admittance from Y2

  Y2_PR=Convert_filter_S_to_S_PR(Y2)
  
  if (verbose) CALL write_S_PR_filter(Y2_PR)
  
  CALL LC_test_BRUNE(Y2_PR,L2,C,found,Y3,remainder_OK,remainder_zero)
               
  if (verbose) then
    write(*,*)'CALLED LC_test_BRUNE'
    write(*,*)'L2=',L2
    write(*,*)'C =',C
    write(*,*)'found =',found
    write(*,*)'remainder_OK =',remainder_OK
    write(*,*)'remainder_zero =',remainder_zero
    write(*,*)'remainder pole residue function'
    CALL write_Sfilter(Y3,0)
  end if
  
  Z3=reciprocal_Sfilter(Y3)
  
!  write(*,*)'Z3:'
!  CALL write_Sfilter(Z3,0)
  Z3_PR=Convert_filter_S_to_S_PR(Z3)

! extract a series inductance (which may be negative)  
  CALL L_test_BRUNE(Z3_PR,L3,found,HR,remainder_OK,remainder_zero)
  
  if (verbose) then
    write(*,*)'CALLED L_test_BRUNE'
    write(*,*)'L3=',L3
    write(*,*)'found =',found
    write(*,*)'remainder_OK =',remainder_OK
    write(*,*)'remainder_zero =',remainder_zero
    write(*,*)'remainder pole residue function'
  end if
  
! we can only proceed if the remainder is OK at this point

  if (found.AND.remainder_OK) then 
  
! carry on and work out the mutual impedance form which
! should eliminate the negative inductance
  
    L1out=L1+L2
    L2out=L3+L2
    M=L2
    K=1d0
    
    L1out=L1out/H%wnorm
    L2out=L2out/H%wnorm
    C=C/H%wnorm
    
! check for positive component values
    if (R.LT.0d0) then
      if (verbose) write(*,*)'Error, R<0,  R =',R
      found=.FALSE.
    end if
    if (L1out.LT.0d0) then
      if (verbose) write(*,*)'Error, L1<0, L1=',L1
      found=.FALSE.
    end if
    if (L2out.LT.0d0) then
      if (verbose) write(*,*)'Error, L2<0, L2=',L2
      found=.FALSE.
    end if
    if (K.LT.0d0) then
      if (verbose) write(*,*)'Error, K<0,  K =',K
      found=.FALSE.
    end if
    if (C.LT.0d0) then
      if (verbose) write(*,*)'Error, C<0,  C =',C
      found=.FALSE.
    end if
    
    if (found) GOTO 8000

  end if

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable BRUNE branch
  
  CFtype=series_BRUNE
  found=.TRUE.
    
  if (verbose) then
    write(*,*)'FOUND VIABLE BRUNE BRANCH'
    write(*,*)'R =',R
    write(*,*)'L1=',L1out
    write(*,*)'L2=',L2out
    write(*,*)'C =',C
    write(*,*)'K=',K
    write(*,*)'remainder_OK   :',remainder_OK
    write(*,*)'remainder_zero :',remainder_zero
    write(*,*)'Remainder impedance:'
    CALL write_Sfilter(HR,0)
  end if
  
  RETURN

  END SUBROUTINE BRUNE_test
!
! NAME
!     LC_test_BRUNE
!
! DESCRIPTION
!       look for a viable LC branch in a given impedance/admittance function
!       This is specific to the Brune synthesis as the inductance can be negative
!       so the checks are different 
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE LC_test_BRUNE(H_PR,L,C,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter_PR),INTENT(IN) :: H_PR
  integer :: type
  integer :: CFtype
  real(dp):: R,L,C
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  integer :: first_complex_pole,pole1,pole2,pole
  type(Sfilter_PR) :: HR_PR_local
  logical :: stable
  
  integer :: i,ii
  real(dp) :: diff,mag_diff,mag1,mag2
  
  real(dp) :: const_term
  logical  :: imaginary_poles,positive_residues,zero_const_term
  
!START

  if (verbose) write(*,*)'CALLED: LC_test_BRUNE'

  found=.FALSE.

  first_complex_pole=H_PR%n_real_poles+1
  
! loop over complex pole pairs
  do i=1,H_PR%n_complex_pole_pairs
  
    pole1=first_complex_pole+(i-1)*2
    pole2=pole1+1
    
! check that we have a conjugate pole pair
    if ( .NOT.conjugate_pair(H_PR%poles(pole1),H_PR%poles(pole2)) ) then
      write(*,*)'ERROR in LC_test_BRUNE: poles are not a conjugate pair'
      write(*,*)'pole 1:',H_PR%poles(pole1)
      write(*,*)'pole 2:',H_PR%poles(pole2)
      STOP
    end if
    
! check that we have a conjugate residue pair
    if ( .NOT.conjugate_pair(H_PR%residues(pole1),H_PR%residues(pole2)) ) then
      write(*,*)'ERROR in LC_test_BRUNE: residues are not a conjugate pair'
      write(*,*)'residues 1:',H_PR%residues(pole1)
      write(*,*)'residues 2:',H_PR%residues(pole2)
      STOP
    end if

! test for whether we have an LC branch here...
    
    imaginary_poles    =imaginary_pair(H_PR%poles(pole1),H_PR%poles(pole2))
    positive_residues=(dble(H_PR%residues(pole1)).GT.0d0)
    
    const_term=dble(H_PR%residues(pole1))*dble(H_PR%poles(pole1))+    &
               aimag(H_PR%poles(pole1))*aimag(H_PR%residues(pole1))
    zero_const_term=(abs(const_term).LT.zero_test_small)
        
    if (verbose) then
      write(*,*)'Testing pole pair',i
      write(*,*)'Tests:'
      write(*,*)'imaginary pole test      : ',imaginary_poles,' ',H_PR%poles(pole1)
      write(*,*)'positive residue test    : ',positive_residues,' ',H_PR%residues(pole1)
      write(*,*)'zero constant term test: : ',zero_const_term,' ', const_term 
    end if
    
! check for stable poles which are not on the imaginary s=jw axis AND positive residues
    if (imaginary_poles.AND.positive_residues.AND.zero_const_term) then
    
      if (verbose) write(*,*)'Found possible LC branch'

! this could be a viable LC branch - calculate the remainder when this pole pair is removed

      CALL deallocate_Sfilter(HR)
      
! Test whether the remainder is zero
      
! build a local pole-residue filter without the test pole pair. 

! allocate the structure for the local pole-residue form function and copy the 
! required information across            
      HR_PR_local%wnorm=H_PR%wnorm
      HR_PR_local%order=H_PR%order-2
      HR_PR_local%n_real_poles=H_PR%n_real_poles
      HR_PR_local%n_complex_poles=H_PR%n_complex_poles-2
      HR_PR_local%n_complex_pole_pairs=H_PR%n_complex_pole_pairs-1
      HR_PR_local%n_real_poles=H_PR%n_real_poles

! constant term and sL term
      
      HR_PR_local%R=H_PR%R
      HR_PR_local%L=H_PR%L
      
! Test whether the remainder is zero
     if ( (HR_PR_local%order.EQ.0).AND.              &
           (abs(HR_PR_local%R).LT.zero_test_R).AND.   &
           (abs(HR_PR_local%L).LT.zero_test_L) ) then
        remainder_zero=.TRUE.
        GOTO 8000    
      end if

! copy any poles/ residues in the remainder
      
      ALLOCATE( HR_PR_local%complex_pole(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%poles(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%residues(HR_PR_local%order) )

! copy real poles      
      pole1=0
      pole2=0
      do ii=1,HR_PR_local%n_real_poles
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.FALSE.
        HR_PR_local%poles(pole1)   =H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
      end do ! next real pole

! copy complex poles in pairs 
      do ii=1,H_PR%n_complex_pole_pairs
      
        if (ii.NE.i) then
! this is not the pole pair we are trying to remove so copy them over
          pole1=pole1+1
          pole2=pole2+1
          HR_PR_local%complex_pole(pole1)=.TRUE.
          HR_PR_local%poles(pole1)=H_PR%poles(pole2)
          HR_PR_local%residues(pole1)=H_PR%residues(pole2)
          pole1=pole1+1
          pole2=pole2+1
          HR_PR_local%complex_pole(pole1)=.TRUE.
          HR_PR_local%poles(pole1)=H_PR%poles(pole2)
          HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        else
! this is the pair of poles we wish to remove so just increase the pole2 counter by 2. 
          pole2=pole2+2 
        end if
        
      end do ! next real pole

! convert to a rational function form      
      HR=Convert_filter_S_PR_to_S(HR_PR_local)

! Check the transfer funcion for stability and for whether it is positive real

      CALL check_transfer_function(HR,stable)
      
      CALL deallocate_Sfilter_PR(HR_PR_local)
      
      if (verbose) then
        if (stable) then
          write(*,*)'Remainder is stable'
        else
          write(*,*)'Remainder is unstable'        
        end if
      end if  
      
      remainder_zero=.FALSE.
      GOTO 8000
        
    end if ! positive residues for this complex pole pair
  
  end do ! next complex pole pair
  
! we only get here if we have not found a viable LC branch

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable LC branch

  remainder_OK=.TRUE.
  found=.TRUE.
  CALL deallocate_Sfilter_PR(HR_PR_local)
  pole1=first_complex_pole+(i-1)*2
  pole2=pole1+1
  L=1d0/dble(H_PR%residues(pole1)+H_PR%residues(pole2))
  C= dble( (H_PR%residues(pole1)+H_PR%residues(pole2))/(H_PR%poles(pole1)*H_PR%poles(pole2)) )
  if (verbose) then
    write(*,*)'FOUND VIABLE LC BRANCH'
    write(*,*)'L=',L
    write(*,*)'C=',C
    write(*,*)'remainder_OK   :',remainder_OK
    write(*,*)'remainder_zero :',remainder_zero
  end if
  
  RETURN

  END SUBROUTINE LC_test_BRUNE
!
! NAME
!     L_test_BRUNE
!
! DESCRIPTION
!       look for a viable series inductance in the BRUNE model which may be negative.
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE L_test_BRUNE(H_PR,L,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter_PR),INTENT(IN) :: H_PR
  real(dp):: L
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  integer :: pole,pole1,pole2
  type(Sfilter_PR) :: HR_PR_local
  logical :: stable
  
  integer :: i,ii

!START

  if (verbose) write(*,*)'CALLED: L_test_BRUNE'

  found=.FALSE.
          
  if (verbose) write(*,*)'Found possible L branch'

! this could be a viable L branch - calculate the remainder when this pole is removed

      CALL deallocate_Sfilter(HR)
      
! Test whether the remainder is zero
      
! build a local pole-residue filter without the test pole

! allocate the structure for the local pole-residue form function and copy the 
! required information across            
      HR_PR_local%wnorm=H_PR%wnorm
      HR_PR_local%order=H_PR%order
      HR_PR_local%n_real_poles=H_PR%n_real_poles
      HR_PR_local%n_complex_poles=H_PR%n_complex_poles
      HR_PR_local%n_complex_pole_pairs=H_PR%n_complex_pole_pairs
      HR_PR_local%n_real_poles=H_PR%n_real_poles

! constant term and sL term
      
      HR_PR_local%R=H_PR%R
      HR_PR_local%L=0d0
      
! Test whether the remainder is zero
     if ( (HR_PR_local%order.EQ.0).AND.              &
           (abs(HR_PR_local%R).LT.zero_test_R).AND.   &
           (abs(HR_PR_local%L).LT.zero_test_L) ) then
        remainder_zero=.TRUE.
        GOTO 8000    
      end if

! copy any poles/ residues in the remainder
      
      ALLOCATE( HR_PR_local%complex_pole(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%poles(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%residues(HR_PR_local%order) )

! copy real poles      
      pole1=0
      pole2=0
      do ii=1,HR_PR_local%n_real_poles
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.FALSE.
        HR_PR_local%poles(pole1)   =H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
      end do ! next real pole

! copy complex poles in pairs 
      do ii=1,H_PR%n_complex_pole_pairs
      
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.TRUE.
        HR_PR_local%poles(pole1)=H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.TRUE.
        HR_PR_local%poles(pole1)=H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        
      end do ! next real pole

! convert to a rational function form      
      HR=Convert_filter_S_PR_to_S(HR_PR_local)

! Check the transfer funcion for stability and for whether it is positive real

      CALL check_transfer_function(HR,stable)
      
      CALL deallocate_Sfilter_PR(HR_PR_local)
      
      if (verbose) then
        if (stable) then
          write(*,*)'Remainder is stable'
        else
          write(*,*)'Remainder is unstable'        
        end if
      end if  
      
      if (stable) then
        remainder_zero=.FALSE.
        GOTO 8000
      end if
      
! we only get here if we have not found a viable L branch

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable RC branch

  remainder_OK=.TRUE.
  found=.TRUE.
  CALL deallocate_Sfilter_PR(HR_PR_local)
   
  L=H_PR%L
  if (verbose) then
    write(*,*)'FOUND VIABLE SERIES L BRANCH'
    write(*,*)'L=',L
    write(*,*)'remainder_OK   :',remainder_OK
    write(*,*)'remainder_zero :',remainder_zero
  end if
  
  RETURN

  END SUBROUTINE L_test_BRUNE