coax.F90
9.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! SUBROUTINE coax_set_parameters
! SUBROUTINE coax_set_internal_domain_information
! SUBROUTINE coax_plot
!
! NAME
! coax_set_parameters
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Set the overall parameters for a coax cable
!
! COMMENTS
! Set the dimension of the domain transformation matrices to include an external reference conductor for the cable
!
! HISTORY
!
! started 10/5/2016 CJS
! 16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!
!
SUBROUTINE coax_set_parameters(cable)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(INOUT) :: cable
! local variables
! START
cable%cable_type=cable_geometry_type_coax
cable%tot_n_conductors=2
cable%tot_n_domains=2
cable%n_external_conductors=1
cable%n_internal_conductors=1
cable%n_internal_domains=1
cable%n_parameters=6
cable%n_dielectric_filters=2
cable%n_transfer_impedance_models=1
END SUBROUTINE coax_set_parameters
!
! NAME
! coax_set_internal_domain_information
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Set the overall parameters for a coax cable
!
! COMMENTS
!
!
! HISTORY
!
! started 10/5/2016 CJS
! 8/5/2017 CJS: Include references to Theory_Manual
!
!
SUBROUTINE coax_set_internal_domain_information(cable)
USE type_specifications
USE constants
USE filter_module
USE general_module
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(INOUT) :: cable
! local variables
integer :: dim
integer :: domain
type(Sfilter) :: jw
type(Sfilter) :: temp_filter
real(dp) :: epsr
! variables for cable parameter checks
logical :: cable_spec_error
real(dp) :: rw
real(dp) :: rs
real(dp) :: rd
real(dp) :: t
real(dp) :: sigma_s
real(dp) :: sigma_w
type(Sfilter) :: epsr1,epsr2,ZT
character(LEN=error_message_length) :: message
! START
if (verbose) write(*,*)'CALLED: coax_set_internal_domain_information'
! Check the cable parameters
rw=cable%parameters(1)
rs=cable%parameters(2)
rd=cable%parameters(3)
sigma_w=cable%parameters(4)
t=cable%parameters(5)
sigma_s=cable%parameters(6)
epsr1=cable%dielectric_filter(1)
epsr2=cable%dielectric_filter(2)
ZT=cable%transfer_impedance(1)
cable_spec_error=.FALSE. ! assume no errors initially
message=''
CALL coax_with_dielectric_check(rw,rs,rd,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_w,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_s,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr1,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr2,cable_spec_error,cable%cable_name,message)
CALL transfer_impedance_check(Zt,cable_spec_error,cable%cable_name,message)
CALL surface_impedance_check(ZT,sigma_s,rs,t,cable_spec_error,cable%cable_name,message)
if (cable_spec_error) then
run_status='ERROR in cable_model_builder, error on parameters for cable:'//trim(cable%cable_name)//'. '//trim(message)
CALL write_program_status()
STOP 1
end if
! Set the parameters for the single internal domain
domain=1
cable%n_internal_conductors_in_domain(domain)=2
! The number of modes in the internal domain is 1
dim=1
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
! evaluate the high frequency limit of the inner dielectric filter function
epsr=evaluate_Sfilter_high_frequency_limit(epsr1)
if (verbose) write(*,*)'High frequency relative permittivity=',epsr
cable%L_domain(domain)%mat(1,1)=(mu0/(2d0*pi))*log(rs/rw) ! Theory_Manual_Eqn 6.3
cable%C_domain(domain)%mat(1,1)=2d0*pi*eps0*epsr/log(rs/rw) ! Theory_Manual_Eqn 6.4
jw=jwA_filter(1d0)
cable%Z_domain(domain)%sfilter_mat(1,1)=( (mu0/(2d0*pi))*log(rs/rw) )*jw
temp_filter=jw*epsr1
cable%Y_domain(domain)%sfilter_mat(1,1)=( 2d0*pi*eps0/log(rs/rw) )*temp_filter
! Deallocate all filters
CALL deallocate_Sfilter(temp_filter)
CALL deallocate_Sfilter(jw)
! Set the domain decomposition matrices ! Theory_Manual_Eqn 6.5, 6.6
! The dimension of the domain transformation matrices is 3
dim=3
cable%MI%dim=dim
ALLOCATE(cable%MI%mat(dim,dim))
cable%MV%dim=dim
ALLOCATE(cable%MV%mat(dim,dim))
cable%MI%mat(1,1)=1d0
cable%MI%mat(1,2)=0d0
cable%MI%mat(1,3)=0d0
cable%MI%mat(2,1)=1d0
cable%MI%mat(2,2)=1d0
cable%MI%mat(2,3)=0d0
cable%MI%mat(3,1)=1d0
cable%MI%mat(3,2)=1d0
cable%MI%mat(3,3)=1d0
cable%MV%mat(1,1)=1d0
cable%MV%mat(1,2)=-1d0
cable%MV%mat(1,3)=0d0
cable%MV%mat(2,1)=0d0
cable%MV%mat(2,2)=1d0
cable%MV%mat(2,3)=-1d0
cable%MV%mat(3,1)=0d0
cable%MV%mat(3,2)=0d0
cable%MV%mat(3,3)=1d0
! Set the local reference conductor numbering
ALLOCATE( cable%local_reference_conductor(2) )
cable%local_reference_conductor(1)=2 ! inner wire, reference is the shield conductor
cable%local_reference_conductor(2)=0 ! external domain conductor, reference not known
! Set the local domain information: include a reference conductor in the count
ALLOCATE( cable%local_domain_n_conductors(1:cable%tot_n_domains) )
cable%local_domain_n_conductors(1)=2 ! inner domain
cable%local_domain_n_conductors(2)=2 ! external domain
! Set the external domain conductor and dielectric information
ALLOCATE( cable%external_model(cable%n_external_conductors) )
CALL reset_external_conductor_model(cable%external_model(1))
cable%external_model(1)%conductor_type=circle
cable%external_model(1)%conductor_is_shield=.TRUE.
cable%external_model(1)%conductor_radius=rs
cable%external_model(1)%conductor_sigma=sigma_s
cable%external_model(1)%dielectric_radius=rd
cable%external_model(1)%dielectric_epsr=epsr2
! set the conductor impedance model for the inner conductor
cable%conductor_impedance(1)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity
cable%conductor_impedance(1)%radius=rw
cable%conductor_impedance(1)%conductivity=sigma_w
! set the impedance model for the shield conductor
! now done in the surface impedance model checks
! if ((t.EQ.0d0).AND.(sigma.NE.0d0)) then
!! we need to calculate the thickness to be consistent with the transfer impedance at d.c. i.e. R_dc = ZT_dc
! Rdc=cable%transfer_impedance(1)%a%coeff(0)/cable%transfer_impedance(1)%b%coeff(0)
! t=1d0/(2d0*pi*rs*sigma*Rdc)
! end if
cable%conductor_impedance(2)%impedance_model_type=impedance_model_type_cylindrical_shield
cable%conductor_impedance(2)%radius=rs
cable%conductor_impedance(2)%thickness=t
cable%conductor_impedance(2)%conductivity=sigma_s
cable%conductor_impedance(2)%ZT_filter=ZT
CALL deallocate_Sfilter(epsr1)
CALL deallocate_Sfilter(epsr2)
CALL deallocate_Sfilter(ZT)
ALLOCATE( cable%conductor_label(1:cable%tot_n_conductors) )
cable%conductor_label(1)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 1 : Inner wire'
cable%conductor_label(2)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 2 : Shield'
END SUBROUTINE coax_set_internal_domain_information
!
! NAME
! coax_plot
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! plot coaxial cable
!
! COMMENTS
!
!
! HISTORY
!
! started 10/5/2016 CJS
!
!
SUBROUTINE coax_plot(cable,x_offset,y_offset,theta,xmin,xmax,ymin,ymax)
USE type_specifications
USE general_module
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(IN) :: cable
real(dp),intent(IN) :: x_offset,y_offset,theta
real(dp),intent(INOUT) :: xmin,xmax,ymin,ymax
! local variables
real(dp) :: x,y,r
! START
! plot inner conductor
r=cable%parameters(1) ! wire radius
x=x_offset
y=y_offset
CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot shield conductor
r=cable%parameters(2) ! shield radius
x=x_offset
y=y_offset
CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot circular dielectric
r=cable%parameters(3) ! dielectric radius
x=x_offset
y=y_offset
CALL write_circle(x,y,r,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
RETURN
END SUBROUTINE coax_plot