coax.F90 9.76 KB
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2018 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! SUBROUTINE coax_set_parameters
! SUBROUTINE coax_set_internal_domain_information
! SUBROUTINE coax_plot
!
! NAME
!     coax_set_parameters
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     Set the overall parameters for a coax cable
!
! COMMENTS
!     Set the dimension of the domain transformation matrices to include an external reference conductor for the cable 
!
! HISTORY
!
!     started 10/5/2016 CJS 
!     16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!
!
SUBROUTINE coax_set_parameters(cable)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

  type(cable_specification_type),intent(INOUT)    :: cable

! local variables

! START

  cable%cable_type=cable_geometry_type_coax
  cable%tot_n_conductors=2
  cable%tot_n_domains=2
  cable%n_external_conductors=1
  cable%n_internal_conductors=1
  cable%n_internal_domains=1
  cable%n_parameters=6
  cable%n_dielectric_filters=2
  cable%n_transfer_impedance_models=1
  
END SUBROUTINE coax_set_parameters
!
! NAME
!     coax_set_internal_domain_information
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     Set the overall parameters for a coax cable
!
! COMMENTS
!      
!
! HISTORY
!
!     started 10/5/2016 CJS 
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE coax_set_internal_domain_information(cable)

USE type_specifications
USE constants
USE filter_module
USE general_module

IMPLICIT NONE

! variables passed to subroutine

  type(cable_specification_type),intent(INOUT)    :: cable

! local variables

  integer :: dim

  integer :: domain
  
  type(Sfilter) :: jw
  type(Sfilter) :: temp_filter
  
  real(dp) :: epsr
  
! variables for cable parameter checks 
  logical  :: cable_spec_error
  real(dp) :: rw
  real(dp) :: rs
  real(dp) :: rd
  real(dp) :: t
  real(dp) :: sigma_s
  real(dp) :: sigma_w
  
  type(Sfilter) :: epsr1,epsr2,ZT
  
  character(LEN=error_message_length) :: message 

! START

  if (verbose) write(*,*)'CALLED: coax_set_internal_domain_information'

! Check the cable parameters

  rw=cable%parameters(1) 
  rs=cable%parameters(2) 
  rd=cable%parameters(3) 
  sigma_w=cable%parameters(4) 
  t=cable%parameters(5) 
  sigma_s=cable%parameters(6) 
  epsr1=cable%dielectric_filter(1)
  epsr2=cable%dielectric_filter(2)
  ZT=cable%transfer_impedance(1)
  
  cable_spec_error=.FALSE.    ! assume no errors initially
  message=''
  CALL coax_with_dielectric_check(rw,rs,rd,cable_spec_error,cable%cable_name,message)
  CALL conductivity_check(sigma_w,cable_spec_error,cable%cable_name,message)
  CALL conductivity_check(sigma_s,cable_spec_error,cable%cable_name,message)
  CALL dielectric_check(epsr1,cable_spec_error,cable%cable_name,message)
  CALL dielectric_check(epsr2,cable_spec_error,cable%cable_name,message)
  CALL transfer_impedance_check(Zt,cable_spec_error,cable%cable_name,message)
  CALL surface_impedance_check(ZT,sigma_s,rs,t,cable_spec_error,cable%cable_name,message)
    
  if (cable_spec_error) then       
    run_status='ERROR in cable_model_builder, error on parameters for cable:'//trim(cable%cable_name)//'. '//trim(message)
    CALL write_program_status()
    STOP 1
  end if
    
! Set the parameters for the single internal domain  
  domain=1
    
  cable%n_internal_conductors_in_domain(domain)=2
    
! The number of modes in the internal domain is 1

  dim=1

  cable%L_domain(domain)%dim=dim
  ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
  cable%C_domain(domain)%dim=dim
  ALLOCATE(cable%C_domain(domain)%mat(dim,dim))

  cable%Z_domain(domain)%dim=dim
  ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
  cable%Y_domain(domain)%dim=dim
  ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
 
! evaluate the high frequency limit of the inner dielectric filter function   
  epsr=evaluate_Sfilter_high_frequency_limit(epsr1)

  if (verbose) write(*,*)'High frequency relative permittivity=',epsr

  cable%L_domain(domain)%mat(1,1)=(mu0/(2d0*pi))*log(rs/rw)   ! Theory_Manual_Eqn 6.3
  
  cable%C_domain(domain)%mat(1,1)=2d0*pi*eps0*epsr/log(rs/rw) ! Theory_Manual_Eqn 6.4
  
  jw=jwA_filter(1d0)
  cable%Z_domain(domain)%sfilter_mat(1,1)=( (mu0/(2d0*pi))*log(rs/rw) )*jw
  
  temp_filter=jw*epsr1
  cable%Y_domain(domain)%sfilter_mat(1,1)=( 2d0*pi*eps0/log(rs/rw) )*temp_filter
  
! Deallocate all filters   
  CALL deallocate_Sfilter(temp_filter)
  CALL deallocate_Sfilter(jw)
  
! Set the domain decomposition matrices ! Theory_Manual_Eqn 6.5, 6.6

! The dimension of the domain transformation matrices is 3
  dim=3
  cable%MI%dim=dim
  ALLOCATE(cable%MI%mat(dim,dim))
  cable%MV%dim=dim
  ALLOCATE(cable%MV%mat(dim,dim))

  cable%MI%mat(1,1)=1d0
  cable%MI%mat(1,2)=0d0
  cable%MI%mat(1,3)=0d0
  cable%MI%mat(2,1)=1d0
  cable%MI%mat(2,2)=1d0
  cable%MI%mat(2,3)=0d0
  cable%MI%mat(3,1)=1d0
  cable%MI%mat(3,2)=1d0
  cable%MI%mat(3,3)=1d0

  cable%MV%mat(1,1)=1d0
  cable%MV%mat(1,2)=-1d0
  cable%MV%mat(1,3)=0d0
  cable%MV%mat(2,1)=0d0
  cable%MV%mat(2,2)=1d0
  cable%MV%mat(2,3)=-1d0
  cable%MV%mat(3,1)=0d0
  cable%MV%mat(3,2)=0d0
  cable%MV%mat(3,3)=1d0

! Set the local reference conductor numbering  
  ALLOCATE( cable%local_reference_conductor(2) )
  cable%local_reference_conductor(1)=2              ! inner wire, reference is the shield conductor
  cable%local_reference_conductor(2)=0              ! external domain conductor, reference not known

! Set the local domain information: include a reference conductor in the count
  ALLOCATE( cable%local_domain_n_conductors(1:cable%tot_n_domains) )
  cable%local_domain_n_conductors(1)=2              ! inner domain
  cable%local_domain_n_conductors(2)=2              ! external domain 
  
! Set the external domain conductor and dielectric information
   
  ALLOCATE( cable%external_model(cable%n_external_conductors) )
  CALL reset_external_conductor_model(cable%external_model(1))
  cable%external_model(1)%conductor_type=circle
  cable%external_model(1)%conductor_radius=rs
  cable%external_model(1)%conductor_sigma=sigma_s
  cable%external_model(1)%dielectric_radius=rd
  cable%external_model(1)%dielectric_epsr=epsr2
   
! set the conductor impedance model for the inner conductor
  cable%conductor_impedance(1)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity
  cable%conductor_impedance(1)%radius=rw
  cable%conductor_impedance(1)%conductivity=sigma_w
    
! set the impedance model for the shield conductor

! now done in the surface impedance model checks  
!  if ((t.EQ.0d0).AND.(sigma.NE.0d0)) then
!! we need to calculate the thickness to be consistent with the transfer impedance at d.c. i.e. R_dc = ZT_dc
!    Rdc=cable%transfer_impedance(1)%a%coeff(0)/cable%transfer_impedance(1)%b%coeff(0)
!    t=1d0/(2d0*pi*rs*sigma*Rdc)
!  end if
    
  cable%conductor_impedance(2)%impedance_model_type=impedance_model_type_cylindrical_shield
  cable%conductor_impedance(2)%radius=rs
  cable%conductor_impedance(2)%thickness=t
  cable%conductor_impedance(2)%conductivity=sigma_s
  cable%conductor_impedance(2)%ZT_filter=ZT
  
  CALL deallocate_Sfilter(epsr1)
  CALL deallocate_Sfilter(epsr2)
  CALL deallocate_Sfilter(ZT)
  
  ALLOCATE( cable%conductor_label(1:cable%tot_n_conductors) )
  cable%conductor_label(1)='Cable name: '//trim(cable%cable_name)//   &
                           '. type: '//trim(cable%cable_type_string)//'. conductor 1 : Inner wire'
  cable%conductor_label(2)='Cable name: '//trim(cable%cable_name)//   &
                           '. type: '//trim(cable%cable_type_string)//'. conductor 2 : Shield'

END SUBROUTINE coax_set_internal_domain_information
!
! NAME
!     coax_plot
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     plot coaxial cable 
!
! COMMENTS
!      
!
! HISTORY
!
!     started 10/5/2016 CJS 
!
!
SUBROUTINE coax_plot(cable,x_offset,y_offset,theta,xmin,xmax,ymin,ymax)

USE type_specifications
USE general_module

IMPLICIT NONE

! variables passed to subroutine

  type(cable_specification_type),intent(IN)    :: cable
  
  real(dp),intent(IN) :: x_offset,y_offset,theta
  real(dp),intent(INOUT) ::  xmin,xmax,ymin,ymax

! local variables

  real(dp) :: x,y,r

! START

! plot inner conductor
  r=cable%parameters(1)   ! wire radius
  x=x_offset
  y=y_offset

  CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)

! plot shield conductor
  r=cable%parameters(2)   ! shield radius
  x=x_offset
  y=y_offset

  CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)

! plot circular dielectric
  r=cable%parameters(3)   ! dielectric radius
  x=x_offset
  y=y_offset

  CALL write_circle(x,y,r,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
  
  RETURN
  
END SUBROUTINE coax_plot