file_formats.tex 93.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

\chapter{File Formats} \label{file_formats}

This chapter describes the file formats used as the input to the spice cable bundle model building process.
There are three processes in the creation of a spice cable bundle model. These are:

\begin{enumerate}
\item cable model building process
\item cable bundle model building process
\item spice cable bundle model building process
\end{enumerate}
Frequency dependent parameters

The file formats used to drive each of these processes are described in the following sections.

\section{Cable Specification File Formats} \label{Cable_spec_file_formats}

This section describes the cable specification file formats used as the input to the cable model building process.
Cable specification files have the extension \textbf{name.cable\_spec}.

Models of the following cable types have been developed:

\begin{enumerate}
\item Cylindrical conductor
\item Cylindrical conductor with dielectric
\item Frequency Dependent Cylindrical conductor with dielectric
\item Coaxial cable
\item Frequency Dependent Coaxial cable
\item Frequency Dependent Coaxial cable including shield surface impedance loss
\item Frequency Dependent Coaxial cable with transfer impedance - low frequency model
\item Frequency Dependent Coaxial cable with transfer impedance - high frequency model including shield surface impedance loss
\item Twinax cable
\item Frequency Dependent Twinax cable with transfer impedance - low frequency model
\item Frequency Dependent Twinax cable with transfer impedance - high frequency model including shield surface impedance loss
\item Twisted pair
\item Frequency Dependent Twisted pair
\item Shielded twisted pair
\item Frequency Dependent Shielded twisted pair with transfer impedance - low frequency model
\item Frequency Dependent Shielded twisted pair with transfer impedance - high frequency model including shield surface impedance loss
\item Spacewire
\item Frequency Dependent Spacewire with transfer impedance - low frequency model
\item Frequency Dependent Spacewire with transfer impedance - high frequency model including shield surface impedance loss
\item Frequency Dependent Overshield with transfer impedance
\item Rectangular conductor
\item Frequency Dependent flex cable
\item D connector
\end{enumerate}


Frequency dependent parameters may be defined using a rational function form for example a frequency dependent dielectric may
be represented using the following form
\begin{equation} \label{eq:rational_permittivity}
\epsilon_{r}=\frac{a_0+ a_1 \left( \frac{j\omega}{\omega_0} \right) +a_2 \left( \frac{j\omega}{\omega_0} \right)^2 + \cdots}{b_0+ b_1 \left( \frac{j\omega}{\omega_0} \right) +b_2 \left( \frac{j\omega}{\omega_0} \right)^2 + \cdots}
\end{equation}

The cable\_model\_builder process calculates the per-unit-length inductance and capacitance matrices of all internal domains. 
This may be achieved using an analytic solution in the case of coaxial cables for example. For domains with 
inhomogeneous dielectric then a numerical Laplace solver may be used to calculate the per-unit-length parameters.

Within a cable specification file this frequency dependent data is specified in the following format:

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{5cm} |}
    \hline
    Line number & Typical value   & Description \\ \hline
1       & \# dielectric model  & Comment line \\ \hline
2       & 1E8             & $\omega_{0}$ (rad/second)   \\ \hline
3       &  1  & order of numerator \\ \hline
4       &    2.60        2.25  & list of numerator (a) coefficients \\ \hline
5       &  1  & order of numerator \\ \hline
6       &    1.0        1.0  & list of denominator (b) coefficients \\ \hline
    \end{tabular}
\end{center}

In addition to the information required to specifiy a cable, additional flags to control the operation of the software can be
included. These flags consist of text commands. The available flags and their effect are as follows

\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\item 'use\_laplace'    use the numerical Laplace solver to calculate inductance and capacitance matrices where 
appropriate (i.e. where an exact analytic solution is not available.) By default, approximate analytic formulae are used. \\
\item 'plot\_mesh'    output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\
\end{enumerate}

If the Laplace solver is used then the mesh generation is be controlled by the paramter

'Laplace\_surface\_mesh\_constant'  This parameter determines the number of finite element edges on a conductor surface
                                       The number of elements on a cylindrical conductor of radius r is
                                       $\frac{r}{Laplace_surface_mesh_constant}$. The default value is 3.
                                       
(As the Laplace solver is only applied to internal domains at this stage then the parameter Laplace\_boundary\_constant is not used.

The default parameters are a compromise between accuracy and computation time for the Laplace solution. 
The default values may be overridden by the user by appending the following to the end of the .cable\_spec file:

\begin{verbatim}
Laplace_surface_mesh_constant
4
\end{verbatim}


The file formats required to specify each of these cable types is described in the folllowing sub-sections together with an example.

\subsection{Cylindrical conductor format} \label{Cylindrical_conductor_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & cylindrical   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for cylindrical cables \\ \hline
5       & 1             & integer 	& Number of parameters, always 1 for cylindrical cables \\ \hline
6       & 0.25e-3       & metre         & parameter 1: conductor radius \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
cylindrical
1		# number of conductors
1		# number of parameters
1.905e-4  	# parameter 1: conductor radius
\end{verbatim}


\subsection{Cylindrical conductor with dielectric format} \label{Cylindrical_conductor_dielectric_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & cylindrical\_with\_dielectric   & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for cylindrical cables with dielectric \\ \hline
5       & 3             & integer 	& Number of parameters, always 3 for cylindrical cables with dielectric \\ \hline
6       & 0.25e-3       & metre         & parameter 1: conductor radius \\ \hline
7       & 0.65e-3       & metre         & parameter 2: outer dielectric radius \\ \hline
8       & 2.25          & -             & parameter 3: realtive permittivity of dielectric \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
cylindrical_with_dielectric
1		# number of conductors
3		# number of parameters
1.905e-4  	# parameter 1: conductor radius
0.5e-3  	# parameter 2: dielectric radius
2.25  	        # parameter 3: dielectric relative permittivity
\end{verbatim}


\subsection{Frequency dependent cylindrical conductor with dielectric coating format} \label{FD_Cylindrical_conductor_dielectric_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_cylindrical\_with\_dielectric   & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for cylindrical cables with dielectric \\ \hline
5       & 3             & integer 	& Number of parameters, always 3 for frequency dependent cylindrical cables with dielectric \\ \hline
6       & 0.25e-3       & metre         & parameter 1: conductor radius \\ \hline
6       & 0.5e-3       & metre          & parameter 2: dielectric radius \\ \hline
7       & 5e7           & Siemens/metre & parameter 3: electric conductivity \\ \hline
8       & 1             & integer 	& Number of frequency dependent parameters, always 1 for frequency dependent cylindrical cables with dielectric \\ \hline
9      & \# Dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
10      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
11      & 1 & integer & order of numerator model \\ \hline
12      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
13      & 1 & integer & order of denominator model \\ \hline
14      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
FD_cylindrical_with_dielectric
1		# number of conductors
3		# number of parameters
1.905e-4  	# parameter 1: conductor radius
0.5e-3  	# parameter 2: dielectric radius
5E7  	        # parameter 3: conductivity
1		# number of frequency dependent parameters
# dielectric relative permittivity model follows
   1E8        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.60        2.25           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}


\subsection{Coaxial cable format} \label{coaxial_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & coaxial   & -                 & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for coaxial cables \\ \hline
5       & 5             & integer 	& Number of parameters, always 5 for coaxial cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3       & metre          & parameter 2: shield radius \\ \hline
8       & 2.25          &   -           & parameter 3: relative permittivity of inner dielectric \\ \hline
9       & 2.5e-3       & metre          & parameter 4: outer insulation radius \\ \hline
10      & 2.5           &   -           & parameter 5: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
coaxial         # cable type
2		# number of conductors
5		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
2.25   		# parameter 3: relative permittivity of inner dielectric
0.0025 	        # parameter 4: outer insulation radius (m)
2.50  		# parameter 5: relative permittivity of outer dielectric
\end{verbatim}

\subsection{Frequency dependent coaxial cable - low frequency model format format} \label{FD_coaxial_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_coaxial   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for FD\_coaxial cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10      & 2		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
17      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
18      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
19      & 1 & integer & order of numerator model \\ \hline
20      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
21      & 1 & integer & order of denominator model \\ \hline
22      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
FD_coaxial         # cable type
2		# number of conductors
4		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}

\subsection{Frequency dependent coaxial cable - high frequency model including shield surface impedance loss format} \label{FD_coaxial_cable2_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_coaxial2  & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial2 cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for FD\_coaxial2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
8       & 0.1e-3        & metre         & parameter 5: shield thickness \\ \hline
9       & 5e7           & Siemens/metre & parameter 6: shield electric conductivity \\ \hline
10      & 2		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
17      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
18      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
19      & 1 & integer & order of numerator model \\ \hline
20      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
21      & 1 & integer & order of denominator model \\ \hline
22      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
FD_coaxial2         # cable type
2		# number of conductors
6		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
0.0001          # parameter 5: shield conductor thickness (m)
5e7             # parameter 6: shield electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}

\subsection{Frequency dependent coaxial cable with transfer impedance - low frequency model format} \label{ZT_FD_coaxial_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_coaxial   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for FD\_coaxial cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10      & 2		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
17      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
18      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
19      & 1 & integer & order of numerator model \\ \hline
20      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
21      & 1 & integer & order of denominator model \\ \hline
22      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
23      & 1		& integer       & number of frequency dependent transfer ipedance models \\ \hline
24      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
25      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
26      & 1 & integer & order of numerator model \\ \hline
27      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
28      & 0 & integer & order of denominator model \\ \hline
29      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
ZT_FD_coaxial         # cable type
2		# number of conductors
5		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}

\subsection{Frequency dependent coaxial cable with transfer impedance - high frequency model including shield surface impedance loss format} \label{ZT_FD_coaxial_cable2_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_coaxial2   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial2 cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for FD\_coaxial2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10      & 0.2e-3        & metre         & parameter 5: shield conductor thickness \\ \hline
11      & 5e7           & Siemens/metre & parameter 6: shield conductor electric conductivity \\ \hline
12      & 2             & integer       & number of frequency dependent parameters \\ \hline
13    & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14    & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15    & 1 & integer & order of numerator model \\ \hline
16    &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
17    & 1 & integer & order of denominator model \\ \hline
18    &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
19    & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
20    & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
21    & 1 & integer & order of numerator model \\ \hline
22    &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
23    & 1 & integer & order of denominator model \\ \hline
24    &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
25    & 1             & integer       & number of frequency dependent transfer ipedance models \\ \hline
26    & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
27    & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
28    & 1 & integer & order of numerator model \\ \hline
29    &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
30    & 0 & integer & order of denominator model \\ \hline
31    &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
ZT_FD_coaxial2  # cable type
2		# number of conductors
6		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
0.0002          # parameter 5: shield conductor thickness
5e7             # parameter 6: shield electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}

\subsection{Twinax cable} \label{twinax_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & twinax   & -                  & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for twinax cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for twinax cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 1.5e-3        & metre         & parameter 3: shield radius \\ \hline
9       & 2.25          &   -           & parameter 4: relative permittivity of inner dielectric \\ \hline
10      & 2.5e-3        & metre         & parameter 5: outer dielectric radius \\ \hline
11      & 2.5           &   -           & parameter 6: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
twinax
3		# number of conductors
6		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
2.0e-3  	# parameter 3: shield radius
1.00     	# parameter 4: inner dielectric relative permittivity
3.0e-3     	# parameter 5: outer dielectric radius
1.00     	# parameter 6: outer dielectric relative permittivity
\end{verbatim}


\subsection{Frequency dependent twinax cable with transfer impedance - low frequency model} \label{ZT_FD_twinax_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_twinax   & -            & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent twinax cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for frequency dependent twinax cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 2.5e-3        & metre         & parameter 5: outer dielectric radius \\ \hline
11      & 5e7           & Siemens/metre & parameter 6: inner conductor electric conductivity \\ \hline
12      & 2		& integer       & number of frequency dependent parameters \\ \hline
13      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15      & 1 & integer & order of numerator model \\ \hline
16      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
17      & 1 & integer & order of denominator model \\ \hline
18      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
19      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
20      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
21      & 1 & integer & order of numerator model \\ \hline
22      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
23      & 1 & integer & order of denominator model \\ \hline
24      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
25      & 1		& integer       & number of frequency dependent transfer ipedance models \\ \hline
26      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
27      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
28      & 1 & integer & order of numerator model \\ \hline
29      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
29      & 0 & integer & order of denominator model \\ \hline
30      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_twinax
3              Number of conductors 
6              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
2.5e-3         parameter 5: outer dielectric radius 
5e7            parameter 6: inner conductor electric conductivity 
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}


\subsection{Frequency dependent twinax cable with transfer impedance - high frequency model} \label{ZT_FD_twinax_formats2}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_twinax2   & -            & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent twinax2 cables \\ \hline
5       & 8             & integer 	& Number of parameters, always 8 for frequency dependent twinax2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 0.1e-3        & metre         & parameter 5: shield thickness \\ \hline
11      & 2.5e-3        & metre         & parameter 6: outer dielectric radius \\ \hline
12      & 5e7           & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline
13      & 5e7           & Siemens/metre & parameter 8: shield electric conductivity \\ \hline
14      & 2             & integer       & number of frequency dependent parameters \\ \hline
15      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
16      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
16      & 1 & integer & order of numerator model \\ \hline
17      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
18      & 1 & integer & order of denominator model \\ \hline
19      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
20      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
21      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
22      & 1 & integer & order of numerator model \\ \hline
23      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
24      & 1 & integer & order of denominator model \\ \hline
25      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
26      & 1             & integer       & number of frequency dependent transfer ipedance models \\ \hline
27      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
28      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
29      & 1 & integer & order of numerator model \\ \hline
30      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
31      & 0 & integer & order of denominator model \\ \hline
32      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_twinax2
3              Number of conductors 
6              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
0.1e-3         parameter 5: shield thickness
2.5e-3         parameter 6: outer dielectric radius 
5e7            parameter 7: inner conductor electric conductivity
5e7            parameter 8: shield electric conductivity
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}


\subsection{Twisted pair} \label{twisted_pair_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & twisted\_pair & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for twisted pair cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 2.5e-3       & metre          & parameter 3: outer dielectric radius \\ \hline
9       & 2.5           &   -           & parameter 4: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
twisted_pair
2		# number of conductors
4		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
0.45e-3  	# parameter 3: dielectric radius
2.5     	# parameter 4: dielectric relative permittivity
\end{verbatim}

\subsection{Frequency Dependent Twisted pair} \label{FD_twisted_pair_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_twisted\_pair & -         & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for frequency dependent twisted pair cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for frequency dependent twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer dielectric radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10       & 1		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Dielectric & - & Comment line Frequency dependent dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
FD_twisted_pair
2		# number of conductors
4		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
0.45e-3  	# parameter 3: dielectric radius
5e7             # parameter 4: inner conductor electric conductivity
# Dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}

\subsection{Shielded twisted pair} \label{shielded_twisted_pair_formats}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & shielded\_twisted\_pair & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for shielded twisted pair cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for shielded twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 1.5e-3        & metre         & parameter 3: shield radius \\ \hline
9       & 2.25          &   -           & parameter 4: relative permittivity of inner dielectric \\ \hline
10      & 2.5e-3       & metre          & parameter 5: outer dielectric radius \\ \hline
11      & 2.5           &   -           & parameter 6: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
shielded_twisted_pair
3		# number of conductors
6		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
2.0e-3  	# parameter 3: shield radius
2.25     	# parameter 4: inner dielectric relative permittivity
3.0e-3     	# parameter 5: outer dielectric radius
2.5     	# parameter 6: outer dielectric relative permittivity
\end{verbatim}




\subsection{Frequency dependent shielded twisted pair cable with transfer impedance - low frequency model} \label{ZT_FD_shielded_twisted_pair_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_shielded\_twisted\_pair & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent shielded twisted pair cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for frequency dependent shielded twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 2.5e-3        & metre         & parameter 5: outer dielectric radius \\ \hline
11       & 5e7           & Siemens/metre & parameter 6: inner conductor electric conductivity \\ \hline
12      & 2		& integer       & number of frequency dependent parameters \\ \hline
13      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15      & 1 & integer & order of numerator model \\ \hline
16      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
16      & 1 & integer & order of denominator model \\ \hline
17      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
18      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
19      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
20      & 1 & integer & order of numerator model \\ \hline
21      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
22      & 1 & integer & order of denominator model \\ \hline
23      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
24      & 1		& integer       & number of frequency dependent transfer ipedance models \\ \hline
25      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
26      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
27      & 1 & integer & order of numerator model \\ \hline
28      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
29      & 0 & integer & order of denominator model \\ \hline
30      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_shielded_twisted_pair
3              Number of conductors 
6              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
2.5e-3         parameter 5: outer dielectric radius 
5e7            parameter 6: inner conductor electric conductivity
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}



\subsection{Frequency dependent shielded twisted pair cable with transfer impedance - high frequency model including shield surface impedance loss} \label{ZT_FD_shielded_twisted_pair2_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_shielded\_twisted\_pair2 & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent shielded twisted pair2 cables \\ \hline
5       & 8             & integer 	& Number of parameters, always 8 for frequency dependent shielded twisted pair2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 0.1e-3        & metre         & parameter 5: shield thickness \\ \hline
11      & 2.5e-3        & metre         & parameter 6: outer dielectric radius \\ \hline
12      & 5e7           & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline
13      & 5e7           & Siemens/metre & parameter 8: shield electric conductivity \\ \hline
14      & 2             & integer       & number of frequency dependent parameters \\ \hline
15      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
16      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
16      & 1 & integer & order of numerator model \\ \hline
17      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
18      & 1 & integer & order of denominator model \\ \hline
19      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
20      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
21      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
22      & 1 & integer & order of numerator model \\ \hline
23      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
24      & 1 & integer & order of denominator model \\ \hline
25      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
26      & 1             & integer       & number of frequency dependent transfer ipedance models \\ \hline
27      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
28      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
29      & 1 & integer & order of numerator model \\ \hline
30      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
31      & 0 & integer & order of denominator model \\ \hline
32      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_shielded_twisted_pair2
3              Number of conductors 
8              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
0.1e-3         parameter 5: shield thickness
2.5e-3         parameter 6: outer dielectric radius 
5e7            parameter 7: inner conductor electric conductivity
5e7            parameter 8: shield electric conductivity
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}



\subsection{Spacewire} \label{spacewire_formats}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .              & -             & Directory to write the cable model file to \\ \hline
3       & spacewire & -  & Cable type. Note there should be nothing else on this line \\ \hline
4       & 13             & integer 	& Number of conductors, always 13 for spacewire \\ \hline
5       & 10             & integer 	& Number of parameters, always 10 for spacewire \\ \hline
6       & 0.1e-3         & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.4e-3         & metre         & parameter 2: conductor separation \\ \hline
8       & 0.8e-3         & metre         & parameter 3: inner sheild radius \\ \hline
9       & 2.25           &   -           & parameter 4: inner dielectric relative permittivity\\ \hline
10       & 1.0e-3         & metre         & parameter 5: inner shield jacket radius \\ \hline
11       & 2.25           &   -           & parameter 6: inner shield jacket relative permittivity\\ \hline
12      & 2.0e-3         & metre          & parameter 7: shielded twisted pair radius \\ \hline
13      & 4.5e-3         & metre          & parameter 8: outer shield radius \\ \hline
14      & 5.0e-3         & metre          & parameter 9: outer dielectric radius \\ \hline
15      & 2.5            &   -           & parameter 10: outer dielectric relative permittivity\\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
spacewire
13		# number of conductors
10		# number of parameters
0.25e-3  	# parameter 1: inner conductor radius
1.0e-3  	# parameter 2: inner conductor separation
2.0e-3  	# parameter 3: inner shield radius
2.2     	# parameter 4: inner dielectric relative permittivity
2.2e-3  	# parameter 5: inner shield jacket radius
2.5      	# parameter 6: inner shield jacket relative permittivity
4.0e-3     	# parameter 7: shielded twisted pair radius
8.0e-3     	# parameter 8: outer shield radius
9.0e-3     	# parameter 9: outer dielectric radius
2.25     	# parameter 10: outer dielectric relative permittivity
\end{verbatim}



\subsection{Frequency dependent spacewire with transfer impedance - low frequency model} \label{ZT_FD_spacewire_formats}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .              & -            & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_spacewire & -         & Cable type. Note there should be nothing else on this line \\ \hline
4       & 13             & integer 	& Number of conductors, always 13 for ZT\_FD\_spacewire \\ \hline
5       & 9              & integer 	& Number of parameters, always 9 for ZT\_FD\_spacewire \\ \hline
6       & 0.1e-3         & metre        & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3        & metre        & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3         & metre        & parameter 3: conductor separation \\ \hline
9       & 0.8e-3         & metre        & parameter 4: inner sheild radius \\ \hline
10      & 1.0e-3         & metre        & parameter 5: inner shield jacket radius \\ \hline
11      & 2.0e-3         & metre        & parameter 6: shielded twisted pair radius \\ \hline
12      & 4.5e-3         & metre        & parameter 7: outer shield radius \\ \hline
13      & 5.0e-3         & metre        & parameter 8: outer dielectric radius \\ \hline
14      & 5e7           & Siemens/metre & parameter 9: inner conductor electric conductivity \\ \hline
15      & 3		& integer       & number of frequency dependent parameters \\ \hline
16      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
17      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
18      & 1 & integer & order of numerator model \\ \hline
19      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
20      & 1 & integer & order of denominator model \\ \hline
21      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
22      & \# Inner shield dielectric & - & Comment line Frequency dependent inner shield dielectric relative permittivity model \\ \hline
23      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
24      & 1 & integer & order of numerator model \\ \hline
25      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
26      & 1 & integer & order of denominator model \\ \hline
27      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
28      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
29      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
30      & 1 & integer & order of numerator model \\ \hline
31      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
32      & 1 & integer & order of denominator model \\ \hline
33      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
34      & 2		& integer       & number of frequency dependent transfer ipedance models \\ \hline
35      & \# Inner shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
36      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
37      & 1 & integer & order of numerator model \\ \hline
38      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
39      & 0 & integer & order of denominator model \\ \hline
40      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
41      & \# Outer shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
42      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
43      & 1 & integer & order of numerator model \\ \hline
44      &  0.02  1.9E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
45      & 0 & integer & order of denominator model \\ \hline
46      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
spacewire
13		# number of conductors
9               # Number of parameters
0.25e-3         # parameter 1: inner conductor radius
0.40e-3         # parameter 2: inner dielectric radius
1.0e-3          # parameter 3: inner conductor separation
2.0e-3          # parameter 4: inner shield radius
2.25e-3         # parameter 5: inner shield jacket radius 
3.25e-3         # parameter 6: shielded twisted pair radius 
5.5e-3          # parameter 7: outer shield radius 
6.25e-3         # parameter 8: outer dielectric radius
5e7             # parameter 9: inner conductor electric conductivity
3	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Inner shield dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
2             & integer       & number of frequency dependent transfer ipedance models 
# Inner shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
# Outer shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.002  2.8E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}


\subsection{Frequency dependent spacewire with transfer impedance - high frequency model including shield surface impedance loss} \label{ZT_FD_spacewire_formats2}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .              & -            & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_spacewire2 & -         & Cable type. Note there should be nothing else on this line \\ \hline
4       & 13             & integer 	& Number of conductors, always 13 for ZT\_FD\_spacewire2 \\ \hline
5       & 13              & integer 	& Number of parameters, always 13 for ZT\_FD\_spacewire2 \\ \hline
6       & 0.1e-3         & metre        & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3        & metre        & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3         & metre        & parameter 3: conductor separation \\ \hline
9       & 0.8e-3         & metre        & parameter 4: inner sheild radius \\ \hline
10      & 0.1e-3         & metre        & parameter 5: inner shield thickness \\ \hline
11      & 1.0e-3         & metre        & parameter 6: inner shield jacket radius \\ \hline
12      & 2.0e-3         & metre        & parameter 7: shielded twisted pair radius \\ \hline
13      & 4.5e-3         & metre        & parameter 8: outer shield radius \\ \hline
14      & 0.1e-3         & metre        & parameter 9: outer shield thickness \\ \hline
15      & 5.0e-3         & metre        & parameter 10: outer dielectric radius \\ \hline
16      & 5e7           & Siemens/metre & parameter 11: inner conductor electric conductivity \\ \hline
17      & 5e7           & Siemens/metre & parameter 12: inner shield electric conductivity \\ \hline
18      & 5e7           & Siemens/metre & parameter 13: outer shield electric conductivity \\ \hline
19      & 3		& integer       & number of frequency dependent parameters \\ \hline
20      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
21      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
22      & 1 & integer & order of numerator model \\ \hline
23      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
24      & 1 & integer & order of denominator model \\ \hline
25      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
26      & \# Inner shield dielectric & - & Comment line Frequency dependent inner shield dielectric relative permittivity model \\ \hline
27      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
28      & 1 & integer & order of numerator model \\ \hline
29      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
30      & 1 & integer & order of denominator model \\ \hline
31      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
32      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
33      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
34      & 1 & integer & order of numerator model \\ \hline
35      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
36      & 1 & integer & order of denominator model \\ \hline
37     &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
38      & 2		& integer       & number of frequency dependent transfer ipedance models \\ \hline
39      & \# Inner shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
40      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
41      & 1 & integer & order of numerator model \\ \hline
42      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
43      & 0 & integer & order of denominator model \\ \hline
44      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
45      & \# Outer shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
46      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
47      & 1 & integer & order of numerator model \\ \hline
48      &  0.02  1.9E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
49      & 0 & integer & order of denominator model \\ \hline
50      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
spacewire
13		# number of conductors
13               # Number of parameters
0.25e-3         # parameter 1: inner conductor radius
0.40e-3         # parameter 2: inner dielectric radius
1.0e-3          # parameter 3: inner conductor separation
2.0e-3          # parameter 4: inner shield radius
0.1e-3          # parameter 5: inner shield thickness
2.25e-3         # parameter 6: inner shield jacket radius 
3.25e-3         # parameter 7: shielded twisted pair radius 
5.5e-3          # parameter 8: outer shield radius 
0.1e-3          # parameter 9: outer shield thickness
6.25e-3         # parameter 10: outer dielectric radius
5e7             # parameter 11: inner conductor electric conductivity
5e7             # parameter 12: inner shield electric conductivity
5e7             # parameter 13: outer shield electric conductivity
3	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Inner shield dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
2             & integer       & number of frequency dependent transfer ipedance models 
# Inner shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
# Outer shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.002  2.8E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}

\subsection{Overshield format} \label{overshield_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & overshield    & -              & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for an overshield \\ \hline
5       & 3             & integer 	& Number of parameters, always 3 for an overshield \\ \hline
6       & 0.005	        & m             & \# parameter 1: overshield radius \\ \hline
7       & 0.0001	& m             & \# parameter 2: overshield thickness \\ \hline
8       & 5E7	        & Siemens/m             & \# parameter 3: overshield conductivity \\ \hline
9       & 0		& integer       & number of frequency dependent parameters \\ \hline
10       & 1		& integer       & number of frequency dependent transfer impedance models \\ \hline
11       & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
12      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 0 & integer & order of denominator model \\ \hline
16      &  1.0  & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
overshield  # cable type
1	       # number of conductors
3	       # number of parameters
0.005	       # parameter 1: overshield radius
0.0001	       # parameter 2: overshield thickness
5E7	       # parameter 3: overshield conductivity
0              # number of frequency dependent parameters
1              # number of frequency dependent transfer impedance models
# Transfer impedance model 
1.0            #  angular frequency normalisation
1              #  order of numerator model
0.05  1.6E-9   #  list of numerator coefficients a0 a1 a2... 
0              #  order of denominator model 
1.0            #  list of denominator coefficients b0 b1 b2... 
\end{verbatim}



\subsection{Rectangular conductor format} \label{rectangular_conductor_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & rectangular   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for rectangular cables \\ \hline
5       & 1             & integer 	& Number of parameters, always 2 for rectangular cables \\ \hline
6       & 1.5e-3        & metre         & parameter 1: conductor width \\ \hline
7       & 0.25e-3       & metre         & parameter 2: conductor height \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
rectangular
1		# number of conductors
2		# number of parameters
1.1e-4  	# parameter 1: conductor width
1.0e-3  	# parameter 1: conductor height
\end{verbatim}


\subsection{flex cable format} \label{flex_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & flex\_cable    & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors - can be any number of conductors in a flex cable model\\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for flex cables \\ \hline
6       & 1.5e-3        & metre         & parameter 1: conductor width (x) \\ \hline
7       & 0.25e-3       & metre         & parameter 2: conductor height (y)\\ \hline
8       & 0.25e-3       & metre         & parameter 3: conductor separation (x) \\ \hline
9       & 0.25e-3       & metre         & parameter 4: dielectric offset in x \\ \hline
10       & 0.25e-3       & metre         & parameter 5: dielectric offset in y  \\ \hline
11       & 5E7           & Siemens/metre & parameter 6: conductivity \\ \hline
12      & 1		& integer       & number of frequency dependent parameters \\ \hline
13      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15      & 1 & integer & order of numerator model \\ \hline
16      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
17      & 1 & integer & order of denominator model \\ \hline
18      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
flex_cable
3		# number of conductors
6		# number of parameters
1.0e-3  	# parameter 1: conductor width (x dimension)
0.25e-3  	# parameter 2: conductor height (y dimension)
0.5e-3  	# parameter 3: conductor separation (x dimension)
0.2e-3  	# parameter 4: dielectric offset x
0.1e-3  	# parameter 5: dielectric offset y
5E7  	        # parameter 6: conductivity
1		# number of frequency dependent parameters
# dielectric relative permittivity model follows
   1E9        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.2      2.0     
           1   # b order, b coefficients follow below:
  1.0      1.0
\end{verbatim}


\subsection{Dconnector format} \label{Dconnector_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & Dconnector    & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 10             & integer 	& Number of conductors must be at least 5 for a Dconnector model\\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for a D connector \\ \hline
6       & 0.45e-3        & metre         & parameter 1: conductor radius \\ \hline
7       & 0.25e-3       & metre         & parameter 2: conductor pitch (separation in x) \\ \hline
8       & 0.25e-3       & metre         & parameter 3: conductor separation in y \\ \hline
9       & 0.25e-3       & metre         & parameter 4: offset from conductors to shell \\ \hline
10      & 0		& integer       & number of frequency dependent parameters \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
Dconnector
10		# number of conductors
4		# number of parameters
0.5e-3  	# parameter 1: conductor radius
1.5e-3  	# parameter 2: conductor pitch (separation in x)
1.5e-3  	# parameter 3: conductor separation in y
1.0e-3  	# parameter 4: offset from conductors to shell
0		# number of frequency dependent parameters
0		# number of transfer impedance models
use_laplace
plot_mesh
\end{verbatim}


\section{Cable Bundle Specification File Formats} \label{Cable_bundle_spec_file_formats}

This section describes the cable bundle specification file formats used as the input to the cable bundle model building process.
Cable bundle specification files have the extension \textbf{name.bundle\_spec}. The inputs required are the cables which constitute the bundle and their configuration in the bundle cross section, an indication of the presence or absence of a ground plane and if a ground plane is present, its configuration in the bundle cross section.

In addition to the data required to specify a cable bundle, additional flags may be specified to influence the operation of the software. These flags are as follows:

\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\item 'use\_laplace'    use the numerical Laplace solver to calculate inductance and capacitance matrices for the external domain and any overshielded domains. By default, approximate analytic formulae are used. \\
\item 'plot\_mesh'    output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\
\end{enumerate}

If the Laplace solver is used then the mesh generation is be controlled by the paramters

\begin{enumerate}

\item 'Laplace\_boundary\_constant'  This parameter determines the distance to the outer boundary in open boundary domains.
                                   The distance to the outer boundary is calculated by first determining the largest dimension 
                                   of the conductor system (including the ground plane point), bundle\_size. The outer boundary is 
                                   defined as a circle of radius  $bundle_size*Laplace_boundary_constant$. The default value is 3. \\
                                   
\item 'Laplace\_surface\_mesh\_constant'  This parameter determines the number of finite element edges on a conductor surface.
                                       The number of elements on a cylindrical conductor of radius r is
                                       $\frac{r}{Laplace_surface_mesh_constant}$. The default value is 3. \\
                                   
\end{enumerate}

The default parameters are a compromise between accuracy and computation time for the Laplace solution. 
The default values may be overridden by the user by appending the following to the end of the .bundle\_spec file:

\begin{verbatim}
Laplace_boundary_constant
4
Laplace_surface_mesh_constant
5
\end{verbatim}

A ground plane may be included in the bundle as shown in figure \ref{fig_ground_plane_specification}


\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/ground_plane_specification.eps}
\caption{Specification of the ground plane position in the bundle cross section}
\label{fig_ground_plane_specification}
\end{figure}

The .bundle\_spec file format is shown below, along with an example.

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to write the cable bundle model file to \\ \hline
5       & 2             & integer 	& Number of cables in the cable bundle \\ \hline
\\ \hline
For each cable: & & & \\ \hline
-       & cable name           & - 	& Name of cable in the cable model directory \\ \hline
-       & 0.02 0.045           & metres metres & x and y coordinates of the centre of the cable in the bundle cross section \\ \hline
\\ \hline
-       & ground\_plane  & - 	& ground\_plane or no\_ground\_plane as required for the bundlle\\ \hline
-       & $\theta$ d           & degrees metres & If a ground plane is specified then propvide the angle of the ground plane normal measured from the x axis and offset from the origin along the normal direction figure \ref{fig_ground_plane_specification} \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

Bundle model name: two\_wires\_over\_ground 

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
#MOD_bundle_lib_dir
LIBRARY_OF_BUNDLE_MODELS
2    # Number of cables in bundle, cable list follows
single_wire
6.35e-4     -0.001
single_wire
6.35e-4     0.001
ground_plane
0.0  0.0  ! angle and offset of ground plane
use_laplace
plot_mesh
Laplace_boundary_constant
4
Laplace_surface_mesh_constant
5
\end{verbatim}

\section{Spice Cable Bundle Specification File Formats} \label{Spice_cable_bundle_spec_file_formats}

This section describes the spice cable bundle specification file formats used as the input to the spice cable bundle model building process.
Spice cable bundle specification files have the extension \textbf{name.spice\_model\_spec}.

The input file to the spice cable bundle building processs includes the bundle name, bundle length, incident field specification (if required) and the specification of the validation test configuration.

In addition information regarding the transfer impedance models to be included and also
information to control the transfer function fitting process can be specified. 

The validation test configuration is shown in figure \ref{fig_validation_test_case_config}

\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/validation_test_case_configuration_portrait.eps}
\caption{Validation test case configuration}
\label{fig_validation_test_case_config}
\end{figure}

In addition to the data required to specify a cable bundle, additional flags may be specified to influence the operation of the software. These flags are as follows:

\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\item 'use\_xie'   use Xie's model for incident field excitation of shielded cables.\\
\item 'no\_s\_xfer' For first order frequency dependent models (transfer impedance, propagation correction) we may 
                    use a passive circuit implementation for frequency dependent transfer functions instead of s-domain
                    transfer functions. This may be of use in Ngspice models which fail to run.\\
\end{enumerate}

The file format with no transfer impdance models or transfer function fitting information is as follows:

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to read the cable bundle model file from \\ \hline
5       & \#MOD\_spice\_bundle\_lib\_dir & -    & Comment line \\ \hline
6       & .             & -             & Directory to write the spice cable bundle model file to \\ \hline
7       & \# two wires over ground plane, crosstalk model  & -    & Comment line \\ \hline
8       & two\_wires\_over\_ground    & -              & Cable bundle name Note there should be nothing else on this line \\ \hline
9       & \# bundle length  & -    & Comment line \\ \hline
10       & 2.0    & metres              & Cable bundle length \\ \hline
11       & \# incident field specification  & -    & Comment line \\ \hline
12       & 0.0    & V/m          & Amplitude \\ \hline
13       & 90.0  0.0  & degrees          & Wave vector angle k$\theta$ k$\phi$ \\ \hline
14       & 1.0  0.0  & degrees          & Polarisation E$\theta$ E$\phi$ \\ \hline
15       & \# End 1 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
16       & 1.0    & V          & End 1, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 1, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 1, conductor 2 resistance \\ \hline
-       & \# End 2 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
-       & 1.0    & V          & End 2, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 2, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 2, conductor 2 resistance \\ \hline
-       & \# Type of analysis  & -    & Comment line \\ \hline
-       & AC    & -          & AC or TRANS \\ \hline
\\ \hline
For AC analysis: & & & \\ \hline
-       & lin    & -          & logarithmic (log) or linear (lin) frequency scale \\ \hline
-       & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency  number of frequencies \\ \hline
\\ \hline
For TRANSIENT analysis & & & \\ \hline
-       & 0.01E-9 100E-9  & seconds seconds & \# timestep runtime \\ \hline
-       & 1e-9 50e-9	  & seconds seconds & \# pulse risetime pulse width \\ \hline
\\ \hline
-       & \# Output conductor number and end number  & -    & Comment line \\ \hline
-       & 1   1    & integer integer  & Output conductor number and end number \\ \hline
-       & lin    & -          &  For AC only: Output voltage scaling, linear or dB \\ \hline
 \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{AC example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
#MOD_bundle_lib_dir
LIBRARY_OF_BUNDLE_MODELS
#MOD_spice_bundle_lib_dir #LIBRARY_OF_BUNDLE_MODELS/two_wires_over_ground
./
#spice_symbol_dir
SYMBOL_DIR
# Specification for spice model of single wire over ground, no loss
two_wires_over_ground
# cable bundle length (m)
2.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
# End 1 termination model 
1.0      End 1 voltage source list
0.0
100.0    End 1 impedance list
25.0
# End 2 termination model
0.0      End 2 voltage source list
0.0 
75.0  	 End 2 impedance list
50.0
# Type of analysis
AC
log          # frequency scale (log or lin)
1e3 1e8 1000 # fmin fmax number_of_frequencies
# Output conductor number and end number
1    1   
lin   # output type (lin or dB)

\end{verbatim}



\vspace{5mm}
\textbf{\underline{Transient example}}


\begin{verbatim}
#MOD_cable_lib_dir
.
#MOD_bundle_lib_dir
.
MOD_spice_bundle_lib_dir
.
#spice_symbol_dir
SYMBOL_DIR
2   # number of conductors, n. Conductor n is always the reference conductor
2_wire
# cable bundle length (m)
2.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
# End 1 termination model
 1      End 1 voltage source list
50.0  	End 1 impedance list
# End 2 termination model
0        End 2 voltage source list
50.0  	 End 2 impedance list
# Type of analysis
TRANS
0.01E-9 100E-9   # timestep runtime
1e-9 50e-9	# pulse_risetime pulse_width
# Output conductor number and end number
1  1     
\end{verbatim}

In the case of frequency dependent models and transfer impedance coupling models then the above file format can be
adapted to include additional information required to drive these models.

A weak form of the transfer impedance is implemented in this work hence the direction of coupling must be specified. 
In order to include a transfer impedance model the conductor number for the shield whose transfer impdeance is required. In addition to
this the direction of the transfer impedance coupling must be specified. The direction is specified as an integer where +1 indicates 
coupling from inside the shield to outside and -1 indicates coupling from the outside to the inside.

The frequency dependent propagation correction takes the form of a s-domain transfer function in the spice model. These propagation
correction transfer functions are derived using a rational function fitting process. This process provides a best fit model of
specified order over a specified frequency range. As a default the model order is 0 i.e. no frequency dependent propagation correction.
The model order can be specified in two ways:

\begin{enumerate}
\item The order is specified as a positive integer and this is the order used
\item A negative integer is specified. In this case the order is chosen using an automatic algorithm which
attempts to choose the best order from 0 up to |specified order|
\end{enumerate}

The frequency range for the model fit may also be specified as can the use of a log or linear frequency scale. If
the frequency range is not specified then it is derived from the definition of the validation test case. 

The format is descibed below followed by an example.

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to read the cable bundle model file from \\ \hline
5       & \#MOD\_spice\_bundle\_lib\_dir & -    & Comment line \\ \hline
6       & .             & -             & Directory to write the spice cable bundle model file to \\ \hline
7       & \# two wires over ground plane, crosstalk model  & -    & Comment line \\ \hline
8       & two\_wires\_over\_ground    & -              & Cable bundle name Note there should be nothing else on this line \\ \hline
9       & \# bundle length  & -    & Comment line \\ \hline
10      & 2.0    & metres              & Cable bundle length \\ \hline
11      & \# incident field specification  & -    & Comment line \\ \hline
12      & 0.0    & V/m          & Amplitude \\ \hline
13      & 90.0  0.0  & degrees          & Wave vector angle k$\theta$ k$\phi$ \\ \hline
14      & 1.0  0.0  & relative amplitudes & Polarisation E$\theta$ E$\phi$ \\ \hline
15      & \#Transfer impedance terms  & - & this line must inlcude the words 'transfer impedance' 
                                           to indicate that transfer impedance information follows \\ \hline
16      & 1 & integer  &    \# number of transfer impedances to include in the model \\ \hline
-       & 3 +1 & integer integer & \# shield conductor number and coupling direction for transfer impedance model 1 + is inside to out \\ \hline
-       & \# End 1 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
-       & 1.0    & V          & End 1, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 1, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 1, conductor 2 resistance \\ \hline
-       & \# End 2 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
-       & 1.0    & V          & End 2, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 2, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 2, conductor 2 resistance \\ \hline
-       & \# Type of analysis  & -    & Comment line \\ \hline
-       & AC    & -          & AC or TRANS \\ \hline
\\ \hline
For AC analysis: & & & \\ \hline
-       & lin    & -          & logarithmic (log) or linear (lin) frequency scale \\ \hline
-       & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency  number of frequencies \\ \hline
\\ \hline
For TRANSIENT analysis & & & \\ \hline
-       & 0.01E-9 100E-9  & seconds seconds & \# timestep runtime \\ \hline
-       & 1e-9 50e-9	  & seconds seconds & \# pulse risetime pulse width \\ \hline
\\ \hline
-       & \# Output conductor number and end number  & -    & Comment line \\ \hline
-       & 1   1    & integer integer  & Output conductor number and end number \\ \hline
-       & lin    & -          &  For AC only: Output voltage scaling, linear or dB \\ \hline
-       & -10    & integer  &  \# order for transfer function fit model \\ \hline
-       & log   & -          & logarithmic (log) or linear (lin) frequency scale for transfer function fitting \\ \hline
-       & real real integer & 1e5 1e9 200 & \# fmin fmax number\_of\_frequencies for transfer function fitting \\ \hline
 \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{AC example for a frequency dependent coaxial cable with a transfer impedance model plus a single wire}}


\begin{verbatim}
#MOD_cable_lib_dir
./
#MOD_bundle_lib_dir
./
#MOD_spice_bundle_lib_dir
./
#spice_symbol_dir
./
# Specification for spice model of two wire transmission line, no loss
zt_test
# cable bundle length (m)
1.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
#Transfer impedance terms
1    # number of transfer impedances to include in the model
3 +1 # conductor number and coupling direction for transfer impedance model 1 + is inside to out
# End 1 termination model
 0.02      End 1 voltage source list
 0.5
300.0  	End 1 impedance list
20.0
# End 2 termination model
0.03        End 2 voltage source list
1.0
1000.0 	 End 2 impedance list
150.0
# Type of analysis
AC
log          # frequency scale (log or lin)
1e5 1e9 1000 # fmin fmax number_of_frequencies
# Output conductor number and end number
1    2
lin   # output type (lin or dB)
-10     # order for transfer function fit model 
log          # frequency scale for transfer function fit (log or lin)
1e5 1e9 200 # fmin fmax number_of_frequencies for transfer function fit
\end{verbatim}


In addition to the data required to specify a spice cable bundle model, additional flags may be specified to influence the operation of the software. These flags are as follows:
\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\end{enumerate}



\cleardoublepage