PUL_RL_FastHenry2.F90
15.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
!
! SUBROUTINE PUL_RL_FastHenry2
!
! NAME
! SUBROUTINE PUL_RL_FastHenry2
!
! DESCRIPTION
! Wrapping subroutine to control the calculation of frequency dependent impedance
! using FastHenry2
!
! The process is divided into the following stages:
! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)
! STAGE 2: Create the input file for FastHenry2
! STAGE 4: Call FastHenry2
! STAGE 5: Read the frequency dependent impedance matrices and fit rational functions to these
!
! COMMENTS
!
!
! HISTORY
! started 23/10/2023
!
SUBROUTINE PUL_RL_FastHenry2(PUL,name,fit_order,freq_spec,domain)
!
USE type_specifications
USE constants
USE general_module
USE maths
USE filter_module
USE filter_module
USE Sfilter_fit_module
USE frequency_spec
!
IMPLICIT NONE
! variables passed to subroutine
type(PUL_type), intent(INOUT) :: PUL ! per-unit-length parameter calculation structure
character(LEN=line_length),intent(IN) :: name ! string used as the base for filenames
integer, intent(IN) :: fit_order ! filter fit_order for frequency dependent dielectrics
type(frequency_specification),intent(IN) :: freq_spec ! filter frequency range specification for frequency dependent dielectrics
integer, intent(IN) :: domain ! domain number used to label the mesh files
! parameters
integer,parameter :: inside =1
integer,parameter :: outside=2
! local variables
integer :: first_conductor,last_conductor,conductor
character(LEN=filename_length) :: command ! string used for running external commands
integer :: exit_stat
! Process_Zc variables:
integer :: matrix_dimension
complex(dp),allocatable :: function_to_fit(:) ! complex function to be fitted using Sfilter_fit
real(dp) :: ferr
real(dp) :: gp_half_width
character(LEN=256) :: line
character(LEN=256) :: freq_and_dim_string
integer :: local_line_length
integer :: i
integer :: n_freq_in
real(dp) :: freq,w
integer :: nrows,ncols,r,c,row,col
complex(dp),allocatable :: Zc_in(:,:,:)
real(dp),allocatable :: freq_in(:)
real(dp),allocatable :: Rdc_domain(:,:)
real(dp),allocatable :: values(:),re,im
logical :: subtract_dc_resistance
integer :: loop,floop
integer :: ierr
! START
if (verbose) write(*,*)'CALLED: PUL_RL_FastHenry2'
! work out the local frequency sampling: FastHenry uses a specific form based on log frequency
! and number of samples per decade
write(*,*)'Filter fit order=',fit_order
write(*,*)'fmin=',freq_spec%fmin
write(*,*)'fmax=',freq_spec%fmax
write(*,*)'n_frequencies=',freq_spec%n_frequencies
write(*,*)'ndec=',freq_spec%ndec
if (freq_spec%freq_range_type.EQ.'lin') then
write(run_status,*)'ERROR in PUL_RL_FastHenry2: We must have a logarithmic frequency range specified'
CALL write_program_status()
STOP 1
end if
! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)
! write the file which is used to generate to FastHenry2 input file
OPEN(unit=fh2_input_file_unit,file='fh2.txt')
write(fh2_input_file_unit,'(A)')'fh2.inp'
if ((.NOT.PUL%overshield_present).AND.(PUL%ground_plane_present)) then
! SOLUTION TYPE 2: NO OVERSHIELD, WITH GROUND PLANE
first_conductor=1
last_conductor=PUL%n_conductors-1
write(fh2_input_file_unit,'(A)')'ground_plane'
! ********* STILL SOME HARD WIRED GROUND PLANE SPEC: TO BE SORTED OUT ************
! ALSO NEED TO CHECK THAT EVERYTHING WE NEED IS SET...
write(*,*)'Ground plane parameters:'
write(*,*)'PUL%ground_plane_w=',PUL%ground_plane_w
write(*,*)'PUL%ground_plane_h=',PUL%ground_plane_h
write(*,*)'PUL%ground_plane_sigma=',PUL%ground_plane_sigma
write(*,*)'PUL%ground_plane_nsegx=',PUL%ground_plane_nsegx
write(*,*)'PUL%ground_plane_nsegz=',PUL%ground_plane_nsegz
write(*,*)'PUL%ground_plane_nh=',PUL%ground_plane_nh
if ( (PUL%ground_plane_w.EQ.0d0).OR.(PUL%ground_plane_h.EQ.0d0).OR.(PUL%ground_plane_sigma.EQ.0d0) &
.OR.(PUL%ground_plane_nsegx.EQ.0).OR.(PUL%ground_plane_nsegz.EQ.0).OR.(PUL%ground_plane_nh.EQ.0) )then
write(run_status,*)'ERROR in PUL_RL_FastHenry2: ground plane parameters not defined'
CALL write_program_status()
STOP 1
end if
gp_half_width=PUL%ground_plane_w/2.0
write(fh2_input_file_unit,'(ES12.4,A)')-gp_half_width,' 0.0e-3 0.0e-3 ! x y z of ground plane point 1'
write(fh2_input_file_unit,'(ES12.4,A)') gp_half_width,' 0.0e-3 0.0e-3 ! x y z of ground plane point 2'
write(fh2_input_file_unit,'(ES12.4,A)') gp_half_width,' 0.0e-3 1000.0e-3 ! x y z of ground plane point 3'
write(fh2_input_file_unit,'(ES12.4,A)')PUL%ground_plane_h,' ! thickness '
write(fh2_input_file_unit,'(2I6,A)')PUL%ground_plane_nsegx,PUL%ground_plane_nsegz, &
' ! discretisation in p1-p2 and p2=p3 directions'
write(fh2_input_file_unit,'(ES12.4,A)')PUL%ground_plane_sigma,' ! conductivity, sigma '
write(fh2_input_file_unit,'(I4,A)')PUL%ground_plane_nh,' ! gp discretisation in thickness, nhinc '
write(fh2_input_file_unit,'(A)')'2.0 ! gp discretisation in thickness ratio, rh '
write(fh2_input_file_unit,'(A)')'0e-3 0.0e-3 0.0e-3 ! x y z of ground plane node at end 1 '
write(fh2_input_file_unit,'(A)')'0e-3 0.0e-3 1000.0e-3 ! x y z of ground plane node at end 2 '
! ********* STILL SOME HARD WIRED GROUND PLANE SPEC: TO BE SORTED OUT ************
else if ((.NOT.PUL%overshield_present).AND.(.NOT.PUL%ground_plane_present)) then
first_conductor=1
last_conductor=PUL%n_conductors
else
write(run_status,*)'ERROR in PUL_RL_FastHenry2 cannot handle this configuration'
CALL write_program_status()
STOP 1
end if
write(fh2_input_file_unit,'(I2,A)')last_conductor-first_conductor+1,' ! number of conductors'
do conductor=first_conductor,last_conductor
write(fh2_input_file_unit,'(I2,A)')conductor,' ! conductor number'
if (PUL%shape(conductor).EQ.circle) then
write(fh2_input_file_unit,'(A)')'cylindrical ! conductor 1 shape (cylinder, rectangle, annulus)'
write(fh2_input_file_unit,'(2ES12.4,A)')PUL%x(conductor),PUL%y(conductor),' ! centre xc yc'
write(fh2_input_file_unit,'(ES12.4,A)')PUL%r(conductor),' ! radius rc'
write(fh2_input_file_unit,'(ES12.4,A)')PUL%r(conductor)/FH2_nlayers_radius,' ! cylindrical conductor discretisation size, dl'
write(fh2_input_file_unit,'(ES12.4,A)')PUL%sigma(conductor),' ! conductivity, sigma '
write(fh2_input_file_unit,'(2I4,A)')FH2_nw,FH2_nh,' ! segment discretisation in x and y, nwinc nhinc '
write(fh2_input_file_unit,'(2ES12.4,A)')FH2_rw,FH2_rh,' ! segment discretisation ratio in x and y, rw rh '
else if (PUL%shape(conductor).EQ.rectangle) then
write(fh2_input_file_unit,'(A)')'rectangle ! conductor 1 shape (cylinder, rectangle, annulus)'
else
write(run_status,*)'ERROR in PUL_RL_FastHenry2 cannot handle shape:',PUL%shape(conductor)
CALL write_program_status()
STOP 1
end if
end do ! next conductor
write(fh2_input_file_unit,'(ES12.4,A)')freq_spec%fmin,' ! Minimum frequency, fmin'
write(fh2_input_file_unit,'(ES12.4,A)')freq_spec%fmax,' ! Maximum frequency, fmax'
write(fh2_input_file_unit,'(ES12.4,A)')freq_spec%ndec,' ! Number of points per decade, ndec'
CLOSE(unit=fh2_input_file_unit)
write(*,*)'CALLING FastHenry2'
command='write_FH_input_file < fh2.txt'
CALL execute_command_line(command,EXITSTAT=exit_stat)
! Check that the FastHenry2 input file generated correctly
if (exit_stat.NE.0) then
! write_FH_input_file returned with a non zdero exit code indicating an error
write(run_status,*)'ERROR in PUL_RL_FastHenry2 running write_FH_input_file: exit_stat=',exit_stat
CALL write_program_status()
STOP 1
end if
write(*,*)'CALLING FastHenry2'
command='fasthenry fh2.inp'
CALL execute_command_line(command,EXITSTAT=exit_stat)
! Check that the fasthenry ran correctly
if (exit_stat.NE.0) then
! fasthenry returned with a non zdero exit code indicating an error
write(run_status,*)'ERROR in PUL_RL_FastHenry2 running fasthenry: exit_stat=',exit_stat
CALL write_program_status()
STOP 1
end if
if (verbose) then
write(*,*)
write(*,*)' Processing frequency dependent impedance file from FastHenry2'
write(*,*)
end if
OPEN(unit=fh2_output_file_unit,file='Zc.mat')
do loop=1,2
n_freq_in=0
10 CONTINUE
read(fh2_output_file_unit,'(A)',END=1000,ERR=1000)line
if (line(1:32).NE.'Impedance matrix for frequency =') GOTO 10
! if we get here then we have some impedance matrix data to read
! write(*,*)'Found impedance matrix:',trim(line)
! increase the number of frequencies for which we have an impedance matrix
n_freq_in=n_freq_in+1
local_line_length=len(trim(line))
freq_and_dim_string=line(33:local_line_length)
! write(*,*)'reading matrix for:',trim(freq_and_dim_string)
! replace the 'x' by a space then read the frequency, nrows and ncols
local_line_length=len(trim(freq_and_dim_string))
do i=1,local_line_length
if (freq_and_dim_string(i:i).EQ.'x') freq_and_dim_string(i:i)=' '
end do
! write(*,*)'data string:',trim(freq_and_dim_string)
read(freq_and_dim_string,*)freq,nrows,ncols
if (nrows.NE.ncols) then
write(*,*)'****** ERROR: nrows.NE.ncols ******'
end if
! write(*,*)'frequency=',freq,' n=',nrows
if (loop.EQ.2) then
freq_in(n_freq_in)=freq
end if
do r=1,nrows
read(fh2_output_file_unit,'(A)',END=1000,ERR=1000)line
if (loop.EQ.2) then
! replace the 'j's by a space then read the complex data
local_line_length=len(trim(line))
do i=1,local_line_length
if (line(i:i).EQ.'j') line(i:i)=' '
end do
read(line,*)(values(i),i=1,2*ncols)
do c=1,ncols
re=values(c*2-1)
im=values(c*2)
Zc_in(n_freq_in,r,c)=cmplx(re,im)
end do ! next column
end if
end do ! next row
GOTO 10 ! continue to read the file
! Jump here when the file has been read
1000 CONTINUE
if (loop.Eq.1) then
if (verbose) write(*,*)'Number of frequencies=',n_freq_in
ALLOCATE( freq_in(n_freq_in) )
ALLOCATE( Zc_in(n_freq_in,nrows,ncols) )
ALLOCATE( Rdc_domain(nrows,ncols) )
ALLOCATE( values(2*ncols) )
rewind(unit=fh2_output_file_unit)
end if
end do ! next file read loop
CLOSE(unit=fh2_output_file_unit)
matrix_dimension=PUL%n_conductors-1
if (matrix_dimension.NE.nrows) then
write(run_status,*)'ERROR in PUL_RL_FastHenry2 matrix dimension',matrix_dimension,nrows
CALL write_program_status()
STOP 1
end if
! For the modal decomposition, use the inductance from the highest frequency calculated
do r=1,nrows
do c=1,ncols
freq=freq_in(n_freq_in)
w=2.0*pi*freq
PUL%L%mat(r,c)=real(Zc_in(n_freq_in,r,c)/(j*w))
end do
end do
! Save the resistance matrix from the lowest frequency calculated
do r=1,nrows
do c=1,ncols
Rdc_domain(r,c)=real(Zc_in(1,r,c))
end do
end do
! We calculate the inductance and resistance matrix at a number of frequencies before fitting filter functions
! to each of the frequency dependent impedance matrix entries.
write(*,*)'**************************'
write(*,*)'Process FastHenry2 results'
write(*,*)'**************************'
write(*,*)'Number of frequencies (freq_spec) =',freq_spec%n_frequencies
write(*,*)'Number of frequencies (FastHenry2)=',n_freq_in
! Frequency check
if (n_freq_in.NE.freq_spec%n_frequencies) then
write(run_status,*)'ERROR in PUL_RL_FastHenry2 n_frequencies specification',n_freq_in,freq_spec%n_frequencies
CALL write_program_status()
STOP 1
end if
do floop=1,n_freq_in
ferr=abs(freq_spec%freq_list(floop)-freq_in(floop))/(freq_spec%freq_list(floop)+freq_in(floop))
if (ferr.GT.0.001) then
write(run_status,*)'ERROR in PUL_RL_FastHenry2 frequency samples, floop=',floop, &
' freq_spec=',freq_spec%freq_list(floop),' freq_FH2=',freq_in(floop)
CALL write_program_status()
STOP 1
end if
end do
! loop over frequency
if (verbose) then
do floop=1,n_freq_in
write(*,*)freq_spec%freq_list(floop),freq_in(floop)
end do
end if
! we have frequency domain impedance matrix, Zc
! loop over the elements of Zc and the Zfilter matrix by filter fitting
ALLOCATE( function_to_fit(1:freq_spec%n_frequencies) )
do row=1,matrix_dimension
do col=row,matrix_dimension
! get the function values for this matrix element function_to_fit=R-Rdc+jwL
do floop=1,freq_spec%n_frequencies
function_to_fit(floop)=Zc_in(floop,row,col)-Rdc_domain(row,col)
end do
! calculate the Zfilter matrix using the filter fitting process
! note aorder=border and no restrictions are put on the function
CALL Calculate_Sfilter(function_to_fit,freq_spec%freq_list,freq_spec%n_frequencies, &
PUL%Zfilter%sfilter_mat(row,col),fit_order+1,-1,2) ! note type 2 filter fit=> a0=0.0
if (col.NE.row) then
! make the matrix symmetrical
PUL%Zfilter%sfilter_mat(col,row)=PUL%Zfilter%sfilter_mat(row,col)
end if
end do ! next col
end do ! next row
DEALLOCATE( function_to_fit )
DEALLOCATE( freq_in )
DEALLOCATE( Zc_in )
DEALLOCATE( Rdc_domain )
DEALLOCATE( values )
if (verbose) then
write(*,*)'FINISHED: PUL_RL_FastHenry2'
write(*,*)'Inductance matrix, L'
CALL dwrite_matrix(PUL%L%mat,nrows,ncols,nrows,0)
end if
if (verbose) write(*,*)'FINISHED PUL_RL_FastHenry2'
! STOP 1
END SUBROUTINE PUL_RL_FastHenry2