PUL_RL_FastHenry2.F90 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2018 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! 
!     SUBROUTINE PUL_RL_FastHenry2
!
! NAME
!     SUBROUTINE PUL_RL_FastHenry2
!
! DESCRIPTION
!     Wrapping subroutine to control the calculation of frequency dependent impedance
!     using FastHenry2
!
!     The process is divided into the following stages:
! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)
! STAGE 2: Create the input file for FastHenry2
! STAGE 4: Call FastHenry2
! STAGE 5: Read the frequency dependent impedance matrices and fit rational functions to these
!     
! COMMENTS
!   
!
! HISTORY
!    started 23/10/2023
!
SUBROUTINE PUL_RL_FastHenry2(PUL,name,fit_order,freq_spec,domain)
!
USE type_specifications
USE constants
USE general_module
USE maths
USE filter_module
USE filter_module
USE Sfilter_fit_module
USE frequency_spec
!
IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type), intent(INOUT)            :: PUL        ! per-unit-length parameter calculation structure
  character(LEN=line_length),intent(IN)    :: name       ! string used as the base for filenames 
  integer, intent(IN)                      :: fit_order  ! filter fit_order for frequency dependent dielectrics
  type(frequency_specification),intent(IN) :: freq_spec  ! filter frequency range specification for frequency dependent dielectrics
  integer, intent(IN)                      :: domain     ! domain number used to label the mesh files
   
! parameters 
  integer,parameter :: inside =1 
  integer,parameter :: outside=2
 
! local variables
  
  integer :: first_conductor,last_conductor,conductor
  
  character(LEN=filename_length) :: command                  ! string used for running external commands 
  integer :: exit_stat
  
! Process_Zc variables:

  integer  :: matrix_dimension
    
  complex(dp),allocatable :: function_to_fit(:)    ! complex function to be fitted using Sfilter_fit
  
  real(dp) :: ferr
  
  real(dp) :: gp_half_width

character(LEN=256) :: line
character(LEN=256) :: freq_and_dim_string

integer :: local_line_length

integer :: i

integer :: n_freq_in

real(dp) :: freq,w
integer :: nrows,ncols,r,c,row,col

complex(dp),allocatable :: Zc_in(:,:,:)
real(dp),allocatable    :: freq_in(:)

real(dp),allocatable    :: Rdc_domain(:,:)

real(dp),allocatable    :: values(:),re,im

logical :: subtract_dc_resistance

integer :: loop,floop

integer :: ierr

  
! START
  if (verbose) write(*,*)'CALLED: PUL_RL_FastHenry2'

! work out the local frequency sampling: FastHenry uses a specific form based on log frequency
! and number of samples per decade
  
  write(*,*)'Filter fit order=',fit_order
  write(*,*)'fmin=',freq_spec%fmin
  write(*,*)'fmax=',freq_spec%fmax
  write(*,*)'n_frequencies=',freq_spec%n_frequencies  
  write(*,*)'ndec=',freq_spec%ndec 
  
  if (freq_spec%freq_range_type.EQ.'lin') then
    write(run_status,*)'ERROR in PUL_RL_FastHenry2: We must have a logarithmic frequency range specified'
    CALL write_program_status()
    STOP 1

  end if

! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)
  
! write the file which is used to generate to FastHenry2 input file
  OPEN(unit=fh2_input_file_unit,file='fh2.txt')
  
  write(fh2_input_file_unit,'(A)')'fh2.inp'
  
  if ((.NOT.PUL%overshield_present).AND.(PUL%ground_plane_present)) then 

! SOLUTION TYPE 2:  NO OVERSHIELD, WITH GROUND PLANE

    first_conductor=1
    last_conductor=PUL%n_conductors-1
    
    write(fh2_input_file_unit,'(A)')'ground_plane'

! ********* STILL SOME HARD WIRED GROUND PLANE SPEC: TO BE SORTED OUT ************  

! ALSO NEED TO CHECK THAT EVERYTHING WE NEED IS SET...

    write(*,*)'Ground plane parameters:'
    write(*,*)'PUL%ground_plane_w=',PUL%ground_plane_w
    write(*,*)'PUL%ground_plane_h=',PUL%ground_plane_h
    write(*,*)'PUL%ground_plane_sigma=',PUL%ground_plane_sigma
    write(*,*)'PUL%ground_plane_nsegx=',PUL%ground_plane_nsegx
    write(*,*)'PUL%ground_plane_nsegz=',PUL%ground_plane_nsegz
    write(*,*)'PUL%ground_plane_nh=',PUL%ground_plane_nh

    if ( (PUL%ground_plane_w.EQ.0d0).OR.(PUL%ground_plane_h.EQ.0d0).OR.(PUL%ground_plane_sigma.EQ.0d0) &
     .OR.(PUL%ground_plane_nsegx.EQ.0).OR.(PUL%ground_plane_nsegz.EQ.0).OR.(PUL%ground_plane_nh.EQ.0) )then
      write(run_status,*)'ERROR in PUL_RL_FastHenry2: ground plane parameters not defined'
      CALL write_program_status()
      STOP 1
    end if

    gp_half_width=PUL%ground_plane_w/2.0
    
    write(fh2_input_file_unit,'(ES12.4,A)')-gp_half_width,' 0.0e-3  0.0e-3	! x y z of ground plane point 1'
    write(fh2_input_file_unit,'(ES12.4,A)') gp_half_width,' 0.0e-3  0.0e-3	! x y z of ground plane point 2'
    write(fh2_input_file_unit,'(ES12.4,A)') gp_half_width,' 0.0e-3 1000.0e-3	! x y z of ground plane point 3'
    write(fh2_input_file_unit,'(ES12.4,A)')PUL%ground_plane_h,'	 ! thickness				      '
    write(fh2_input_file_unit,'(2I6,A)')PUL%ground_plane_nsegx,PUL%ground_plane_nsegz,  &
                                        '  ! discretisation in p1-p2 and p2=p3 directions'
    write(fh2_input_file_unit,'(ES12.4,A)')PUL%ground_plane_sigma,' ! conductivity, sigma			      '
    write(fh2_input_file_unit,'(I4,A)')PUL%ground_plane_nh,'	! gp discretisation in thickness,  nhinc      '
    write(fh2_input_file_unit,'(A)')'2.0			! gp discretisation in thickness ratio, rh    '
    write(fh2_input_file_unit,'(A)')'0e-3 0.0e-3 0.0e-3 	! x y z of ground plane node at end 1	      '
    write(fh2_input_file_unit,'(A)')'0e-3 0.0e-3 1000.0e-3	! x y z of ground plane node at end 2	      '
! ********* STILL SOME HARD WIRED GROUND PLANE SPEC: TO BE SORTED OUT ************    
  
  else if ((.NOT.PUL%overshield_present).AND.(.NOT.PUL%ground_plane_present)) then 

    first_conductor=1
    last_conductor=PUL%n_conductors
  
  else
  
    write(run_status,*)'ERROR in PUL_RL_FastHenry2 cannot handle this configuration'
    CALL write_program_status()
    STOP 1
    
  end if
  
     
  write(fh2_input_file_unit,'(I2,A)')last_conductor-first_conductor+1,'       ! number of conductors'
  
  do conductor=first_conductor,last_conductor
  
    write(fh2_input_file_unit,'(I2,A)')conductor,'	 ! conductor number'
    
    if (PUL%shape(conductor).EQ.circle) then
    
      write(fh2_input_file_unit,'(A)')'cylindrical	! conductor 1 shape (cylinder, rectangle, annulus)'
      write(fh2_input_file_unit,'(2ES12.4,A)')PUL%x(conductor),PUL%y(conductor),' ! centre xc yc'
      write(fh2_input_file_unit,'(ES12.4,A)')PUL%r(conductor),' ! radius rc'
      write(fh2_input_file_unit,'(ES12.4,A)')PUL%r(conductor)/FH2_nlayers_radius,' ! cylindrical conductor discretisation size, dl'
      write(fh2_input_file_unit,'(ES12.4,A)')PUL%sigma(conductor),'  ! conductivity, sigma '
      write(fh2_input_file_unit,'(2I4,A)')FH2_nw,FH2_nh,' ! segment discretisation in x and y, nwinc nhinc '
      write(fh2_input_file_unit,'(2ES12.4,A)')FH2_rw,FH2_rh,'  ! segment discretisation ratio in x and y, rw rh '

    else if (PUL%shape(conductor).EQ.rectangle) then
    
      write(fh2_input_file_unit,'(A)')'rectangle	! conductor 1 shape (cylinder, rectangle, annulus)'
  
    else
      
      write(run_status,*)'ERROR in PUL_RL_FastHenry2 cannot handle shape:',PUL%shape(conductor)
      CALL write_program_status()
      STOP 1
  
    end if
    
  end do ! next conductor
  
  write(fh2_input_file_unit,'(ES12.4,A)')freq_spec%fmin,'   ! Minimum frequency, fmin'
  write(fh2_input_file_unit,'(ES12.4,A)')freq_spec%fmax,'   ! Maximum frequency, fmax'
  write(fh2_input_file_unit,'(ES12.4,A)')freq_spec%ndec,'   ! Number of points per decade, ndec'

  CLOSE(unit=fh2_input_file_unit)
  
  write(*,*)'CALLING FastHenry2'
  command='write_FH_input_file < fh2.txt'
  CALL execute_command_line(command,EXITSTAT=exit_stat)
    
! Check that the FastHenry2 input file generated correctly
  if (exit_stat.NE.0) then  
!  write_FH_input_file returned with a non zdero exit code indicating an error
    write(run_status,*)'ERROR in PUL_RL_FastHenry2 running write_FH_input_file: exit_stat=',exit_stat
    CALL write_program_status()
    STOP 1
  end if
  
  write(*,*)'CALLING FastHenry2'
  command='fasthenry fh2.inp'
  CALL execute_command_line(command,EXITSTAT=exit_stat)
    
! Check that the fasthenry ran correctly
  if (exit_stat.NE.0) then  
!  fasthenry returned with a non zdero exit code indicating an error
    write(run_status,*)'ERROR in PUL_RL_FastHenry2 running fasthenry: exit_stat=',exit_stat
    CALL write_program_status()
    STOP 1
  end if
  
  if (verbose) then
    write(*,*)
    write(*,*)' Processing frequency dependent impedance file from FastHenry2'
    write(*,*)
  end if
  
  OPEN(unit=fh2_output_file_unit,file='Zc.mat')  
  
  do loop=1,2

    n_freq_in=0

10  CONTINUE
    read(fh2_output_file_unit,'(A)',END=1000,ERR=1000)line
    if (line(1:32).NE.'Impedance matrix for frequency =') GOTO 10

!     if we get here then we have some impedance matrix data to read
!      write(*,*)'Found impedance matrix:',trim(line)

! increase the number of frequencies for which we have an impedance matrix    
      n_freq_in=n_freq_in+1

      local_line_length=len(trim(line))
      freq_and_dim_string=line(33:local_line_length)
  
!      write(*,*)'reading matrix for:',trim(freq_and_dim_string)

! replace the 'x' by a space then read the frequency, nrows and ncols
      local_line_length=len(trim(freq_and_dim_string)) 
      do i=1,local_line_length
        if (freq_and_dim_string(i:i).EQ.'x') freq_and_dim_string(i:i)=' '
      end do
  
!      write(*,*)'data string:',trim(freq_and_dim_string)
  
      read(freq_and_dim_string,*)freq,nrows,ncols
      if (nrows.NE.ncols) then
        write(*,*)'****** ERROR: nrows.NE.ncols ******'
      end if
!      write(*,*)'frequency=',freq,' n=',nrows
    
      if (loop.EQ.2) then
        freq_in(n_freq_in)=freq
      end if
        
      do r=1,nrows
  
        read(fh2_output_file_unit,'(A)',END=1000,ERR=1000)line

        if (loop.EQ.2) then
      
!   replace the 'j's by a space then read the complex data
        local_line_length=len(trim(line)) 
          
        do i=1,local_line_length
          if (line(i:i).EQ.'j') line(i:i)=' '
        end do
  
        read(line,*)(values(i),i=1,2*ncols)
    
        do c=1,ncols
    
          re=values(c*2-1)
          im=values(c*2)
                
          Zc_in(n_freq_in,r,c)=cmplx(re,im)
	
        end do ! next column
	 
      end if
  
    end do ! next row
     
    GOTO 10 ! continue to read the file

! Jump here when the file has been read

1000 CONTINUE
 
    if (loop.Eq.1) then
      if (verbose) write(*,*)'Number of frequencies=',n_freq_in
      ALLOCATE( freq_in(n_freq_in) )
      ALLOCATE( Zc_in(n_freq_in,nrows,ncols) )
      ALLOCATE( Rdc_domain(nrows,ncols) )
      ALLOCATE( values(2*ncols) )
      rewind(unit=fh2_output_file_unit)
    end if
  
  end do ! next file read loop
  
  CLOSE(unit=fh2_output_file_unit)
  
  matrix_dimension=PUL%n_conductors-1
  
  if (matrix_dimension.NE.nrows) then
    write(run_status,*)'ERROR in PUL_RL_FastHenry2 matrix dimension',matrix_dimension,nrows
    CALL write_program_status()
    STOP 1
  end if

! For the modal decomposition, use the inductance from the highest frequency calculated 
  do r=1,nrows
    do c=1,ncols
    
      freq=freq_in(n_freq_in)
      w=2.0*pi*freq
      
      PUL%L%mat(r,c)=real(Zc_in(n_freq_in,r,c)/(j*w))      
      
    end do
  end do

! Save the resistance matrix from the lowest frequency calculated 
  do r=1,nrows
    do c=1,ncols
    
      Rdc_domain(r,c)=real(Zc_in(1,r,c))      
      
    end do
  end do
  
! We calculate the inductance and resistance matrix at a number of frequencies before fitting filter functions
! to each of the frequency dependent impedance matrix entries.
  
  write(*,*)'**************************'
  write(*,*)'Process FastHenry2 results'
  write(*,*)'**************************'
  write(*,*)'Number of frequencies (freq_spec) =',freq_spec%n_frequencies
  write(*,*)'Number of frequencies (FastHenry2)=',n_freq_in

! Frequency check  
  if (n_freq_in.NE.freq_spec%n_frequencies) then
    write(run_status,*)'ERROR in PUL_RL_FastHenry2 n_frequencies specification',n_freq_in,freq_spec%n_frequencies
    CALL write_program_status()
    STOP 1
  end if
  
  do floop=1,n_freq_in
    ferr=abs(freq_spec%freq_list(floop)-freq_in(floop))/(freq_spec%freq_list(floop)+freq_in(floop))
    if (ferr.GT.0.001) then
      write(run_status,*)'ERROR in PUL_RL_FastHenry2 frequency samples, floop=',floop, &
                         ' freq_spec=',freq_spec%freq_list(floop),' freq_FH2=',freq_in(floop)
      CALL write_program_status()
      STOP 1   
    end if
  end do
 
! loop over frequency    
  if (verbose) then
    do floop=1,n_freq_in
      write(*,*)freq_spec%freq_list(floop),freq_in(floop)
    end do
  end if
  
! we have frequency domain impedance matrix, Zc

! loop over the elements of Zc and the Zfilter matrix by filter fitting 
  ALLOCATE( function_to_fit(1:freq_spec%n_frequencies) )
    
  do row=1,matrix_dimension
    do col=row,matrix_dimension

! get the function values for this matrix element function_to_fit=R-Rdc+jwL
      do floop=1,freq_spec%n_frequencies
        function_to_fit(floop)=Zc_in(floop,row,col)-Rdc_domain(row,col)
      end do
        
! calculate the Zfilter matrix using the filter fitting process
! note aorder=border and no restrictions are put on the function

      CALL Calculate_Sfilter(function_to_fit,freq_spec%freq_list,freq_spec%n_frequencies,  &
                             PUL%Zfilter%sfilter_mat(row,col),fit_order+1,-1,2)    ! note type 2 filter fit=> a0=0.0

      if (col.NE.row) then       
! make the matrix symmetrical
        PUL%Zfilter%sfilter_mat(col,row)=PUL%Zfilter%sfilter_mat(row,col)
      end if
        
    end do ! next col
      
  end do ! next row
    
  DEALLOCATE( function_to_fit )  
 
  DEALLOCATE( freq_in )
  DEALLOCATE( Zc_in )
  DEALLOCATE( Rdc_domain )
  DEALLOCATE( values )
    
  if (verbose) then
    write(*,*)'FINISHED: PUL_RL_FastHenry2'
    write(*,*)'Inductance matrix, L'
    CALL dwrite_matrix(PUL%L%mat,nrows,ncols,nrows,0)
  end if
  
  if (verbose) write(*,*)'FINISHED PUL_RL_FastHenry2'

!  STOP 1
  
END SUBROUTINE PUL_RL_FastHenry2