cmatrix.F90 10 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
!       SUBROUTINE write_cmatrix(Mat,dim,unit)
!       SUBROUTINE write_cmatrix_re(Mat,dim,unit)
!       SUBROUTINE write_cmatrix_im(Mat,dim,unit)
!       SUBROUTINE write_cmatrix_abs(Mat,dim,unit)
!       SUBROUTINE cinvert_Gauss_Jordan(A,n,AI,dim) 
!       SUBROUTINE c_condition_number (A,n,condition_number,dim)
!     16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!
! NAME
!    write_cmatrix
!
! DESCRIPTION
!    write complex(dp) matrix to file or screen
!
!
! HISTORY
!
!     started 2/12/15 CJS
!
! COMMENTS
! 
SUBROUTINE write_cmatrix(Mat,dim,unit)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

integer,intent(IN)      :: dim          ! matrix dimension
integer,intent(IN)      :: unit         ! unit to write to. Set to zero for screen output.

complex(dp),intent(IN) :: Mat(dim,dim)  ! matrix to write

! local variables

integer row,col

! START

do row=1,dim

  if (unit.EQ.0) then
    write(*,*)(Mat(row,col),col=1,dim)
  else
    write(unit,*)(Mat(row,col),col=1,dim)
  end if
  
end do
8000 format(1000ES16.6)


END SUBROUTINE write_cmatrix
!
! NAME
!    write_cmatrix_re
!
! DESCRIPTION
!   write the real part of a complex(dp) matrix to file or screen
!
! HISTORY
!
!     started 2/12/15 CJS
!
! COMMENTS
! 
SUBROUTINE write_cmatrix_re(Mat,dim,unit)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

integer,intent(IN)      :: dim          ! matrix dimension
integer,intent(IN)      :: unit         ! unit to write to. Set to zero for screen output.

complex(dp),intent(IN) :: Mat(dim,dim)  ! matrix to write

! local variables

integer row,col

! START

do row=1,dim

  if (unit.EQ.0) then
    write(*,*)(dble(Mat(row,col)),col=1,dim)
  else
    write(unit,*)(dble(Mat(row,col)),col=1,dim)
  end if
  
end do
8000 format(20ES16.6)


END SUBROUTINE write_cmatrix_re
!
! NAME
!   write_cmatrix_im
!
! DESCRIPTION
!   write the real part of a complex(dp) matrix to file or screen
!
!
! HISTORY
!
!     started 2/12/15 CJS
!
! COMMENTS
! 
SUBROUTINE write_cmatrix_im(Mat,dim,unit)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

integer,intent(IN)      :: dim          ! matrix dimension
integer,intent(IN)      :: unit         ! unit to write to. Set to zero for screen output.

complex(dp),intent(IN) :: Mat(dim,dim)  ! matrix to write

! local variables

integer row,col

! START

do row=1,dim

  if (unit.EQ.0) then
    write(*,*)(AIMAG(Mat(row,col)),col=1,dim)
  else
    write(unit,*)(AIMAG(Mat(row,col)),col=1,dim)
  end if
  
end do
8000 format(20ES16.6)


END SUBROUTINE write_cmatrix_im
!
! NAME
!   write_cmatrix_im
!
! DESCRIPTION
!   write the real part of a complex(dp) matrix to file or screen
!
!
! HISTORY
!
!     started 2/12/15 CJS
!
! COMMENTS
! 
SUBROUTINE write_cmatrix_abs(Mat,dim,unit)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

integer,intent(IN)      :: dim          ! matrix dimension
integer,intent(IN)      :: unit         ! unit to write to. Set to zero for screen output.

complex(dp),intent(IN) :: Mat(dim,dim)  ! matrix to write

! local variables

integer row,col

! START

do row=1,dim

  if (unit.EQ.0) then
    write(*,*)(ABS(Mat(row,col)),col=1,dim)
  else
    write(unit,*)(ABS(Mat(row,col)),col=1,dim)
  end if
  
end do
8000 format(20ES16.6)


END SUBROUTINE write_cmatrix_abs
!
! NAME
!    cinvert_Gauss_Jordan
!
! DESCRIPTION
!  
! Invert the complex matrix A using Gauss Jordan method with pivoting and return the result in AI
! ierr=0 on the successful calculation of the inverse
! if a singular matrix is found then
! if ierr.EQ.0 on input then the program stops
! if ierr.NE.0 on input then the program returns with ierr=1
!
! HISTORY
!
!     started 2/12/15 CJS
!
! COMMENTS
! 
  SUBROUTINE cinvert_Gauss_Jordan(A,n,AI,dim,ierr) 

USE type_specifications
USE general_module

IMPLICIT NONE

! variables passed to subroutine

  integer,intent(IN)      :: dim       ! matrix dimension
  integer,intent(IN)      :: n         ! size of matrix to invert

  complex(dp),intent(IN)  :: A(dim,dim)  ! matrix to invert
  complex(dp),intent(OUT) :: AI(dim,dim) ! inverse matrix
       
  integer,intent(INOUT)  :: ierr        ! error code

! local variables
                 
  integer    :: row,col,reduce_col,i
  
  real(dp)    :: max_element
  complex(dp)    :: pivot_element
  integer    :: max_row
  
  integer    :: pivot_row
  
  integer    :: pivot_row_save(dim)
  
  complex(dp)    :: row_multiplier
  complex(dp)    :: swap

! START
  
! copy A to AI 
  AI(1:n,1:n)= A(1:n,1:n)

  pivot_row_save(1:dim)=0
  
! loop over columns of the matrix and reduce each column in turn to identity matrix column     
  do reduce_col=1,n
  
! find the largest element in this column and use as the pivot element
    max_element=0d0
    max_row=0
    do row=reduce_col,n
      if (abs(AI(row,reduce_col)).GT.max_element) then
        max_element=abs(AI(row,reduce_col))
        max_row=row
      end if
    end do  
    
    if (max_row.eq.0) then
! all elements are zero so singular matrix
      if(verbose) write(*,*)'Singular matrix found in cinvert_Gauss_Jordan'
      if (ierr.NE.0) then
        run_status='ERROR: Singular matrix in cinvert_Gauss_Jordan'
        CALL write_program_status()
        STOP 1
      else
        ierr=1
        RETURN
      end if
    end if
    
    pivot_row=max_row
    pivot_row_save(reduce_col)=pivot_row
    
! swap pivot row with the row reduce_col

    if (pivot_row.ne.reduce_col) then
      do col=1,n
        swap=AI(reduce_col,col)
    AI(reduce_col,col)=AI(pivot_row,col)
    AI(pivot_row,col)=swap
      end do 
    end if
    
    pivot_row=reduce_col   
    pivot_element=AI(reduce_col,reduce_col)
    
! operate on pivot row    
    do col=1,n
      if (col.ne.reduce_col) then
        AI(pivot_row,col) = AI(pivot_row,col)/pivot_element
      else    
        AI(pivot_row,col) = (1d0,0d0)/pivot_element
      end if
    end do

! operate on rows other than the pivot row   
    do row=1,n
    
      if (row.ne.pivot_row) then
      
        row_multiplier=AI(row,reduce_col)
    
        do col=1,n
          if (col.ne.reduce_col) then
            AI(row,col) = AI(row,col)- AI(pivot_row,col)*row_multiplier
          else    
            AI(row,reduce_col) =-AI(pivot_row,reduce_col)*row_multiplier
          end if
        end do
    
      end if ! not pivot row
    
    end do ! next row
    
  end do ! next column of the matrix to reduce
  
  do reduce_col=n,1,-1
  
    if (reduce_col.ne.pivot_row_save(reduce_col)) then
! rows were swapped so must swap the corresponding columns

      do row=1,n
        swap=AI(row,pivot_row_save(reduce_col))
        AI(row,pivot_row_save(reduce_col))=AI(row,reduce_col)
    AI(row,reduce_col)=swap
      end do
      
    end if
    
  end do
  
  ierr=0

  RETURN
  
  END SUBROUTINE cinvert_Gauss_Jordan
!
! NAME
!    
!
! DESCRIPTION
!
!
! HISTORY
!
!     started 2/12/15 CJS
!
! COMMENTS
! 
  SUBROUTINE c_condition_number(A,n,condition_number,dim) 
  
! Calculate the condition number of the complex matrix A 

USE type_specifications
USE eispack

IMPLICIT NONE

! variables passed to subroutine

  integer,intent(IN)      :: dim       ! matrix dimension
  integer,intent(IN)      :: n         ! size of matrix to process

  complex(dp),intent(IN) :: A(dim,dim)  ! input matrix
              
  real(dp),intent(OUT)   :: condition_number  ! output condition number

! local variables

  complex(dp)    :: AH(dim,dim)
  complex(dp)    :: AHA(dim,dim)
  real(dp)       :: Real_AHA(dim,dim)
  
  real(dp)       :: singular_values(dim)
                 
  integer     :: row,col
  
  real(dp)    :: max_eigenvalue
  real(dp)    :: min_eigenvalue
  
  logical :: matu,matv
  
  integer :: ierr

! START
  
! calculate the Hermitian conjugate of A

  do row=1,n
    do col=1,n
      AH(row,col)=conjg(A(col,row))
    end do
  end do
  
  AHA=matmul(AH,A)
  Real_AHA=dble(AHA)
  
! calculate the Singular Value Decomposition of AHA using Eispack
  matu=.FALSE.
  matv=.FALSE. ! we don't need the matrices U or V
  CALL svd ( n, n, Real_AHA, singular_values, matu, Real_AHA, matv, Real_AHA, ierr )
  
! find the maximum and minimum magnitude of singular values
  max_eigenvalue=sqrt(abs(singular_values(1)))
  min_eigenvalue=sqrt(abs(singular_values(1)))
  
  do row=2,n
   
! Note that the singular values of A are equal to the square root of the singular values of AHA
    max_eigenvalue=max( max_eigenvalue,sqrt(abs(singular_values(row))) )
    min_eigenvalue=min( min_eigenvalue,sqrt(abs(singular_values(row))) )
  
  end do
  
! calculate the condition number
  if (min_eigenvalue.NE.0D0) then
    condition_number=max_eigenvalue/min_eigenvalue
  else
! set the condition number to something large ***** SHOULD PROBABLY USE A PARAMETER FROM MODULE constants HERE *****
    condition_number=1D100
  end if

  RETURN
  
  END SUBROUTINE c_condition_number