Blame view

SRC/NETWORK_SYNTHESIS/include_BRUNE_test.F90 16.1 KB
189467e4   Steve Greedy   First Public Release
1
!
fe64b32b   Chris Smartt   Update file heade...
2
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
189467e4   Steve Greedy   First Public Release
3
4
5
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
fe64b32b   Chris Smartt   Update file heade...
6
! Copyright (C) 2016-2018 University of Nottingham
189467e4   Steve Greedy   First Public Release
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
!
fe64b32b   Chris Smartt   Update file heade...
30
!
189467e4   Steve Greedy   First Public Release
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
! SUBROUTINE BRUNE_test(H,type,CFtype,R,L1out,C,L2out,K,found,HR,remainder_OK,remainder_zero)
! SUBROUTINE LC_test_BRUNE(H_PR,L,C,found,HR,remainder_OK,remainder_zero)
! SUBROUTINE L_test_BRUNE(H_PR,L,found,HR,remainder_OK,remainder_zero)
!
! 
! NAME
!     BRUNE_test
!
! DESCRIPTION
!       look for a viable BRUNE branch in a given impedance function
!       See sections 7.2.4 of the Theory manual
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE BRUNE_test(H,type,CFtype,R,L1out,C,L2out,K,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter),INTENT(INOUT) :: H
  integer :: type
  integer :: CFtype
  real(dp):: R,L1out,L2out,C,K
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  real(dp) :: w0,f0
  complex(dp) :: Xw0
  
  type(Sfilter) :: Z2,Y2
  type(Sfilter_PR) :: Y2_PR
  type(Sfilter) :: Y3
  type(Sfilter) :: Z3
  type(Sfilter_PR) :: Z3_PR
  type(Sfilter) :: temp_filter
  real(dp):: L1,L2,L3,M
  

!START

  if (verbose) write(*,*)'CALLED: BRUNE_test'
  
  found=.FALSE.
  
! Calculate the resistance which reduces H_PR to a minimum resistive impedance function
! and the frequency at which the resistance is zero

  CALL calculate_min_resistance_function(H,R,w0)

! evaluate the min_resistance filter at w0. At this frequency the response is purely imaginary.
  f0=w0/(2d0*pi)
  

  f0=w0*H%wnorm/(2d0*pi)
  if (abs(f0).LT.zero_test_small) then
    w0=zero_test_small
    f0=w0*H%wnorm/(2d0*pi)
  end if
  Xw0=evaluate_Sfilter_frequency_response(H,f0)
  
  L1=aimag(Xw0)/w0
  if (verbose) then
    write(*,*)'L1=',L1
  end if

! subtract this inductive impedance from the filter function Z2(s)=H(s)-L1*s

  temp_filter=allocate_Sfilter(1,0)
  temp_filter%wnorm=H%wnorm
  temp_filter%a%coeff(0)=0d0
  temp_filter%a%coeff(1)=-L1
  temp_filter%b%coeff(0)=1d0
  
  Z2=AddSfilter(H,temp_filter)
  CALL get_min_order_poly(Z2%a)
  
  if (verbose) then
    write(*,*)'Z2 filter function:'
    CALL write_Sfilter(Z2,0)
  end if
  
  Y2=reciprocal_Sfilter(Z2)
  
  if (verbose) then
    write(*,*)'Y2 filter function:'
    CALL write_Sfilter(Y2,0)
  end if
  
! now extract an L-C series admittance from Y2

  Y2_PR=Convert_filter_S_to_S_PR(Y2)
  
  if (verbose) CALL write_S_PR_filter(Y2_PR)
  
  CALL LC_test_BRUNE(Y2_PR,L2,C,found,Y3,remainder_OK,remainder_zero)
               
  if (verbose) then
    write(*,*)'CALLED LC_test_BRUNE'
    write(*,*)'L2=',L2
    write(*,*)'C =',C
    write(*,*)'found =',found
    write(*,*)'remainder_OK =',remainder_OK
    write(*,*)'remainder_zero =',remainder_zero
    write(*,*)'remainder pole residue function'
    CALL write_Sfilter(Y3,0)
  end if
  
  Z3=reciprocal_Sfilter(Y3)
  
!  write(*,*)'Z3:'
!  CALL write_Sfilter(Z3,0)
  Z3_PR=Convert_filter_S_to_S_PR(Z3)

! extract a series inductance (which may be negative)  
  CALL L_test_BRUNE(Z3_PR,L3,found,HR,remainder_OK,remainder_zero)
  
  if (verbose) then
    write(*,*)'CALLED L_test_BRUNE'
    write(*,*)'L3=',L3
    write(*,*)'found =',found
    write(*,*)'remainder_OK =',remainder_OK
    write(*,*)'remainder_zero =',remainder_zero
    write(*,*)'remainder pole residue function'
  end if
  
! we can only proceed if the remainder is OK at this point

  if (found.AND.remainder_OK) then 
  
! carry on and work out the mutual impedance form which
! should eliminate the negative inductance
  
    L1out=L1+L2
    L2out=L3+L2
    M=L2
    K=1d0
    
    L1out=L1out/H%wnorm
    L2out=L2out/H%wnorm
    C=C/H%wnorm
    
! check for positive component values
    if (R.LT.0d0) then
      if (verbose) write(*,*)'Error, R<0,  R =',R
      found=.FALSE.
    end if
    if (L1out.LT.0d0) then
      if (verbose) write(*,*)'Error, L1<0, L1=',L1
      found=.FALSE.
    end if
    if (L2out.LT.0d0) then
      if (verbose) write(*,*)'Error, L2<0, L2=',L2
      found=.FALSE.
    end if
    if (K.LT.0d0) then
      if (verbose) write(*,*)'Error, K<0,  K =',K
      found=.FALSE.
    end if
    if (C.LT.0d0) then
      if (verbose) write(*,*)'Error, C<0,  C =',C
      found=.FALSE.
    end if
    
    if (found) GOTO 8000

  end if

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable BRUNE branch
  
  CFtype=series_BRUNE
  found=.TRUE.
    
  if (verbose) then
    write(*,*)'FOUND VIABLE BRUNE BRANCH'
    write(*,*)'R =',R
    write(*,*)'L1=',L1out
    write(*,*)'L2=',L2out
    write(*,*)'C =',C
    write(*,*)'K=',K
    write(*,*)'remainder_OK   :',remainder_OK
    write(*,*)'remainder_zero :',remainder_zero
    write(*,*)'Remainder impedance:'
    CALL write_Sfilter(HR,0)
  end if
  
  RETURN

  END SUBROUTINE BRUNE_test
!
! NAME
!     LC_test_BRUNE
!
! DESCRIPTION
!       look for a viable LC branch in a given impedance/admittance function
!       This is specific to the Brune synthesis as the inductance can be negative
!       so the checks are different 
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE LC_test_BRUNE(H_PR,L,C,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter_PR),INTENT(IN) :: H_PR
  integer :: type
  integer :: CFtype
  real(dp):: R,L,C
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  integer :: first_complex_pole,pole1,pole2,pole
  type(Sfilter_PR) :: HR_PR_local
  logical :: stable
  
  integer :: i,ii
  real(dp) :: diff,mag_diff,mag1,mag2
  
  real(dp) :: const_term
  logical  :: imaginary_poles,positive_residues,zero_const_term
  
!START

  if (verbose) write(*,*)'CALLED: LC_test_BRUNE'

  found=.FALSE.

  first_complex_pole=H_PR%n_real_poles+1
  
! loop over complex pole pairs
  do i=1,H_PR%n_complex_pole_pairs
  
    pole1=first_complex_pole+(i-1)*2
    pole2=pole1+1
    
! check that we have a conjugate pole pair
    if ( .NOT.conjugate_pair(H_PR%poles(pole1),H_PR%poles(pole2)) ) then
      write(*,*)'ERROR in LC_test_BRUNE: poles are not a conjugate pair'
      write(*,*)'pole 1:',H_PR%poles(pole1)
      write(*,*)'pole 2:',H_PR%poles(pole2)
      STOP
    end if
    
! check that we have a conjugate residue pair
    if ( .NOT.conjugate_pair(H_PR%residues(pole1),H_PR%residues(pole2)) ) then
      write(*,*)'ERROR in LC_test_BRUNE: residues are not a conjugate pair'
      write(*,*)'residues 1:',H_PR%residues(pole1)
      write(*,*)'residues 2:',H_PR%residues(pole2)
      STOP
    end if

! test for whether we have an LC branch here...
    
    imaginary_poles    =imaginary_pair(H_PR%poles(pole1),H_PR%poles(pole2))
    positive_residues=(dble(H_PR%residues(pole1)).GT.0d0)
    
    const_term=dble(H_PR%residues(pole1))*dble(H_PR%poles(pole1))+    &
               aimag(H_PR%poles(pole1))*aimag(H_PR%residues(pole1))
    zero_const_term=(abs(const_term).LT.zero_test_small)
        
    if (verbose) then
      write(*,*)'Testing pole pair',i
      write(*,*)'Tests:'
      write(*,*)'imaginary pole test      : ',imaginary_poles,' ',H_PR%poles(pole1)
      write(*,*)'positive residue test    : ',positive_residues,' ',H_PR%residues(pole1)
      write(*,*)'zero constant term test: : ',zero_const_term,' ', const_term 
    end if
    
! check for stable poles which are not on the imaginary s=jw axis AND positive residues
    if (imaginary_poles.AND.positive_residues.AND.zero_const_term) then
    
      if (verbose) write(*,*)'Found possible LC branch'

! this could be a viable LC branch - calculate the remainder when this pole pair is removed

      CALL deallocate_Sfilter(HR)
      
! Test whether the remainder is zero
      
! build a local pole-residue filter without the test pole pair. 

! allocate the structure for the local pole-residue form function and copy the 
! required information across            
      HR_PR_local%wnorm=H_PR%wnorm
      HR_PR_local%order=H_PR%order-2
      HR_PR_local%n_real_poles=H_PR%n_real_poles
      HR_PR_local%n_complex_poles=H_PR%n_complex_poles-2
      HR_PR_local%n_complex_pole_pairs=H_PR%n_complex_pole_pairs-1
      HR_PR_local%n_real_poles=H_PR%n_real_poles

! constant term and sL term
      
      HR_PR_local%R=H_PR%R
      HR_PR_local%L=H_PR%L
      
! Test whether the remainder is zero
     if ( (HR_PR_local%order.EQ.0).AND.              &
           (abs(HR_PR_local%R).LT.zero_test_R).AND.   &
           (abs(HR_PR_local%L).LT.zero_test_L) ) then
        remainder_zero=.TRUE.
        GOTO 8000    
      end if

! copy any poles/ residues in the remainder
      
      ALLOCATE( HR_PR_local%complex_pole(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%poles(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%residues(HR_PR_local%order) )

! copy real poles      
      pole1=0
      pole2=0
      do ii=1,HR_PR_local%n_real_poles
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.FALSE.
        HR_PR_local%poles(pole1)   =H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
      end do ! next real pole

! copy complex poles in pairs 
      do ii=1,H_PR%n_complex_pole_pairs
      
        if (ii.NE.i) then
! this is not the pole pair we are trying to remove so copy them over
          pole1=pole1+1
          pole2=pole2+1
          HR_PR_local%complex_pole(pole1)=.TRUE.
          HR_PR_local%poles(pole1)=H_PR%poles(pole2)
          HR_PR_local%residues(pole1)=H_PR%residues(pole2)
          pole1=pole1+1
          pole2=pole2+1
          HR_PR_local%complex_pole(pole1)=.TRUE.
          HR_PR_local%poles(pole1)=H_PR%poles(pole2)
          HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        else
! this is the pair of poles we wish to remove so just increase the pole2 counter by 2. 
          pole2=pole2+2 
        end if
        
      end do ! next real pole

! convert to a rational function form      
      HR=Convert_filter_S_PR_to_S(HR_PR_local)

! Check the transfer funcion for stability and for whether it is positive real

      CALL check_transfer_function(HR,stable)
      
      CALL deallocate_Sfilter_PR(HR_PR_local)
      
      if (verbose) then
        if (stable) then
          write(*,*)'Remainder is stable'
        else
          write(*,*)'Remainder is unstable'        
        end if
      end if  
      
      remainder_zero=.FALSE.
      GOTO 8000
        
    end if ! positive residues for this complex pole pair
  
  end do ! next complex pole pair
  
! we only get here if we have not found a viable LC branch

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable LC branch

  remainder_OK=.TRUE.
  found=.TRUE.
  CALL deallocate_Sfilter_PR(HR_PR_local)
  pole1=first_complex_pole+(i-1)*2
  pole2=pole1+1
  L=1d0/dble(H_PR%residues(pole1)+H_PR%residues(pole2))
  C= dble( (H_PR%residues(pole1)+H_PR%residues(pole2))/(H_PR%poles(pole1)*H_PR%poles(pole2)) )
  if (verbose) then
    write(*,*)'FOUND VIABLE LC BRANCH'
    write(*,*)'L=',L
    write(*,*)'C=',C
    write(*,*)'remainder_OK   :',remainder_OK
    write(*,*)'remainder_zero :',remainder_zero
  end if
  
  RETURN

  END SUBROUTINE LC_test_BRUNE
!
! NAME
!     L_test_BRUNE
!
! DESCRIPTION
!       look for a viable series inductance in the BRUNE model which may be negative.
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE L_test_BRUNE(H_PR,L,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter_PR),INTENT(IN) :: H_PR
  real(dp):: L
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  integer :: pole,pole1,pole2
  type(Sfilter_PR) :: HR_PR_local
  logical :: stable
  
  integer :: i,ii

!START

  if (verbose) write(*,*)'CALLED: L_test_BRUNE'

  found=.FALSE.
          
  if (verbose) write(*,*)'Found possible L branch'

! this could be a viable L branch - calculate the remainder when this pole is removed

      CALL deallocate_Sfilter(HR)
      
! Test whether the remainder is zero
      
! build a local pole-residue filter without the test pole

! allocate the structure for the local pole-residue form function and copy the 
! required information across            
      HR_PR_local%wnorm=H_PR%wnorm
      HR_PR_local%order=H_PR%order
      HR_PR_local%n_real_poles=H_PR%n_real_poles
      HR_PR_local%n_complex_poles=H_PR%n_complex_poles
      HR_PR_local%n_complex_pole_pairs=H_PR%n_complex_pole_pairs
      HR_PR_local%n_real_poles=H_PR%n_real_poles

! constant term and sL term
      
      HR_PR_local%R=H_PR%R
      HR_PR_local%L=0d0
      
! Test whether the remainder is zero
     if ( (HR_PR_local%order.EQ.0).AND.              &
           (abs(HR_PR_local%R).LT.zero_test_R).AND.   &
           (abs(HR_PR_local%L).LT.zero_test_L) ) then
        remainder_zero=.TRUE.
        GOTO 8000    
      end if

! copy any poles/ residues in the remainder
      
      ALLOCATE( HR_PR_local%complex_pole(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%poles(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%residues(HR_PR_local%order) )

! copy real poles      
      pole1=0
      pole2=0
      do ii=1,HR_PR_local%n_real_poles
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.FALSE.
        HR_PR_local%poles(pole1)   =H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
      end do ! next real pole

! copy complex poles in pairs 
      do ii=1,H_PR%n_complex_pole_pairs
      
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.TRUE.
        HR_PR_local%poles(pole1)=H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.TRUE.
        HR_PR_local%poles(pole1)=H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        
      end do ! next real pole

! convert to a rational function form      
      HR=Convert_filter_S_PR_to_S(HR_PR_local)

! Check the transfer funcion for stability and for whether it is positive real

      CALL check_transfer_function(HR,stable)
      
      CALL deallocate_Sfilter_PR(HR_PR_local)
      
      if (verbose) then
        if (stable) then
          write(*,*)'Remainder is stable'
        else
          write(*,*)'Remainder is unstable'        
        end if
      end if  
      
      if (stable) then
        remainder_zero=.FALSE.
        GOTO 8000
      end if
      
! we only get here if we have not found a viable L branch

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable RC branch

  remainder_OK=.TRUE.
  found=.TRUE.
  CALL deallocate_Sfilter_PR(HR_PR_local)
   
  L=H_PR%L
  if (verbose) then
    write(*,*)'FOUND VIABLE SERIES L BRANCH'
    write(*,*)'L=',L
    write(*,*)'remainder_OK   :',remainder_OK
    write(*,*)'remainder_zero :',remainder_zero
  end if
  
  RETURN

  END SUBROUTINE L_test_BRUNE