creating_a_cable_model.tex
51 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
\chapter{Creating a Cable Model} \label{creating_a_cable_model}
\section{Introduction}
This chapter describes the creation of a cable model from specifications. The methods by which frequency dependent cable parameters (relative permittivity, finite conductivity loss models and transfer impedance models) are specified are described before detailing the specifications for each of the available cable types in turn. An example for each cable type is provided.
\section{Cable Types} \label{Cable_types}
Models of the following cable types have been developed:
\begin{enumerate}
\item Cylindrical conductor with dielectric
\item Coaxial cable with transfer impedance and shield surface impedance loss
\item Twinax cable with transfer impedance and shield surface impedance loss
\item Twisted pair
\item Shielded twisted pair with transfer impedance and shield surface impedance loss
\item Spacewire cable with transfer impedance and shield surface impedance loss
\item Overshield with transfer impedance and shield surface impedance loss
\item flex cable
\item D connector
\end{enumerate}
All of the cable types with the exception of the D connector allow the inclusion of frequency dependent dielectrics and finite conductivity models of conductors.
The typical values required to specify each of these cable types is described in the following sub-sections. Each cable type is illustrated in a figure. The figure shows the conductor numbering used in the software e.g. conductor number 1 of a coaxial cable is the inner conductor and conductor number 2 is the shield.
In addition to these cable types a perfectly conducting ground plane is available when building a cable bundle.
\subsection{Frequency dependent models} \label{FD_cable_models}
Many of the cable models available have frequency dependent properties. The frequency dependent properties arise from frequency dependent permittivity of dielectrics, from the finite conductivity of conductors and from the frequency dependence of transfer impedance. The frequency dependent models are described in detail in the Theory Manual \cite{Theory_manual} sections 3.6 and chapter 5.
\subsubsection{Frequency dependent rational function dielectric models} \label{FD_dielectric_models}
Frequency dependent cable properties (dielectric relative permittivity or transfer impedance) are defined as rational functions of frequency. The rational function includes a normalisation constant $\omega_{0}$ which is used to prevent the coefficients
of the function becoming too large or too small i.e.
%
\begin{equation} \label{eq:rational_function}
\epsilon_{r}\left(j\omega\right)=\frac{a_{0}+a_{1}\left(\frac{j\omega}{\omega_{0}}\right)+a_{2}\left(\frac{j\omega}{\omega_{0}}\right)^{2}+\dots}{b_{0}+b_{1}\left(\frac{j\omega}{\omega_{0}}\right)+b_{2}\left(\frac{j\omega}{\omega_{0}}\right)^{2}+\dots}
\end{equation}
%
For example, a Debye dielectric model has a relative permittivity described by
%
\begin{equation} \label{eq:debye_1}
\epsilon_{r}=\epsilon_{\infty}+\frac{\epsilon_{s}-\epsilon_{\infty}}{1+j\omega\tau}
\end{equation}
%
where $\epsilon_{\infty}$ is the relative permittivity at the high frequency limit, $\epsilon_{s}$ is the relative permittivity at the low frequency limit and $\tau$ is the relaxation time of the material.
this may be written in the form of equation\ref{eq:rational_function} as
%
\begin{equation} \label{eq:debye_rational_function_1}
\epsilon_{r}\left(j\omega\right)=\frac{\epsilon_{s}+\epsilon_{\infty}\left(\frac{j\omega}{\omega_{0}}\right)}{1+\left(\frac{j\omega}{\omega_{0}}\right)}
\end{equation}
%
where
%
\begin{equation} \label{eq:debye_rational_function_2}
\omega_{0}=\frac{1}{\tau}
\end{equation}
%
The frequency dependence of relative permittivity cannot be aritrarily specified as the real and imaginary parts of the realtive permittivity are related through the Kramers-Kronig relations \cite{KramersKronig}. This relationship is due to the causality of the dielectric time response and is fundamental to linear systems. The implications for modelling dielectrics is that the permittivity model used must satisfy the Kramers-Kronig relations. The rational function representation of the relative permittivity in equation \ref{eq:rational_function} has the advantage of naturally satisfying these relations. If the real part of the permittivity is a function of frequency then the Kramer Kronig relations imply that this will be associated with some loss and vice-versa. We note that the common approximation
in which the imaginary part of permittivity is assumed to be constant (constant $tan\left( \delta \right)$ model) is unphysical.
It is difficult to obtain the good quality complex relative permittivity data over a wide frequency band required to generate frequency dependent dielectric models, even for the dielectric materials used in the construction of cables. Unless very good data is available we recommend that a simple constant relative permittivity model be used.
If tabulated frequency domain relative permittivity data is available then a model fitting process may be applied to generate the rational function coefficients for a frequency dependent dielectric model. This process is described in section \ref{FD_model_fit}.
%
\subsubsection{Frequency dependent finite conductivity loss models} \label{FD_conductivity_model}
Cable losses arising from the finite conductivity of a conductor are incorporated into some of the cable models available \cite{Theory_manual}.
In these models the conductivity of the conductors are specified as parameters of the cable model. The contribution to
the impedance terms due to the finite conductivity is the surface impedance of the conductor \cite{Schelkunoff}.
The surface impedance is frequency dependent and incorporates the `skin effect' into the model.
For cylindrical conductors analytic expressions are available for the surface impedance of solid cylindrical conductors
and cylindrical shells (cable shields).
For a solid cylindrical conductor of radius, $r$, permeability, $\mu$ and conductivity, $\sigma$ the internal impedance due to the magnetic field penetrating the conductor at frequency f is given by
\begin{equation} \label{eq:skin_effect_1}
Z_{int\_cylinder}=\frac{1}{\sqrt{2 \pi r \sigma \delta }} \left( \frac{ber(q)+jbei(q)}{bei'(q)-jber'(q)}\right)
\end{equation}
where ber and bei are Kelvin functions, $\delta$ is the skin depth given by
\begin{equation} \label{eq:skin_depth}
\delta=\frac{1}{\sqrt{ \pi f \mu \sigma }}
\end{equation}
and q is
\begin{equation} \label{eq:skin_depth_q}
q=\sqrt{2}\frac{r}{\delta}
\end{equation}
For a cylindrical shell i.e. a cable shield, the surface impedance (neglecting small terms related to the curvature of
the conductor) may be evaluated as follows:
The d.c. resistance of a shell of radius, r, and thickness, t, is
\begin{equation} \label{eq:rdc_shell}
R_{dc}=\frac{1}{\sqrt{ 2 \pi \sigma r t }}
\end{equation}
The complex propagation constant in the conductor is
\begin{equation} \label{eq:gamma}
\gamma=\frac{\left( 1+j \right)}{\delta}
\end{equation}
Then the surface impedance of the cylindrical shell is
\begin{equation} \label{eq:Zint_shell}
Z_{int\_shell}=R_{dc} \gamma t \: cosech \left( \gamma t \right)
\end{equation}
It is important to note that at low frequency the surface impedance is equal to the d.c. resistance of the shield
and that the transfer impedance should also take this value.
Note that if a transfer impedance model is included then the shield thickness parameter can be set to zero in which
case the software will calculate an `equivalent thickness' which gives the correct d.c. resistance for the shield, based on
the d.c. transfer resistance and the specified conductivity of the shield.
The loss model for rectangular conductors assumes that the internal impedance of the conductor takes the form
\begin{equation} \label{eq:Zint_rectangular}
Z_{int\_rectangular}=R_{dc} + B \sqrt{j \omega }
\end{equation}
where $R_{dc}$ is the d.c. resistance of a rectangular wire of width w, and height, t, is given by
\begin{equation} \label{eq:Rdc_rectangular}
R_{dc}=\frac{1}{\sigma w t}
\end{equation}
and $B$ is given by
\begin{equation} \label{eq:B_rectangular}
B=\frac{1}{2 \left( w+t \right) }\sqrt{\frac{\mu}{\sigma}}
\end{equation}
These internal impedances then contribute to the impedance matrix of the cable as appropriate for each configuration.
\subsubsection{Frequency dependent transfer impedance model} \label{FD_transfer_impedance_model}
Some shielded cable models allow the impedance of the shield conductor (transfer impedance) to be specified as
a frequency dependent function \cite{Theory_manual}. Cable models with frequency dependent transfer impedance models are:
\begin{enumerate}
\item Coaxial cable with transfer impedance and shield surface impedance loss
\item Twinax cable with transfer impedance and shield surface impedance loss
\item Shielded twisted pair with transfer impedance and shield surface impedance loss
\item Spacewire cable with transfer impedance and shield surface impedance loss
\item Overshield with transfer impedance and shield surface impedance loss
\end{enumerate}
The frequency dependent transfer impedance is represented using a rational function form i.e.
%
\begin{equation} \label{eq:ZT_rational_function}
Z_{T}\left(j\omega\right)=\frac{a_{0}+a_{1}\left(\frac{j\omega}{\omega_{0}}\right)+a_{2}\left(\frac{j\omega}{\omega_{0}}\right)^{2}+\dots}{b_{0}+b_{1}\left(\frac{j\omega}{\omega_{0}}\right)+b_{2}\left(\frac{j\omega}{\omega_{0}}\right)^{2}+\dots}
\end{equation}
%
Hence the cable specification requires the coefficients of the rational function, along with the frequency scaling, $\omega_{0}$ to be specified. This model has the often used $Z_T=R_T+j\omega L_T$ model as a special case where $a_0=R_T$, $a_1=L_T$, $\omega_{0}=1.0$ and $b_0=1.0$. The coefficients for more complex transfer impedance models may be generated from the specifications of a braided shield as in reference \cite{Kley} followed by a rational function fitting to the resulting frequency domain transfer impedance function. This process is described in section \ref{FD_transfer_impedance_models}. Alternatively the rational function coefficiants may be calculated by rational function fitting to measured (or otherwise obtained) transfer imepdance data as described in section \ref{FD_model_fit}.
%
The transfer impedance of a shield is reciprocal thus the coupling through the shield is determined by the same transfer impedance for both coupling directions.
It is important to note that for a model to be self consistent at low frequency the transfer impedance of a shield should be equal to the d.c. resistance of the shield and hence also
the low frequency surface impedance i.e.
%
\begin{equation} \label{eq:ZT_low_frequency}
Z_{T}\left(\omega=0\right)=\frac{a_{0}}{b_{0}}=Z_{int\_shell}=R_{dc}
\end{equation}
%
\clearpage
\subsection{Cable Specification File Format} \label{Cable_spec_file_formats}
This section describes the cable specification file format used as the input to the cable model building process.
Cable specification files have the extension \textbf{name.cable\_spec}.
The first lines of the \textbf{.cable\_spec} file specifies the path to the cable model to be produced from the specification (i.e. the path to the cable models within MOD).
Following this come the parameters which define the cable i.e. the geometrical description of the cable cross section, dielectric properties (if required) and transfer impedance specification (if required).
In addition to the data required to specify a cable bundle, additional information and flags may be specified to influence the operation of the software. There is a choice whether to use (approximate) analytic formulae to calculate the per-unit-length parameters of shielded domains within a cable or to use the numerical Laplace solver.
The approximate analytic formula for shielded domains uses a `wide separation' approximation i.e. it is assumed that the conductor radii are small compared to their separation.
If frequency dependent dielectric models are used in the cable specification then the filter fitting process will be required to set the elements of the cable admittance matrices for shielded domains. This is discussed in detail in the Frequency Dependent Transfer Functions chapter of the theory manual \cite{Theory_manual}. The parameters of the filter fitting process may be set following the cable specification. The filter fitting process provides a best fit model of
specified order over a specified frequency range. As a default the model order is 0 i.e. no frequency dependence is included in the admittance matrix (the permittivity used is the high frequency value of the dielectric constant).
The model order can be specified in two ways:
\begin{enumerate}
\item The order is specified as a positive integer and this is the order used
\item A negative integer is specified. In this case the order is chosen using an automatic algorithm which
attempts to choose the best order from 0 up to $|$specified order$|$
\end{enumerate}
Following the model order the frequency range is specified. The frequency scale is set to be either linear (`lin') or logarithmic (`log'), following this the minimum frequency, maximum frequency and the number of frequencies for the filter fitting process are specified. If the Laplace solution is used then the number of frequencies should not be too large as this will lead to excessive runtimes for the cable model building process.
An example of a filter fitting specification for the admittance matrix element fit is shown below in which
the best model up to order 10 is chosen based on a fit to logarithmic frequency data over a range of 10kHz to 1GHz with 16 sample points:
{\small
\begin{verbatim}
-10 # order for admittance matrix element fit model
log # frequency scale (log or lin)
1e5 1e9 16 # fmin fmax number_of_frequencies
\end{verbatim}
}
The flags which may be applied in a \textbf{cable\_spec} file are as follows:
\begin{enumerate}
\item `verbose' output detailed summary of the software operation and calculation results.\\
\item `use\_Laplace' use the numerical Laplace solver to calculate inductance and capacitance matrices for the internal domains. By default, approximate analytic formulae are used. \\
\item `no\_Laplace' use the (approximate) analytic formulae to calculate inductance and capacitance matrices for the internal domains. \\
\item `plot\_mesh' output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\
\item `direct\_solver' Solve the Finite Element matrix equation using a direct solver i.e. by calculating the matrix inverse. \\
\item `iterative\_solver' Solve the Finite Element matrix equation using an iterative solver. This is much more efficient than the direct solver and is the default option \\
\end{enumerate}
If the Laplace solver is used then the mesh generation is controlled by the parameter
`Laplace\_surface\_mesh\_constant' This parameter determines the number of finite element edges on a conductor surface.
The edge length of elements on a cylindrical conductor of radius r is
$\frac{r}{Laplace\_surface\_mesh\_constant}$. The default value is 3. \\
The default value is a compromise between accuracy and computation time for the Laplace solution.
The default value may be overridden by the user by appending the following to the end of the \textbf{.cable\_spec} file:
\begin{verbatim}
Laplace_surface_mesh_constant
5
\end{verbatim}
If the iterative solver is used to solve the Finite Element matrix equations then the tolerance for the iterative solution may be set using the parameter $cg\_tol$. The default value is $10^{-12}$. The parameter may be set (in this example to 1E-14) by including the following lines int the \textbf{.cable\_spec} file:
\begin{verbatim}
cg_tol
1E-14
\end{verbatim}
\subsection{Cable models available} \label{available_cable_models}
The available cable models are described below. For each cable type a figure is provided which shows the cable cross section and the conductor numbering used for the cable. The parameters required to specify a cable are outlined and an example \textbf{.cable\_spec} file is provided.
The cable models are very general in that all shields can have a transfer impedance specified, all dielectrics can be frequency dependent and all conductors can have a finite conductivity specified. It may often be the case that not all the information required to specifiy a cable is available or only a simple model is required. If that is the case then the general model may be simplified in the following ways:
\begin{enumerate}
\item No dielectric on the outside of a cable: This may be included by setting the relative permittivity of the dielectric to 1 or by setting the dielectric radius equal to the conductor radius.
\item Lossless i.e. perfect conductors. This can be incuded in the model by setting the conductivity parameter to zero. This indicates to the software that loss is not to be included in the model.
\item No transfer impedance to be included. A transfer impedance must be specified however it can be set to zero.
\end{enumerate}
As was stated in section \ref{FD_transfer_impedance_model}, the transfer impedance of a shield at d.c. should be equal to the d.c. resistance of the shield. In order to avoid the need for the user to perform any calculations to ensure that this is the case the thickness parameter for a shield can be set to zero in the \textbf{.cable\_spec} file. When the shield thickness parameter is set to zero the software calculates an `equivalent shield thickness' based on the d.c. value of the transfer impedance ($R_{dc}$) and the specified conductivity of the shield i.e.
%
\begin{equation} \label{eq:equivalent_thickness}
t=\frac{1}{2 \pi r_s \sigma R_{dc}}
\end{equation}
%
\subsubsection{Frequency dependent cylindrical conductor with dielectric} \label{FD_Cylindrical_conductor_with_dielectric}
Figure \ref{fig:FD_cylindrical_with dielectric} shows the cross section of the cylindrical cable model with dielectric.
A description of the cable parameters is given in table \ref{table_FD_Cylindrical_conductor_with_dielectric} followed by an example.
\begin{figure}[h]
\centering
\includegraphics[scale=1.0]{./Imgs/cylindrical_with_dielectric.eps}
\caption{Cylindrical conductor with dielectric}
\label{fig:FD_cylindrical_with dielectric}
\end{figure}
\begin{table}[h]
\begin{center}
\begin{tabular}{| p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
1 & integer & Number of conductors \\ \hline
3 & integer & Number of parameters\\ \hline
0.25e-3 & metre & parameter 1: conductor radius \\ \hline
0.5e-3 & metre & parameter 2: dielectric radius \\ \hline
5e7 & Siemens/metre & parameter 3: electric conductivity \\ \hline
1 & integer & number of frequency dependent parameters \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent dielectric relative permittivity model \\ \hline
\end{tabular}
\end{center}
\caption{Cylindrical cable parameters}
\label{table_FD_Cylindrical_conductor_with_dielectric}
\end{table}
\clearpage
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
.
Cylindrical
1 # number of conductors
3 # number of parameters
1.905e-4 # parameter 1: conductor radius
0.5e-3 # parameter 2: dielectric radius
5E7 # parameter 3: conductivity
1 # number of frequency dependent parameters
# dielectric relative permittivity model follows
1E8 # w normalisation constant
1 # a order, a coefficients follow below:
2.60 2.25
1 # b order, b coefficients follow below:
1.0 1.0
\end{verbatim}
\clearpage
\subsubsection{Frequency Dependent Coaxial cable with Transfer Impedance and surface impedance loss } \label{ZT_FD_Coax2}
Figure \ref{fig:ZT_FD_coax2} shows the cross section of the frequency dependent coaxial cable with transfer impedance and surface impedance loss.
A description of the cable parameters is given in table \ref{table_ZT_FD_Coax2} followed by an example.
The inductance and capacitance of the coaxial mode is always calculated using the analytic formulae \cite{PaulMTL}
\begin{equation}
L=\frac{\mu_0}{2 \pi} \ln\left(\frac{r_s}{r_w}\right)
\end{equation}
\begin{equation}
C=\frac{2 \pi \epsilon_0 \epsilon_r \left(j\omega)\right)}{ \ln\left(\frac{r_s}{r_w}\right)}
\end{equation}
If the dielectric is frequency dependent then the frequency dependent capacitance is simply a scaling of the dielectric frequency dependent function specified.
\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/Coax2.eps}
\caption{Coaxial cable}
\label{fig:ZT_FD_coax2} % note that this is the coax2 cable figure which includes the shield thickness...
\end{figure}
\clearpage
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
2 & integer & Number of conductors \\ \hline
6 & integer & Number of parameters\\ \hline
0.25e-3 & metre & parameter 1: inner conductor radius \\ \hline
1.25e-3 & metre & parameter 2: shield radius \\ \hline
2.5e-3 & metre & parameter 3: outer dielectric radius \\ \hline
5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
0.05E-3 & metre & parameter 5: shield conductor thickness \\ \hline
5e7 & Siemens/metre & parameter 6: shield conductor electric conductivity \\ \hline
2 & integer & number of frequency dependent parameters \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent inner dielectric relative permittivity model\\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent outer dielectric relative permittivity model\\ \hline
1 & integer & number of frequency dependent transfer impedance models \\ \hline
$Z_{T}\left(j\omega \right)$ & ohms (rational function coefficients) & Frequency dependent transfer impedance model\\ \hline
\end{tabular}
\end{center}
\caption{Coaxial cable parameters}
\label{table_ZT_FD_Coax2}
\end{table}
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
Coax
2 # number of conductors
6 # NUMBER OF PARAMETERS
0.00042 # parameter 1: inner conductor radius (m)
0.00147 # parameter 2: shield radius (m)
0.0025 # parameter 3: outer insulation radius (m)
5e7 # parameter 4: inner conductor electric conductivity
0.0002 # parameter 5: shield conductor thickness
5e7 # parameter 6: shield electric conductivity
2 # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.6 2.0
1 # b order, b coefficients follow below:
1.0 1.0
# Outer dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.40 2.20
1 # b order, b coefficients follow below:
1.0 1.0
1 # number of frequency dependent transfer ipedance models
# Transfer impedance model
1.0 # angular frequency normalisation
1 # order of numerator model
0.05 1.6E-9 # list of numerator coefficients a0 a1 a2...
0 # order of denominator model
1.0 # list of denominator coefficients b0 b1 b2...
\end{verbatim}
\clearpage
\subsubsection{Frequency Dependent Twinaxial cable with transfer impedance with shield surface impedance loss} \label{ZT_FD_Twinax2}
Figure \ref{fig:ZT_FD_Twinax2} shows the cross section of the frequency dependent twinax cable with transfer impedance and surface impedance loss.
A description of the cable parameters is given in table \ref{table_ZT_FD_twinax2} followed by an example in which the filter fitting model order is specified and the Laplace solver used for the frequency dependent per-unit length parameter calculation.
If the approximate analytic solution is used to calculate the per-unit-length parameters of the internal modes then
the solution assumes that the space within the shield is completely filled with the inner dielectric. If the inner dielectric is frequency dependent then the frequency dependence is neglected and the high frequency permittivity value is used. The analytic solution uses the wide separation approximation \cite{PaulMTL}.
\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/ZT_FD_Twinax.eps}
\caption{Twinaxial cable}
\label{fig:ZT_FD_Twinax2}
\end{figure}
\clearpage
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
3 & integer & Number of conductors \\ \hline
8 & integer & Number of parameters\\ \hline
0.25e-3 & metre & parameter 1: inner conductor radius \\ \hline
0.40e-3 & metre & parameter 2: inner dielectric radius \\ \hline
1.0e-3 & metre & parameter 3: inner conductor separation \\ \hline
2.0e-3 & metre & parameter 4: shield radius \\ \hline
0.1e-3 & metre & parameter 5: shield thickness \\ \hline
2.5e-3 & metre & parameter 6: outer dielectric radius \\ \hline
5e7 & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline
5e7 & Siemens/metre & parameter 8: shield electric conductivity \\ \hline
2 & integer & number of frequency dependent parameters \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent inner dielectric relative permittivity model\\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent outer dielectric relative permittivity model\\ \hline
1 & integer & number of frequency dependent transfer impedance models \\ \hline
$Z_{T}\left(j\omega \right)$ & ohms (rational function coefficients) & Frequency dependent transfer impedance model\\ \hline
\end{tabular}
\end{center}
\caption{Twinaxial cable parameters}
\label{table_ZT_FD_twinax2}
\end{table}
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
.
Twinax
3 # Number of conductors
8 # Number of parameters
0.25e-3 # parameter 1: inner conductor radius
0.40e-3 # parameter 2: inner dielectric radius
1.0e-3 # parameter 3: inner conductor separation
2.0e-3 # parameter 4: shield radius
0.1e-3 # parameter 5: shield thickness
2.5e-3 # parameter 6: outer dielectric radius
5e7 # parameter 7: inner conductor electric conductivity
5e7 # parameter 8: shield electric conductivity
2 # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.6 2.0
1 # b order, b coefficients follow below:
1.0 1.0
# Outer dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.40 2.20
1 # b order, b coefficients follow below:
1.0 1.0
1 # number of frequency dependent transfer ipedance models
# Transfer impedance model
1.0 # angular frequency normalisation
1 # order of numerator model
0.05 1.6E-9 # list of numerator coefficients a0 a1 a2...
0 # order of denominator model
1.0 # list of denominator coefficients b0 b1 b2...
-10 ! order for filter fit solution
lin # frequency range type for filter fitting type (lin or dB)
1e3 1e9 10 # fmin fmax number_of_frequencies for filter fitting
use_Laplace
\end{verbatim}
\clearpage
\subsubsection{Frequency Dependent Twisted pair cable} \label{FD_Twisted_pair}
Figure \ref{fig:FD_Twisted_pair} shows the cross section of the frequency dependent twisted pair model.
A description of the cable parameters is given in table \ref{table_FD_Twisted_pair} followed by an example. Note that there is no parameter for the twisted pair model which relates to the number of twists per unit length. This is due to the nature of the model which assumes that there is no interaction between the differential mode and the other conductors in the bundle thus the twisting period is not required for the model.
The analytic formulae used to calculate the inductance and capacitance of the differential mode are \cite{PaulMTL}
\begin{equation}
C=\frac{ \pi \epsilon_0 }{ \ln\left( \frac{s}{2r_w}+\sqrt{ \left(\frac{s}{2r_w}\right)^2-1 } \right)}
\end{equation}
\begin{equation}
L=\frac{\mu_0 \epsilon_0}{C}
\end{equation}
where the dielectric coating of the conductors is neglected.
\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/FD_Twisted_pair.eps}
\caption{Twisted pair cable}
\label{fig:FD_Twisted_pair}
\end{figure}
\clearpage
\begin{table}[!htb]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
2 & integer & Number of conductors \\ \hline
4 & integer & Number of parameters\\ \hline
0.25e-3 & metre & parameter 1: conductor radius, $r_w$ \\ \hline
1.0e-3 & metre & parameter 2: conductor separation, $s$ \\ \hline
0.5e-3 & metre & parameter 3: dielectric radius \\ \hline
5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent dielectric relative permittivity model\\ \hline
\end{tabular}
\end{center}
\caption{Twisted pair cable parameters}
\label{table_FD_Twisted_pair}
\end{table}
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
.
Twisted_pair
2 # number of conductors
4 # number of parameters
0.25e-3 # parameter 1: conductor radius
1.0e-3 # parameter 2: conductor separation
0.45e-3 # parameter 3: dielectric radius
5e7 # parameter 4: inner conductor electric conductivity
# Dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.40 2.20
1 # b order, b coefficients follow below:
1.0 1.0
\end{verbatim}
\clearpage
\subsubsection{Frequency Dependent shielded twisted pair cable with transfer impedance and shield surface impedance loss} \label{Shielded_twisted_pair2}
Figure \ref{fig:ZT_FD_Shielded_twisted_pair} shows the cross section of the frequency dependent shielded twisted pair cable with transfer impedance and shield surface impedance loss model.
A description of the cable parameters is given in table \ref{table_ZT_FD_Shielded_twisted_pair} followed by an example in which the filter fitting model order is specified and the Laplace solver used for the frequency dependent per-unit length parameter calculation. Note that there is no parameter for the number of twists per unit length. This is due to the nature of the model which assumes that there is no interaction between the differential mode and the other conductors in the bundle thus the twisting period is not required for the model.
If the approximate analytic solution is used to calculate the per-unit-length parameters of the internal modes then
the solution assumes that the space within the shield is completely filled with the inner dielectric. If the inner dielectric is frequency dependent then the frequency dependence is neglected and the high frequency permittivity value is used. The analytic solution uses the wide separation approximation \cite{PaulMTL}
.
\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/ZT_FD_Shielded_twisted_pair.eps}
\caption{Shielded twisted pair}
\label{fig:ZT_FD_Shielded_twisted_pair}
\end{figure}
\clearpage
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
3 & integer & Number of conductors \\ \hline
8 & integer & Number of parameters\\ \hline
0.25e-3 & metre & parameter 1: inner conductor radius \\ \hline
0.40e-3 & metre & parameter 2: inner dielectric radius \\ \hline
1.0e-3 & metre & parameter 3: inner conductor separation \\ \hline
2.0e-3 & metre & parameter 4: shield radius \\ \hline
0.1e-3 & metre & parameter 5: shield thickness \\ \hline
2.5e-3 & metre & parameter 6: outer dielectric radius \\ \hline
5e7 & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline
5e7 & Siemens/metre & parameter 8: shield electric conductivity \\ \hline
2 & integer & number of frequency dependent parameters \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent inner dielectric relative permittivity model\\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent outer dielectric relative permittivity model\\ \hline
1 & integer & number of frequency dependent transfer impedance models \\ \hline
$Z_{T}\left(j\omega \right)$ & ohms (rational function coefficients) & Frequency dependent transfer impedance model\\ \hline
\end{tabular}
\end{center}
\caption{Shielded twisted pair parameters}
\label{table_ZT_FD_Shielded_twisted_pair}
\end{table}
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
.
Shielded_twisted_pair
3 # Number of conductors
8 # Number of parameters
0.25e-3 # parameter 1: inner conductor radius
0.40e-3 # parameter 2: inner dielectric radius
1.0e-3 # parameter 3: inner conductor separation
2.0e-3 # parameter 4: shield radius
0.1e-3 # parameter 5: shield thickness
2.5e-3 # parameter 6: outer dielectric radius
5e7 # parameter 7: inner conductor electric conductivity
5e7 # parameter 8: shield electric conductivity
2 # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.6 2.0
1 # b order, b coefficients follow below:
1.0 1.0
# Outer dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.40 2.20
1 # b order, b coefficients follow below:
1.0 1.0
1 # number of frequency dependent transfer ipedance models
# Transfer impedance model
1.0 # angular frequency normalisation
1 # order of numerator model
0.05 1.6E-9 # list of numerator coefficients a0 a1 a2...
0 # order of denominator model
1.0 # list of denominator coefficients b0 b1 b2...
-10 ! order for filter fit solution
lin # frequency range type for filter fitting type (lin or dB)
1e3 1e9 10 # fmin fmax number_of_frequencies for filter fitting
use_Laplace
\end{verbatim}
\clearpage
\subsubsection{Frequency dependent Spacewire cable with transfer impedance and shield surface impedance loss} \label{ZT_FD_Spacewire}
Figure \ref{fig:ZT_FD_spacewire} shows the cross section of the frequency dependent spacewire cable with transfer impedance and shield surface impedance loss model.
A description of the cable parameters is given in table \ref{table_ZT_FD_spacewire} followed by an example in which the filter fitting model order is specified and the Laplace solver used for the frequency dependent per-unit length parameter calculation. Note that there is no parameter for the number of twists per unit length in the shielded twisted pairs. This is due to the nature of the model which assumes that there is no interaction between the differential mode and the other conductors in the bundle thus the twisting period is not required for the model.
If the approximate analytic solution is used to calculate the per-unit-length parameters of the internal modes then
the solution assumes that the space within the twisted pair shields is completely filled with the inner dielectric. If the inner dielectric is frequency dependent then the frequency dependence is neglected and the high frequency permittivity value is used. Similarly the solution assumes that the space within the outer shield is completely filled with the inner shield dielectric. If the inner shield dielectric is frequency dependent then the frequency dependence is neglected and the high frequency permittivity value is used. The analytic solution uses the wide separation approximation \cite{PaulMTL}.
\begin{figure}[h]
\centering
\includegraphics[scale=0.75]{./Imgs/ZT_FD_spacewire.eps}
\caption{Spacewire}
\label{fig:ZT_FD_spacewire}
\end{figure}
\clearpage
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
13 & integer & Number of conductors \\ \hline
13 & integer & Number of parameters\\ \hline
0.25e-3 & metre & parameter 1: inner conductor radius \\ \hline
0.40e-3 & metre & parameter 2: inner dielectric radius \\ \hline
1.0e-3 & metre & parameter 3: inner conductor separation \\ \hline
2.0e-3 & metre & parameter 4: inner shield radius \\ \hline
0.1e-3 & metre & parameter 5: inner shield thickness \\ \hline
2.25e-3 & metre & parameter 6: inner shield jacket radius \\ \hline
3.25e-3 & metre & parameter 7: shielded twisted pair radius \\ \hline
5.65e-3 & metre & parameter 8: outer shield radius \\ \hline
0.15e-3 & metre & parameter 9: outer shield thickness \\ \hline
6.25e-3 & metre & parameter 10: outer dielectric radius \\ \hline
5e7 & Siemens/metre & parameter 11: inner conductor electric conductivity \\ \hline
5e7 & Siemens/metre & parameter 12: inner shield electric conductivity \\ \hline
5e7 & Siemens/metre & parameter 13: outer shield electric conductivity \\ \hline
3 & integer & number of frequency dependent parameters \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent inner dielectric relative permittivity model\\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent inner shield dielectric relative permittivity model\\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent outer dielectric relative permittivity model\\ \hline
2 & integer & number of frequency dependent transfer impedance models \\ \hline
$Z_{T}\left(j\omega \right)$ & ohms (rational function coefficients) & Inner shield Frequency dependent transfer impedance model\\ \hline
$Z_{T}\left(j\omega \right)$ & ohms (rational function coefficients) & Outer shield Frequency dependent transfer impedance model\\ \hline
\end{tabular}
\end{center}
\caption{Spacewire parameters}
\label{table_ZT_FD_spacewire}
\end{table}
\clearpage
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
.
Spacewire
13 # number of conductors
13 # Number of parameters
0.25e-3 # parameter 1: inner conductor radius
0.40e-3 # parameter 2: inner dielectric radius
1.0e-3 # parameter 3: inner conductor separation
2.0e-3 # parameter 4: inner shield radius
0.1e-3 # parameter 5: inner shield thickness
2.25e-3 # parameter 6: inner shield jacket radius
3.25e-3 # parameter 7: shielded twisted pair radius
5.65e-3 # parameter 8: outer shield radius
0.1e-3 # parameter 9: outer shield thickness
6.25e-3 # parameter 10: outer dielectric radius
5e7 # parameter 11: inner conductor electric conductivity
5e7 # parameter 12: inner shield electric conductivity
5e7 # parameter 13: outer shield electric conductivity
3 number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.6 2.0
1 # b order, b coefficients follow below:
1.0 1.0
# Inner shield dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.6 2.0
1 # b order, b coefficients follow below:
1.0 1.0
# Outer dielectric relative permittivity model follows
1E7 # w normalisation constant
1 # a order, a coefficients follow below:
2.40 2.20
1 # b order, b coefficients follow below:
1.0 1.0
2 # number of frequency dependent transfer ipedance models
# Inner shield Transfer impedance model
1.0 # angular frequency normalisation
1 # order of numerator model
0.05 1.6E-9 # list of numerator coefficients a0 a1 a2...
0 # order of denominator model
1.0 # list of denominator coefficients b0 b1 b2...
# Outer shield Transfer impedance model
1.0 # angular frequency normalisation
1 # order of numerator model
0.002 2.8E-9 # list of numerator coefficients a0 a1 a2...
0 # order of denominator model
1.0 # list of denominator coefficients b0 b1 b2...
-10 ! order for filter fit solution
lin # frequency range type for filter fitting type (lin or dB)
1e3 1e9 10 # fmin fmax number_of_frequencies for filter fitting
use_Laplace
\end{verbatim}
\clearpage
\subsubsection{Over-Shield} \label{over_shield}
Figure \ref{fig:Overshield} shows the cross section of the overshield.
A description of the overshield parameters is described in table \ref{table_overshield} followed by an example.
\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/overshield.eps}
\caption{Over shield}
\label{fig:Overshield}
\end{figure}
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
1 & integer & Number of conductors \\ \hline
3 & integer & Number of parameters \\ \hline
5.5e-3 & metre & parameter 1: overshield radius \\ \hline
0.05E-3 & metre & parameter 2: overshield conductor thickness \\ \hline
5e7 & Siemens/metre & parameter 3: overshield conductor electric conductivity \\ \hline
0 & integer & number of frequency dependent parameters \\ \hline
1 & integer & number of frequency dependent transfer impedance models \\ \hline
$Z_{T}\left(j\omega \right)$ & ohms (rational function coefficients) & overshield Frequency dependent transfer impedance model\\ \hline
\end{tabular}
\end{center}
\caption{Overshield parameters}
\label{table_overshield}
\end{table}
\clearpage
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
Overshield
1 # number of conductors
3 # number of parameters
0.005 # parameter 1: overshield radius
0.0001 # parameter 2: overshield thickness
5E7 # parameter 3: overshield conductivity
0 # number of frequency dependent parameters
1 # number of frequency dependent transfer impedance models
# Transfer impedance model
1.0 # angular frequency normalisation
1 # order of numerator model
0.05 1.6E-9 # list of numerator coefficients a0 a1 a2...
0 # order of denominator model
1.0 # list of denominator coefficients b0 b1 b2...
\end{verbatim}
\clearpage
\subsubsection{Flex cable} \label{flex_cable}
Version 4.0.0 of the SACAMOS software introduces a new flex cable model in which more than one row of conductors can be included within the rectangular dielelctric region. This allows flex cables with multiple layers as well as cables with different conductor dimensions and spacings to be simulated.
Figure \ref{fig:flex_cable} shows the cross section of the new flex cable model.
A description of the model parameters is described in table \ref{table_flex_cable} followed by an example. The flex cable differs from most other cable models in that the number of conductors is a parameter of the model. The conductors are numbered from left to right in each row.
\begin{figure}[h]
\centering
\includegraphics[scale=0.65]{./Imgs/ML_flex_cable.eps}
\caption{flex cable}
\label{fig:flex_cable}
\end{figure}
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
8 & integer & Number of conductors - can be any number of conductors in a flex cable model \\ \hline
16 & integer & Number of parameters = (number of rows of conductors)*6+4 \\ \hline
4.0e-3 & metre & parameter 1: dielectric width (x) \\ \hline
0.8e-3 & metre & parameter 2: dielectric height (y) \\ \hline
2 & integer & parameter 3: number of rows of conductors\\ \hline
0.0e-3 & metre & parameter 4: row 1 centre offset x \\ \hline
0.25e-3 & metre & parameter 5: row 1 centre offset y \\ \hline
0.6e-3 & metre & parameter 6: row 1 conductor width (x dimension) \\ \hline
1.0e-4 & metre & parameter 7: row 1 conductor height (y dimension) \\ \hline
0.2e-3 & metre & parameter 8: row 1 conductor separation \\ \hline
3 & integer & parameter 9: row 1 number of conductors \\ \hline
0.0e-3 & metre & parameter 10: row 2 centre offset x \\ \hline
-0.25e-3 & metre & parameter 11: row 2 centre offset y \\ \hline
0.6e-3 & metre & parameter 12: row 2 conductor width (x dimension) \\ \hline
1.0e-4 & metre & parameter 13: row 2 conductor height (y dimension) \\ \hline
0.2e-3 & metre & parameter 14: row 2 conductor separation \\ \hline
5 & integer & parameter 15: row 2 number of conductors \\ \hline
5E7 & Siemens/metre & parameter 16: conductivity \\ \hline
1 & integer & number of frequency dependent parameters \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent dielectric relative permittivity model\\ \hline
\end{tabular}
\end{center}
\caption{Flex cable parameters}
\label{table_flex_cable}
\end{table}
\vspace{5mm}
\clearpage
\textbf{\underline{Example}}
{\small
\begin{verbatim}
#MOD_cable_lib_dir
.
flex_cable
5 # number of conductors
16 # number of parameters
5.0e-3 # parameter 1: dielectric width (x dimension)
1.25e-3 # parameter 2: dielectric height (y dimension)
2 # parameter 3: number of rows of conductors
0.0e-3 # parameter 4: row 1 centre offset x
0.3e-3 # parameter 5: row 1 centre offset y
1.0e-3 # parameter 6: row 1 conductor width (x dimension)
0.2e-3 # parameter 7: row 1 conductor height (y dimension)
0.5e-3 # parameter 8: row 1 conductor separation
3 # parameter 9: row 1 number of conductors
0.0e-3 # parameter 10: row 2 centre offset x
-0.3e-3 # parameter 11: row 2 centre offset y
1.25e-3 # parameter 12: row 2 conductor width (x dimension)
0.2e-3 # parameter 13: row 2 conductor height (y dimension)
0.5e-3 # parameter 14: row 2 conductor separation
2 # parameter 15: row 2 number of conductors
0.0 # parameter 16: conductivity (zero indicated PEC)
1 # number of frequency dependent parameters
# dielectric relative permittivity model follows
1E9 # w normalisation constant
0 # a order, a coefficients follow below:
2.2
0 # b order, b coefficients follow below:
1.0
\end{verbatim}
}
When creating cable bundle models including flex cables the Laplace solver must be used (include the line $use\_laplace$ following the bundle specification data in the $.bundle\_spec file$), and the mesh control parameter $Max\_mesh\_edge\_length$ may be used to give an additional degree of control over the Finite Element mesh. The number of mesh elements in the y direction on conductors (height) is set by the $Laplace\_surface\_mesh\_constant$ parameter (although the minimum number is two).
\clearpage
\subsubsection{D connector} \label{Dconnector}
Figure \ref{fig:Dconnector} shows the cross section of the D connector model.
A description of the model parameters is described in table \ref{table_Dconnector} followed by an example. The D connector model differs from most other cable models in that the number of conductors is a parameter of the model. The conductors are numbered from left to right on the top row, then left to right on the bottom row and finally the D shaped shell conductor. The minimum number of conductors is 5.
The Laplace solution must always be used to calculate the per-unit-length parameters of the D-connector as there is no appropriate analytic solution available.
\begin{figure}[h]
\centering
\includegraphics[scale=0.70]{./Imgs/Dconnector.eps}
\caption{D connector}
\label{fig:Dconnector}
\end{figure}
\clearpage
\begin{table}[h]
\begin{center}
\begin{tabular}{ | p{3cm} | p{3cm} | p{6cm} |}
\hline
example value & unit & Comment \\ \hline
8 & integer & Number of conductors - can be any number of conductors greater than 5 \\ \hline
4 & integer & Number of parameters, always 4 for D connectors \\ \hline
0.5e-3 & metre & parameter 1: conductor radius \\ \hline
1.5e-3 & metre & parameter 2: conductor pitch (separation in x) \\ \hline
1.5e-3 & metre & parameter 3: conductor separation in y \\ \hline
1.0e-3 & metre & parameter 4: offset from conductors to shell \\ \hline
0 & integer & number of frequency dependent parameters \\ \hline
0 & integer & number of transfer impedance models \\ \hline
$\epsilon\left(j\omega \right)$ & rational function coefficients & Frequency dependent dielectric relative permittivity model\\ \hline
\end{tabular}
\end{center}
\caption{D connector parameters}
\label{table_Dconnector}
\end{table}
\vspace{5mm}
\textbf{\underline{Example}}
\begin{verbatim}
#MOD_cable_lib_dir
.
Dconnector
10 # number of conductors
4 # number of parameters
0.5e-3 # parameter 1: conductor radius
1.5e-3 # parameter 2: conductor pitch (separation in x)
1.5e-3 # parameter 3: conductor separation in y
1.0e-3 # parameter 4: offset from conductors to shell
0 # number of frequency dependent parameters
0 # number of transfer impedance models
use_Laplace
\end{verbatim}
\cleardoublepage