Laplace.F90
54.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
!
! SUBROUTINE Laplace
! FUNCTION ismember
!
! NAME
! SUBROUTINE Laplace
!
! DESCRIPTION
!
! Calculation of Per-Unit-Length Capacitance, Conductance and Inductance matrices
! for multi-conductor configutations including lossy dielectric regions.
! The solution is based on the Finite Element method.
!
! The outer boundary of the problem space may be a conducting region or
! a free space boundary. If the outer boundary is free space then it should
! be circular and centred on the origin for correct application of the
! free space boundary condition.
!
! If a ground plane is present then it must be included in the input cross section
! geometry as a finite conductor within the free space outer boundary.
!
! The last conductor specified is always the reference conductor in the per-unit-length
! parameter matrices returned
!
! Lossy dielectrics are taken into account by specifying a frequency and
! complex relative permittivity values at that frequency.
!
! The solution calculates the C and G matrices, The inductance matrix, L is calculated
! as [L]=[C^-1]*mu0*eps0*epsr where epsr is the background relative permittivity
! so the inductance value is only correct for cross sections with homogeneous dielectric
!
! The subroutine requires an existing mesh file created by the open source software gmsh: see http://gmsh.info/
! This mesh format must be converted into the format required by the NLR Laplace software.
!
! The underlying theory of the Finite Element formulation may be found in Theory_Manual_Section 4
!
! The process implemented is as follows:
! STAGE 1: Read the mesh information and the associated boundary information
! STAGE 2: Convert gmsh format data to laplace format
! STAGE 3: Create the boundary element list for PEC or outer boundaries
! STAGE 4: Create the boundary node list
! STAGE 5: Set the material information
! STAGE 6: Filter out the unused nodes from gmsh and renumber the new node list
! STAGE 7: Determine which of the nodes are unknown
! STAGE 8: work out the mapping of node numbers to knowns and unknowns
! STAGE 9: Create the known voltage vectors
! STAGE 10: Derive the necessary element properties
! STAGE 10a: Determine K matrix elements for the unknowns
! STAGE 10b: Determine K_rhs matrix that will be used to compute the rhs vector from the knowns.
! STAGE 10c: Determine contribution to the K matrix do the unknowns from the asymptotic boundary condition on the open boundary
! STAGE 11: Matrix solution of the finite element equations
! STAGE 11a: fill the K matrix from the array of K matrix elements calculated in STAGE 10a, 10c
! STAGE 11b: fill the K_rhs matrix from the array of K_rhs matrix elements calculated in STAGE 10b
! STAGE 11c: Invert the K matrix
! STAGE 11d loop over all the RHS vectors solving the matrix equation
! STAGE 12 Determine the voltage phi in each node of the mesh
! STAGE 13: Capacitance and Conductance matrix computation from electric energy
! STAGE 14: Inductance matrix computation from inverse of capacitance matrix
! STAGE 15: Copy the inductance, capacitance and conductance matrices to the output matrices making them explicitly symmetrical
! STAGE 16: plot potentials to vtk file for visualisation if required
! STAGE 17: plot mesh to vtk file for visualisation if required
! STAGE 18: deallocate memory
!
! References in the comments are to the Theory Manual and also the following book:
! Jian-Ming Jin, "The Finite Element Method in Electromagnetics" 3rd Edition, John Wiley & sons 2014.
! (Chapter 4.)
!
! COMMENTS
! This version uses complex arithmetic to include
! lossy dielectrics and hence a conductance matrix may be calculated.
!
! The finite element equations are soolved using a (slow) direct matrix inverse.
! Although we need to solve the equations for multiple right hand sides, a sparse matrix method may be better...
!
! Do we need a contribution to the energy calculation from the field outside the free space boundary condition? See comment in STAGE 13
!
! HISTORY
! started 5/7/2016 CJS. This subroutineis based on software from NLR and has been
! translated from Matlab to Fortran.
! 8/5/2017 CJS: Include references to Theory_Manual
! 19/6/2018 CJS: Include iterative solver based on the biconjugate gradient method
!
SUBROUTINE Laplace(mesh_filename,dim,first_surface_is_free_space_boundary, &
n_dielectric_regions,dielectric_region_epsr,frequency,Lmat,Cmat,Gmat,ox,oy)
!
! Look for and remove any nodes which do not form part of the mesh. This is required when
! running with gmsh.
!
USE type_specifications
USE constants
USE general_module
USE maths
IMPLICIT NONE
! variables passed to subroutine
character(LEN=filename_length),intent(IN) :: mesh_filename ! name of the gmsh file for the computational mesh
integer,intent(IN) :: dim ! dimension of matrix system
logical,intent(IN) :: first_surface_is_free_space_boundary ! flag to indicate properties on the first surface defined
integer,intent(IN) :: n_dielectric_regions ! number of dielectric regions
complex(dp),intent(IN) :: dielectric_region_epsr(0:n_dielectric_regions) ! complex relative permittivity for each mesh region
! note, include a property for region 0, the 'background' region
real(dp),intent(IN) :: frequency ! frequency for L,C,G matrix calculation
real(dp),intent(OUT) :: Lmat(dim,dim) ! Inductance matrix to be calculated
real(dp),intent(OUT) :: Cmat(dim,dim) ! Capacitance matrix to be calculated
real(dp),intent(OUT) :: Gmat(dim,dim) ! Conductance matrix to be calculated
real(dp),intent(IN) :: ox ! mesh centre offset in x used for plotting meshes if required
real(dp),intent(IN) :: oy ! mesh centre offset in y used for plotting meshes if required
! local variables
! User defined type for boundary information
type :: boundary_data
integer :: N_elements_boundary
integer,allocatable :: boundary_elements(:,:) ! list of boundary elements, boundary_elements(be,1)= element number, boundary_elements(be,2)= boundary condition number
integer :: N_nodes_boundary
integer,allocatable :: boundary_nodes(:,:) ! list of boundary nodes, boundary_nodes(bnode,1)= node number, boundary_nodes(bnode,2)= boundary condition number
end type boundary_data
! variables for reading the gmsh mesh file before conversion to the Laplace format
integer :: n_conductors
integer,allocatable :: point_to_boundary_list(:) ! if a point is on an external boundary then put that boundary number in this list
integer,allocatable :: boundary_segment_to_boundary_number_list(:) ! this list relates the individual boundary segments to the boundary numbers (i.e. conductor numbers)
integer :: bs ! boundary segment number
integer :: first_surface ! first_surface=0 if we have a free space outer boundary, 1 otherwise
! Laplace variables
integer :: N_nodes_in ! number of nodes in the gmsh file (this is not necessarily the number of nodes in the FE mesh)
integer :: N_elements_in ! number of elements in the gmsh file (this is not necessarily the number of triangular elements in the FE mesh)
integer :: n_boundaries ! number of boundaries, not including dielectric (internal) boundaries
integer :: N_boundaries_max ! maximum boundary number generated by PUL_LC_Laplace and found insolve_real_symm(n, b, x,tol) the mesh file
integer :: N_boundary ! number of viable boundaries in the mesh i.e. boundaries with two or more points on
integer :: boundary_number
integer :: N_elements_boundary_temp
integer :: N_nodes_boundary_temp
integer :: n_boundary_segments
integer,allocatable :: N_elements_boundary(:) ! number of elements on each boundary
integer,allocatable :: N_nodes_boundary(:) ! number of nodes on each boundary
type(boundary_data),allocatable :: boundary_info(:) ! for each boundary the boundary data is a list of elements and nodes on the boundary
real(dp),allocatable :: node_coordinates_in(:,:) ! Node coordinate list read from gmsh - note that some of these nodes are not used in the finite element solution
integer :: N_nodes ! number of nodes input to Laplace
real(dp),allocatable :: node_coordinates(:,:) ! Node coordinate list input to the NLR Laplace process
integer :: N_elements ! number of elements input to Laplace
integer,allocatable :: Element_data(:,:) ! Element data input to the NLR Laplace process
integer,allocatable :: old_node_to_new_node_number(:) ! node re-numbering array
integer :: N_materials ! number of dielectric materials (including the background permittivity)
real(dp),allocatable :: Mat_prop(:,:) ! material proparties
integer,allocatable :: Node_Type(:) ! if the node is on a conductor then this holds the conductor number, otherwise it is zero
integer,allocatable :: Node_to_Known_Unknown(:) ! list of all the nodes which points to the appropriate place in the list of knows or unknowns as appropriate
integer,allocatable :: Vector_of_Knowns(:) ! list of all the boundary nodes i.e. those which will have known potentials
integer :: N_unknown ! number of known node voltages i.e. those on which fixed potential boundary conditions are applied
integer :: N_known ! number of unknown node voltages
integer :: jmax ! maximum boundary number (i.e. number of conductors)
! this is used to determine the number of finite element solutions (right hand solve_real_symm(n, b, x,tol)sides to solve for) to
! fill the capacitance/conductance matrix
integer :: total_n_boundary_nodes ! total number of boundary nodes i.e. the number of known node values
! array of potentials for each of the finite element vector solutions. This includes both initially known and initially unknown potentials
complex(dp),allocatable :: V(:,:,:)
! Element properties
complex(dp),allocatable :: b(:,:) ! element based array of constants related to the element geometry
complex(dp),allocatable :: c(:,:) ! element based array of constants related to the element geometry
complex(dp),allocatable :: delta(:) ! element based array with a value related to the element geometry
complex(dp),allocatable :: eps_r(:) ! element based array with the complex relative permittivity of the element
!
!integer :: n_entrysolve_real_symm(n, b, x,tol)
!! 1D arrays used in the construction of the K matrix ( K(i_K(:),j_K(:))=K(i_K(:),j_K(:))+s_K(:) )
!integer,allocatable :: i_K(:)
!integer,allocatable :: j_K(:)
!complex(dp),allocatable :: s_K(:)
! 1D arrays used in the construction of the right hand side vectors ( K_rhs(i_K_rhs(:),j_K_rhs(:))=K_rhs(i_K_rhs(:),j_K_rhs(:))+s_K_rhs(:) )
integer,allocatable :: i_K_rhs(:) ! row number
integer,allocatable :: j_K_rhs(:) ! col number
complex(dp),allocatable :: s_K_rhs(:) ! value
complex(dp),allocatable :: x(:,:,:) ! array of solution vectors, one for each each finite element solution required to complete the C/G matrices
complex(dp),allocatable :: x_tmp(:) ! single solution vector
complex(dp),allocatable :: b_tmp(:) ! single right hand side vector: b_tmp=-matmul(K_rhs,v_tmp)
complex(dp),allocatable :: v_tmp(:) ! temporary array with known boundary voltages used for constructing the right hand side
complex(dp),allocatable :: K(:,:) ! Finite element equation coefficient matrix
complex(dp),allocatable :: KI(:,:) ! Inverse of the Finite element equation coefficient matrix
complex(dp),allocatable :: K_rhs(:,:) ! array of right hand side vectors, one for each each finite element solution required to complete the C/G matrices
complex(dp),allocatable :: phi(:,:,:) ! node based potential values for each finite element solution
complex(dp),allocatable :: energy(:,:) ! energy values for each of the finite element solutions
! matrices determined from energy calculations
real(dp),allocatable :: Inductance_energy(:,:)
real(dp),allocatable :: Capacitance_energy(:,:)
real(dp),allocatable :: Conductance_energy(:,:)
! temporary variables used for loops, counters, intermediate results used in calculations etc.
integer :: node,new_node
integer :: element
integer :: n_entry_K_rhs
integer :: n1,n2,n3
complex(dp) :: x1,x2,x3,y1,y2,y3
integer :: Mat_Type
integer :: n1_el,n2_el,n3_el
integer :: el
integer :: n_el_bnd ! loop variable for elements on the boundary
complex(dp) :: rho,gamma,ls
complex(dp) :: b3,bc_comp,c3,delta_energy,delta_Q,phi_comp
integer :: nd1,nd2,p
real(dp) :: x_centre,y_centre
character(LEN=filename_length) :: filename
character(LEN=line_length) :: line
real(dp) :: scale
! temporary variables and loop counters
integer :: i,ii,i1,i2,loop,count
integer :: nb1,nb2,nb3,nbcount
integer :: itmp,type,itmp2,itmp3,itmp4
integer :: jj,j1,j2
integer :: n_nodes_bnd
integer :: n_con
integer :: nr
integer :: ierr ! error code for matrix inversion
! variables for iterative solver
integer itnlim
real(dp) rtol
real(dp),allocatable :: bt(:) ! real vectors for conjugate gradient solution for lossless problems
real(dp),allocatable :: xt(:)
logical :: lossy_dielectric ! flag to indicate lossy dielectric i.e. we must solve a complex problem
logical :: wantse
integer :: n,m
real(dp) :: atol, btol, conlim, damp
real(dp) :: Arnorm, xnorm
real(dp),allocatable :: se(:)
real(dp) :: Vout
! START
if (verbose) write(*,*)'CALLED: Laplace'
! STAGE 1. Read the mesh information and the associated boundary information
n_conductors=dim+1 ! number of conductors, used to establish which boundaries are conductors
! Establish the number of external boundaries evaluated as
! the number of conducting boundaries + outer boundary if it exists
! note that dielectric boundaries are not external boundaries as they have mesh both sides.
N_boundaries=n_conductors
if (first_surface_is_free_space_boundary) N_boundaries=N_boundaries+1
! open the file with the boundary information produced by PUL_LC_Laplace and written to file there
open(unit=boundary_file_unit,file=boundary_file_name,status='OLD',err=9020)
if (verbose) write(*,*)'Opened file:',boundary_file_name
read(boundary_file_unit,*,end=9030)n_boundary_segments
ALLOCATE( boundary_segment_to_boundary_number_list(1:n_boundary_segments) )
do i=1,n_boundary_segments
read(boundary_file_unit,*,end=9030)ii,boundary_segment_to_boundary_number_list(i)
end do
! close the boundary information file
close(unit=boundary_file_unit)
if (verbose) write(*,*)'Closed file:',boundary_file_name
! open and read the mesh file produced by gmsh
open(unit=mesh_file_unit,file=mesh_filename,status='OLD',err=9000)
if (verbose) write(*,*)'opened mesh file:',trim(mesh_filename)
! read to the start of the node list
do
read(mesh_file_unit,'(A)',end=9010)line
if (line(1:6).EQ.'$Nodes') exit
end do
read(mesh_file_unit,*)n_nodes_in
ALLOCATE ( node_coordinates_in(1:N_nodes_in,1:3) )
ALLOCATE( point_to_boundary_list(1:N_nodes_in) )
do i=1,n_nodes_in
read(mesh_file_unit,*)itmp,node_coordinates_in(i,2),node_coordinates_in(i,3)
node_coordinates_in(i,1)=i
end do
! read to the start of the element list
do
read(mesh_file_unit,'(A)',end=9010)line
if (line(1:9).EQ.'$Elements') exit
end do
! read the element list
read(mesh_file_unit,*)n_elements_in
ALLOCATE ( Element_data(1:n_elements_in,1:5) ) ! note that we allocate data for all the gmesh elements, even though some are line elements and not needed.
Element_data(1:n_elements_in,1:5)=0
point_to_boundary_list(:)=0
n_boundaries_max=0
n_elements=0 ! counter for triangular elements
do i=1,n_elements_in
! The gmsh file includes elements of type 1 (boundary line segments) and type 2 (triangular elements)
! These are dealt with differently so first read the line from the file into a string, then process the string as required
! for these two cases.
read(mesh_file_unit,'(A256)')line
read(line,*)itmp,type
if (type.EQ.2) then
! this is a triangular element so put the data in the element list
n_elements=n_elements+1 ! increase the count of triangular elements
read(line,*)itmp,type,itmp2,itmp3, &
Element_data(n_elements,5), &
Element_data(n_elements,2), &
Element_data(n_elements,3), &
Element_data(n_elements,4)
Element_data(n_elements,1)=n_elements
else if (type.EQ.1) then
! this is a boundary segment
read(line,*)itmp,type,itmp2,itmp3,itmp4,nb1,nb2
bs=itmp4 ! this is the boundary line segment number (not the boundary number)
boundary_number=boundary_segment_to_boundary_number_list(bs) ! get the boundary number for this line segment
n_boundaries_max=max(n_boundaries_max,boundary_number) ! update the maximum number of boundaries
! only include 'external' boundaries in the point_to_boundary_list, not internal dielectric boundaries
if (boundary_number.LE.N_boundaries) then
point_to_boundary_list(nb1)=boundary_number
point_to_boundary_list(nb2)=boundary_number
end if
end if ! element type
end do ! next element
! close the mesh file produced by gmsh
close(unit=mesh_file_unit)
if (verbose) write(*,*)'closed mesh file:',trim(mesh_filename)
! Establish whether the first surface is a free space boundary or a conductor
if (first_surface_is_free_space_boundary) then
first_surface=0
else
first_surface=1
end if
! STAGE 2: Convert gmsh format data to laplace format
! note that the gmsh node list includes points which are not in the mesh e.g. the points which define the centres of the circular arcs
! these points are removed in the conversion to the Laplace input structures
if (verbose) then
write(*,*)'Number of nodes in the mesh file=',N_nodes_in
write(*,*)'Number of elements=',N_elements
write(*,*)' Allocate and read nodes'
write(*,*)' Allocate and read boundary information'
write(*,*)'Number of boundaries including dielectric boundaries=',n_boundaries_max
write(*,*)'Number of boundaries not including dielectric boundaries=',n_boundaries
end if ! verbose
! check the boundary count
if(n_boundaries.GT.n_boundaries_max) then
write(run_status,*)'ERROR in Laplace. Inconsistent boundary count ',N_boundaries_max,n_boundaries
CALL write_program_status()
STOP 1
end if
ALLOCATE ( N_elements_boundary(1:N_boundaries_max) )
ALLOCATE ( N_nodes_boundary(1:N_boundaries_max) )
ALLOCATE ( boundary_info(1:N_boundaries_max) )
! STAGE 3: Create the boundary element list but only for PEC or outer boundaries
N_boundary=0
do i=1,n_boundaries
if(verbose) write(*,*)'Setting boundary number',i,'of ',n_boundaries
count=0
do loop=1,2
! The first time through the loop, count the number of elements with two or more nodes on the current boundary
! The second time through the loop, allocate and fill the boundary_info element information
! (element number and boundary condition number)
if (loop.eq.2) then
! count is the number of boundary elements
N_elements_boundary_temp=count
count=0
if (N_elements_boundary_temp.GT.0) then
N_boundary=N_boundary+1
N_elements_boundary(N_boundary)=N_elements_boundary_temp
boundary_info(N_boundary)%N_elements_boundary=N_elements_boundary_temp
if(verbose) then
write(*,*)'N_boundary=',N_boundary,' N_boundaries_max=',N_boundaries_max
write(*,*)'Number of boundary elements =',N_elements_boundary_temp, &
' boundary condition',first_surface+i-1
end if
ALLOCATE ( boundary_info(N_boundary)%boundary_elements(1:N_elements_boundary_temp,1:2) )
end if
end if
! loop over elements
do ii=1,n_elements
nb1=point_to_boundary_list(Element_data(ii,2))
nb2=point_to_boundary_list(Element_data(ii,3))
nb3=point_to_boundary_list(Element_data(ii,4))
! work out how many of the nodes on this element are on the current boundary
nbcount=0
if(nb1.eq.i) nbcount=nbcount+1
if(nb2.eq.i) nbcount=nbcount+1
if(nb3.eq.i) nbcount=nbcount+1
if (nbcount.GE.2) then
! the element has at least one edge on this boundary
count=count+1
if (loop.eq.2) then
boundary_info(N_boundary)%boundary_elements(count,1)=ii ! element number
boundary_info(N_boundary)%boundary_elements(count,2)=first_surface+i-1 ! boundary number
end if ! second time round loop so we can record the boundary data
end if ! there are elements on this boundary
end do ! next element in mesh
end do ! next loop (1,2)
! create boundary node list
count=0
do loop=1,2
! The first time through the loop, count the number of nodes on the current boundary
! The second time through the loop, allocate and fill the boundary_info node information
! (node number and boundary condition number)
if (loop.eq.2) then
! count is the number of boundary nodes
N_nodes_boundary_temp=count
count=0
if (N_nodes_boundary_temp.GT.0) then
N_nodes_boundary(N_boundary)=N_nodes_boundary_temp
boundary_info(N_boundary)%N_nodes_boundary=N_nodes_boundary_temp
if(verbose) then
write(*,*)'N_boundary=',N_boundary,' N_boundaries_max=',N_boundaries_max
write(*,*)'Number of boundary points =',N_nodes_boundary_temp, &
' boundary condition',first_surface+i-1
end if
ALLOCATE ( boundary_info(N_boundary)%boundary_nodes(1:N_nodes_boundary_temp,1:2) )
end if
end if
do ii=1,n_nodes_in
if(point_to_boundary_list(ii).eq.i) then
! the node is on this boundary
count=count+1
if (loop.eq.2) then
boundary_info(N_boundary)%boundary_nodes(count,1)=ii ! point number
boundary_info(N_boundary)%boundary_nodes(count,2)=first_surface+i-1 ! boundary condition number
end if ! second time round loop so we can record the boundary data
end if ! there are nodes on this boundary
end do ! next node in mesh
end do ! next loop (1,2)
end do ! next boundary, i
if (verbose) write(*,*)'n_boundaries=',n_boundaries,' N_boundary=',N_boundary
! STAGE 5: Set the material information
if (verbose) write(*,*)' Read material information'
! Set for single material with free space properties and a frequency of 1MHz
N_materials=n_dielectric_regions+1 ! add a free space region
if (verbose) write(*,*)' Number of materials=',N_materials
ALLOCATE ( Mat_prop(1:N_materials,1:4) )
lossy_dielectric=.FALSE.
do i=1,N_materials
Mat_prop(i,1)=i ! material number
Mat_prop(i,2)=dble(dielectric_region_epsr(i-1)) ! Re{epsr}
Mat_prop(i,3)=aimag(dielectric_region_epsr(i-1)) ! Im{epsr}
Mat_prop(i,4)=frequency
if ( abs(Mat_prop(i,3)).GT.small ) lossy_dielectric=.TRUE.
if (verbose) then
count=0
do element=1,N_elements
if (Element_data(element,5).EQ.i) count=count+1
end do
write(*,*)'Region:',i,' epsr=',Mat_prop(i,2),'+j',Mat_prop(i,3),' n_elements=',count
end if ! verbose
end do ! next material
if (verbose) write(*,*)'frequency=',frequency
! STAGE 6: Filter out the unused nodes from gmsh and renumber the new node list
! work out how many nodes are actually used in the mesh
! then recreate the node list. This is required for meshes produced by gmsh
! which have unused nodes in the coordinate list.
ALLOCATE( old_node_to_new_node_number(1:N_nodes_in) )
old_node_to_new_node_number(1:N_nodes_in)=0 ! set all the elements of the renumbering array to zero - this indicates a node has not been renumberd yet
N_nodes=0
! loop over elements
do element=1,N_elements
! loop over the three nodes in this element
do i=1,3
node=Element_data(element,i+1)
! check whether this node has already been found
if (old_node_to_new_node_number(node).EQ.0) then
! new node found so increase the number of nodes and renumber this node to the new node number created
N_nodes=N_nodes+1
old_node_to_new_node_number(node)=N_nodes
end if
! renumber the node
Element_data(element,i+1)=old_node_to_new_node_number(node)
end do ! next node in this element
end do ! next element
if (verbose) then
write(*,*)'Number of nodes read=',N_nodes_in
write(*,*)'Number of nodes used=',N_nodes
end if
! renumber the nodes in the boundary list
do i=1,N_boundary
n_nodes_bnd=N_nodes_boundary(i)
do jj=1,n_nodes_bnd
node=boundary_info(i)%Boundary_nodes(jj,1)
boundary_info(i)%Boundary_nodes(jj,1)=old_node_to_new_node_number(node)
end do ! next node on this boundary
end do ! next boundary
! create the node_coordinate list to be used in the NLR Laplace Finite Element solution
ALLOCATE ( node_coordinates(1:N_nodes,1:3) )
do node=1,N_nodes_in
new_node=old_node_to_new_node_number(node)
if (new_node.NE.0) then ! the node exists in the mesh
node_coordinates(new_node,1:3)=node_coordinates_in(node,1:3)
end if
end do
DEALLOCATE( old_node_to_new_node_number )
DEALLOCATE( node_coordinates_in )
! STAGE 7: Determine which of the nodes are unknown
if(verbose) write(*,*)'Determine which of the nodes are unknown'
! Determine which of the nodes are unknown (these will be marked by
! the integer 0) and which are known (these will be marked by integers
! > 0 that indicate the conductor number)
ALLOCATE( Node_Type(1:N_nodes) )
Node_Type(1:N_nodes)=0 ! assume all nodes are unknown to start
do i=1,N_boundary ! loop over boundaries
n_nodes_bnd=N_nodes_boundary(i) ! number of nodes on this boundary
n_con=boundary_info(i)%boundary_nodes(1,2) ! number of the boundary condition on this boundary
do jj=1,n_nodes_bnd ! loop over the boundary nodes
nr=boundary_info(i)%Boundary_nodes(jj,1) ! get the node number of this boundary node
Node_Type(nr)=n_con ! set the node type to the boundary conductor number
end do
end do
! STAGE 8: work out the mapping of node numbers to knowns and unknowns
if(verbose) write(*,*)' Mapping node numbers to unknowns and knowns '
! Mapping node numbers to unknowns and knowns
! Mapping knowns to different boundary values
N_unknown=0
N_known=0
jmax=0
ALLOCATE ( Node_to_Known_Unknown(1:N_nodes) )
Node_to_Known_Unknown(1:N_nodes)=0
! count the total number of boundary nodes (this is the number of knowns)
total_n_boundary_nodes=0
do i=1,N_boundary
total_n_boundary_nodes=total_n_boundary_nodes+boundary_info(i)%N_nodes_boundary
end do
if (verbose) write(*,*)'Total number of boundary nodes=',total_n_boundary_nodes
ALLOCATE ( Vector_of_Knowns(1:total_n_boundary_nodes) )
Vector_of_Knowns(1:total_n_boundary_nodes)=0
do i=1,N_nodes
if (Node_Type(i).EQ.0) then
N_unknown=N_unknown+1
Node_to_Known_Unknown(i)=N_unknown
else
N_known=N_known+1
Node_to_Known_Unknown(i)=N_known
do jj=1,N_boundary
if (Node_Type(i).EQ.jj) then
Vector_of_Knowns(N_known)=jj
if (jj.GT.jmax) then
jmax=jj
end if
end if
end do
end if
end do
if (verbose) write(*,*)'Maximum boundary number, jmax=',jmax, 'N_boundary=',N_boundary
! STAGE 9: Create the known voltage vectors
if (verbose) write(*,*)' Create known voltage vectors'
! Create known voltage vectors with:
! 1) one conductor set to voltage=1V and the
! other conductors all set to 0V.
! 2) two conductors set to voltage=1V and the
! other conductors set to 1V.
ALLOCATE ( V(1:jmax-1,1:jmax-1,1:N_known) )
V(1:jmax-1,1:jmax-1,1:N_known)=0d0
! The last conductor is always set to 0V as
! it is taken as the reference. This means that the ground plane, if it exists is always the reference condcutor.
do j1=1,jmax-1
do j2=j1,jmax-1
do i=1,N_known
if (Vector_of_Knowns(i).EQ.(j1)) then
V(j1,j2,i)=1.0
end if
if (Vector_of_Knowns(i).EQ.(j2)) then
V(j1,j2,i)=1.0
end if
end do
end do
end do
! Stage 10: Derive the necessary element properties
if (verbose) write(*,*)' Derive the necessary element properties'
ALLOCATE( b(1:N_elements,1:3) )
ALLOCATE( c(1:N_elements,1:3) )
ALLOCATE( delta(1:N_elements) )
ALLOCATE( eps_r(1:N_elements) )
b(1:N_elements,1:3)=0d0
c(1:N_elements,1:3)=0d0
delta(1:N_elements)=0d0
eps_r(1:N_elements)=0d0
! do this twice, the first time to count the numbers of entries and to allocate the memory, the second to fill the memory
do loop=1,2
n_entry=0
n_entry_K_rhs=0
! loop over elements
do i=1,N_elements
! get the node numbers for the 3 nodes on this element
n1=Element_data(i,2)
n2=Element_data(i,3)
n3=Element_data(i,4)
! get the coordinates of the nodes
x1=Node_Coordinates(n1,2)
y1=Node_Coordinates(n1,3)
x2=Node_Coordinates(n2,2)
y2=Node_Coordinates(n2,3)
x3=Node_Coordinates(n3,2)
y3=Node_Coordinates(n3,3)
! Calculate b and c coefficients, delta (element area) (equation 4.24, J-M.Jin)
b(i,1)=y2-y3
b(i,2)=y3-y1
b(i,3)=y1-y2
c(i,1)=x3-x2
c(i,2)=x1-x3
c(i,3)=x2-x1
delta(i)=0.5*(b(i,1)*c(i,2)-b(i,2)*c(i,1))
Mat_Type=Element_data(i,5) ! material number for this element
eps_r(i)=Mat_Prop(Mat_Type,2)+j*Mat_Prop(Mat_Type,3) ! relative permittivity in this material region
! STAGE 10a: Determine K matrix elements related to the unknowns
! STAGE 10b: Determine K_rhs matrix that will be used to compute the rhs vector from the knowns.
! See section 4.3.3.2 for a description of the assembly of the system of equations (K matrix elements)
! and section 4.3.3.4 for a description of the assembly of the RHS terms.
if (Node_Type(n1).EQ.0) then ! node n1 is not on a conducting boundary
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n1)
j_K(n_entry)=Node_to_Known_Unknown(n1)
s_K(n_entry)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,1)+c(i,1)*c(i,1)) ! K11, equation 4.33 with alpha_x=alpha_y=epsr, beta=0, i=j (diagonal element)
end if
if (Node_Type(n2).EQ.0) then ! neither node 1 nor node 2 are on conductors
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n1)
j_K(n_entry)=Node_to_Known_Unknown(n2)
s_K(n_entry)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,2)+c(i,1)*c(i,2)) ! K12, equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n2)
j_K(n_entry)=Node_to_Known_Unknown(n1)
s_K(n_entry)=s_K(n_entry-1) ! K21=K12
end if
else ! node 2 is on a conductor so therefore has a known value so the contribution goes to the right hand side
n_entry_K_rhs=n_entry_K_rhs+1
if (loop.EQ.2) then
i_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n1)
j_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n2)
s_K_rhs(n_entry_K_rhs)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,2)+c(i,1)*c(i,2)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
end if
if (Node_Type(n3).EQ.0) then ! neither node 1 nor node 3 are on conductors
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n1)
j_K(n_entry)=Node_to_Known_Unknown(n3)
s_K(n_entry)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,3)+c(i,1)*c(i,3)) ! K13, equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n3)
j_K(n_entry)=Node_to_Known_Unknown(n1)
s_K(n_entry)=s_K(n_entry-1) ! K31=K13
end if
else ! node 3 is on a conductor so therefore has a known value so the contribution goes to the right hand side
n_entry_K_rhs=n_entry_K_rhs+1
if (loop.EQ.2) then
i_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n1)
j_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n3)
s_K_rhs(n_entry_K_rhs)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,3)+c(i,1)*c(i,3)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
end if
end if
if (Node_Type(n2).EQ.0) then ! node n2 is not on a conducting boundary
if (Node_Type(n1).NE.0) then ! node n1 is on a conductor so therefore has a known value so the contribution goes to the right hand side
n_entry_K_rhs=n_entry_K_rhs+1
if (loop.EQ.2) then
i_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n2)
j_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n1)
s_K_rhs(n_entry_K_rhs)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,2)+c(i,1)*c(i,2)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
end if
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n2)
j_K(n_entry)=Node_to_Known_Unknown(n2)
s_K(n_entry)=(eps_r(i)/(4.0*delta(i)))*(b(i,2)*b(i,2)+c(i,2)*c(i,2)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0, i=j (diagonal element)
end if
if (Node_Type(n3).EQ.0) then ! node n3 is not on a conducting boundary
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n2)
j_K(n_entry)=Node_to_Known_Unknown(n3)
s_K(n_entry)=(eps_r(i)/(4.0*delta(i)))*(b(i,2)*b(i,3)+c(i,2)*c(i,3)) ! K23, equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n3)
j_K(n_entry)=Node_to_Known_Unknown(n2)
s_K(n_entry)=s_K(n_entry-1) ! K32=K23
end if
else ! node n3 is on a conductor so therefore has a known value so the contribution goes to the right hand side
n_entry_K_rhs=n_entry_K_rhs+1
if (loop.EQ.2) then
i_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n2)
j_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n3)
s_K_rhs(n_entry_K_rhs)=(eps_r(i)/(4.0*delta(i)))*(b(i,2)*b(i,3)+c(i,2)*c(i,3)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
end if
end if
if (Node_Type(n3).EQ.0) then ! node n3 is not on a conducting boundary
if (Node_Type(n1).NE.0) then ! node n1 is on a conductor so therefore has a known value so the contribution goes to the right hand side
n_entry_K_rhs=n_entry_K_rhs+1
if (loop.EQ.2) then
i_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n3)
j_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n1)
s_K_rhs(n_entry_K_rhs)=(eps_r(i)/(4.0*delta(i)))*(b(i,1)*b(i,3)+c(i,1)*c(i,3)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
end if
if (Node_Type(n2).NE.0) then ! node n2 is on a conductor so therefore has a known value so the contribution goes to the right hand side
n_entry_K_rhs=n_entry_K_rhs+1
if (loop.EQ.2) then
i_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n3)
j_K_rhs(n_entry_K_rhs)=Node_to_Known_Unknown(n2)
s_K_rhs(n_entry_K_rhs)=(eps_r(i)/(4.0*delta(i)))*(b(i,2)*b(i,3)+c(i,2)*c(i,3)) ! equation 4.33 with alpha_x=alpha_y=epsr, beta=0
end if
end if
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n3)
j_K(n_entry)=Node_to_Known_Unknown(n3)
s_K(n_entry)=(eps_r(i)/(4.0*delta(i)))*(b(i,3)*b(i,3)+c(i,3)*c(i,3)) ! K33, equation 4.33 with alpha_x=alpha_y=epsr, beta=0, i=j (diagonal element)
end if
end if
end do ! next element
if ( (loop.eq.1).AND.(verbose) ) then
write(*,*)' Determine contribution to the K matrix due to '
write(*,*)' the unknowns from the asymptotic boundary condition on the open boundary'
end if
! STAGE 10c: Determine contribution to the K matrix do the unknowns
! from the asymptotic boundary condition on the open boundary
do i=1,N_boundary ! loop over the boundaries in the
n_el_bnd=N_elements_boundary(i) ! number of elements on this boundary
n_con=boundary_info(i)%boundary_elements(1,2) ! condcutor number on this boundary
if (n_con.EQ.0) then ! boundary condition set to zero indicates an open boundary so work out the open boundary contribution here
do jj=1,n_el_bnd ! loop over the elements on the boundary
el=boundary_info(i)%boundary_elements(jj,1) ! get the element number
n1_el=Element_data(el,2) ! get the node numbers on this element
n2_el=Element_data(el,3)
n3_el=Element_data(el,4)
! get the two nodes on the boundary and call them n1 and n2
if (ismember(n1_el,boundary_info(i)%boundary_nodes,boundary_info(i)%N_nodes_boundary,1).EQ.1) then
n1=n1_el
if (ismember(n2_el,boundary_info(i)%boundary_nodes,boundary_info(i)%N_nodes_boundary,1).EQ.1) then
n2=n2_el
else
n2=n3_el
end if
else
n1=n2_el
n2=n3_el
end if
x1=Node_Coordinates(n1,2) ! get the coordinats of the boundary nodes
y1=Node_Coordinates(n1,3)
x2=Node_Coordinates(n2,2)
y2=Node_Coordinates(n2,3)
x_centre=(x1+x2)/2 ! get the coordinates of the centre point of the boundary element edge
y_centre=(y1+y2)/2
rho=sqrt(x_centre**2+y_centre**2) ! get the distance from the centre of the problem space (assumed to be 0,0) to the boundary element edge centre
ls=sqrt((x2-x1)**2+(y2-y1)**2) ! l2= boundary element edge length
if (use_ABC) then
! This implements an asymptotic boundary condition. This apears to cause convergence
! issues for the Capacitance matrix calculation so should be used with caution.
! The default is the Neumann boundary condition (gamma=0)
gamma=-eps_r(el)/(log(rho)*rho) ! gamma (see equation 4.3 with equation 4.93)
else
! Neumann boundary condition on the outer boundary. This effectively sets the charge to zero on the outer
! boundary and the convergence of the capacitance matrix is improved compared with the ABC
gamma=0d0
end if
! K11 contributions according to equation 4.51 (note delta_ij=1 if i=j, 0 otherwise)
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n1)
j_K(n_entry)=Node_to_Known_Unknown(n1)
s_K(n_entry)=gamma*ls/3.0 ! i=j=n1
end if
! K12
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n1)
j_K(n_entry)=Node_to_Known_Unknown(n2)
s_K(n_entry)=gamma*ls/6.0 ! i=1, j=n2
end if
! K21
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n2)
j_K(n_entry)=Node_to_Known_Unknown(n1)
s_K(n_entry)=gamma*ls/6.0 ! i=2, j=n1
end if
! K22
n_entry=n_entry+1
if (loop.EQ.2) then
i_K(n_entry)=Node_to_Known_Unknown(n2)
j_K(n_entry)=Node_to_Known_Unknown(n2)
s_K(n_entry)=gamma*ls/3.0 ! i=j=n2
end if
end do ! next element on the boundary
end if
end do ! next boundary
if (loop.eq.1) then
! Allocate memory
ALLOCATE( i_K(1:n_entry) )
ALLOCATE( j_K(1:n_entry) )
ALLOCATE( s_K(1:n_entry) )
ALLOCATE( i_K_rhs(1:n_entry_K_rhs) )
ALLOCATE( j_K_rhs(1:n_entry_K_rhs) )
ALLOCATE( s_K_rhs(1:n_entry_K_rhs) )
end if
end do ! next loop i.e. after counting and allocating the memory required(loop=1) go back and fill the memory with the appropriate values (loop=2)
! STAGE 11: Matrix solution of the finite element equations
! the equation to solve is [s_K](x)=(s_K_rhs)
! allocate memory for the solution vectors
ALLOCATE ( x(1:jmax-1,1:jmax-1,1:N_unknown) )
ALLOCATE ( x_tmp(1:N_unknown) )
ALLOCATE ( b_tmp(1:N_unknown) )
ALLOCATE ( v_tmp(1:N_known) )
! solution based on a full matrix inverse
ALLOCATE ( K_rhs(1:N_unknown,1:N_known) )
if(verbose) then
write(*,*)'Number of entries in K ',n_entry
write(*,*)'Number of entries in K_rhs',n_entry_K_rhs
end if
! STAGE 11b: fill the K_rhs matrix
K_rhs(1:N_unknown,1:N_known)=0d0
do i=1,n_entry_K_rhs
K_rhs(i_K_rhs(i),j_K_rhs(i))=K_rhs(i_K_rhs(i),j_K_rhs(i))+s_K_rhs(i)
end do
if(verbose) then
write(*,*)'Dimension of K is',N_unknown,N_unknown
write(*,*)'Dimension of K_rhs is',N_unknown,N_known
else
write(*,*)'Dimension of K in Laplace is',N_unknown,N_unknown
end if
if (direct_solver) then
ALLOCATE ( K(1:N_unknown,1:N_unknown) )
ALLOCATE ( KI(1:N_unknown,1:N_unknown) )
! STAGE 11a: fill the K matrix
K(1:N_unknown,1:N_unknown)=0d0
do i=1,n_entry
K(i_K(i),j_K(i))=K(i_K(i),j_K(i))+s_K(i)
end do
! STAGE 11c: Invert the K matrix
if(verbose) write(*,*)'Invert the K matrix'
ierr=0 ! set ierr=0 to cause an error within cinvert_Gauss_Jordan if there is a problem calculating the inverse
CALL cinvert_Gauss_Jordan(K,N_unknown,KI,N_unknown,ierr)
! STAGE 11d loop over all the RHS vectors solving the matrix equation
do j1=1,jmax-1
do j2=j1,jmax-1
v_tmp(1:n_known)=V(j1,j2,1:n_known)
b_tmp(1:N_unknown)=-matmul(K_rhs,v_tmp)
x_tmp=matmul(KI,b_tmp)
x(j1,j2,1:N_unknown)=x_tmp(1:N_unknown)
end do
end do
else if(.NOT.lossy_dielectric) then
itnlim = N_unknown * 2 ! maximum number of iterations set to twice the number of unknowns
rtol = cg_tol
allocate(xt(1:N_unknown))
allocate(bt(1:N_unknown))
ALLOCATE( s_K_re(1:n_entry) )
s_K_re(1:n_entry)=dble(s_K(1:n_entry))
! Iterative solution
do j1=1,jmax-1
do j2=j1,jmax-1
v_tmp(1:n_known)=V(j1,j2,1:n_known)
b_tmp(1:N_unknown)=-matmul(K_rhs,v_tmp)
bt(1:N_unknown)=b_tmp(1:N_unknown)
xt(1:N_unknown)=0d0 ! initial guess for xt
! conjugate gradient solution
CALL solve_real_symm(N_unknown, bt, xt, rtol, itnlim)
x(j1,j2,1:N_unknown)=xt(1:N_unknown)
end do
end do
deallocate(xt)
deallocate(bt)
else if (lossy_dielectric) then
itnlim = N_unknown * 2 ! maximum number of iterations set to twice the number of unknowns
rtol = cg_tol
! Iterative solution
do j1=1,jmax-1
do j2=j1,jmax-1
v_tmp(1:n_known)=V(j1,j2,1:n_known)
b_tmp(1:N_unknown)=-matmul(K_rhs,v_tmp)
x_tmp(1:N_unknown)=(0d0,0d0) ! initial guess for x_tmp
! conjugate gradient solution
CALL solve_complex_symm(N_unknown, b_tmp, x_tmp, rtol,itnlim )
x(j1,j2,1:N_unknown)=x_tmp(1:N_unknown)
end do
end do
end if
! STAGE 12 Determine the voltage phi in each node of the mesh
ALLOCATE ( phi(1:jmax-1,1:jmax-1,1:N_nodes) )
phi(1:jmax-1,1:jmax-1,1:N_nodes)=0d0
do j1=1,jmax-1
do j2=j1,jmax-1
do i=1,N_nodes
if (Node_Type(i).EQ.0) then
phi(j1,j2,i)=x(j1,j2,Node_to_Known_Unknown(i))
else
phi(j1,j2,i)=V(j1,j2,Node_to_Known_Unknown(i))
end if
end do
end do
end do
if(verbose) write(*,*)' Capacitance computation from electric energy'
! STAGE 13: Capacitance computation from electric energy
! CJS comment: Should there be a contribution due to the asymptotic boundary? The boundary is not a 0V equipotential...
! The conclusion is that this contribution should be small and the solution as implemented here converges to
! the correct solution as the outer boundary distance is increased
ALLOCATE ( energy(1:jmax-1,1:jmax-1) )
energy(1:jmax-1,1:jmax-1)=0d0
do j1=1,jmax-1
do j2=j1,jmax-1
do i=1,N_elements
n1_el=Element_data(i,2)
n2_el=Element_data(i,3)
n3_el=Element_data(i,4)
do nd1=1,3
do nd2=1,3
bc_comp=(b(i,nd1)*b(i,nd2)+c(i,nd1)*c(i,nd2))
phi_comp=phi(j1,j2,Element_data(i,nd1+1))*(phi(j1,j2,Element_data(i,nd2+1)))
delta_energy=eps0*eps_r(i)*bc_comp*phi_comp/(8.0*delta(i))
energy(j1,j2)=energy(j1,j2)+delta_energy
end do
end do
end do
end do
end do
ALLOCATE ( Capacitance_energy(1:jmax-1,1:jmax-1) )
Capacitance_energy(1:jmax-1,1:jmax-1)=0d0
ALLOCATE ( Conductance_energy(1:jmax-1,1:jmax-1) )
Conductance_energy(1:jmax-1,1:jmax-1)=0d0
do j1=1,jmax-1
! diagonal elements
Capacitance_energy(j1,j1)=2.0*dble(energy(j1,j1))
Conductance_energy(j1,j1)=2.0*(-2d0*pi*frequency*aimag(energy(j1,j1)))
! off diagonal elements
do j2=j1+1,jmax-1
! Theory_Manual_Eqn 4.28
Capacitance_energy(j1,j2)=dble((energy(j1,j2)-energy(j1,j1)-energy(j2,j2)))
Capacitance_energy(j2,j1)=Capacitance_energy(j1,j2)
! Theory_Manual_Eqn 4.29
Conductance_energy(j1,j2)=-2d0*pi*frequency*aimag((energy(j1,j2)-energy(j1,j1)-energy(j2,j2)))
Conductance_energy(j2,j1)=Conductance_energy(j1,j2)
end do
end do
if(verbose) then
write(*,*)' '
write(*,*)'Capacitance matrix from energy'
do j1=1,jmax-1
write(*,8000)( Capacitance_energy(j1,j2),j2=1,jmax-1 )
end do
write(*,*)' '
write(*,*)'Conductance matrix from energy'
do j1=1,jmax-1
write(*,8000)( Conductance_energy(j1,j2),j2=1,jmax-1 )
end do
end if
! STAGE 14: Inductance matrix computation from inverse of capacitance matrix
ALLOCATE ( Inductance_energy(1:jmax-1,1:jmax-1) )
ierr=0 ! set ierr=0 to cause an error if there is a problem calculating the inverse
CALL dinvert_gauss_jordan(Capacitance_energy,jmax-1,Inductance_energy,jmax-1,ierr)
! Include the relative permittivity of the background medium
Mat_Type=1
Inductance_energy(:,:)=Inductance_energy(:,:)*mu0*eps0*(Mat_Prop(Mat_Type,2)+j*Mat_Prop(Mat_Type,3))
if (verbose) then
write(*,*)' '
write(*,*)'Inductance matrix from energy'
do j1=1,jmax-1
write(*,8000)( Inductance_energy(j1,j2),j2=1,jmax-1 )
end do
end if
8000 format(100E12.4)
! STAGE 15: Copy the inductance, capacitance and conductance matrices to the output matrices
! Making the matrices symmetric explicitly (may not be symmetric to machine precision from the inverse calculation for L)
if (verbose) write(*,*)' Copy L, C, G matrices'
! Make the matrices symmetric explicitly (may not be symmetric to machine precision from the inverse calculation)
do j1=1,jmax-1
Lmat(j1,j1)=Inductance_energy(j1,j1)
Cmat(j1,j1)=Capacitance_energy(j1,j1)
Gmat(j1,j1)=Conductance_energy(j1,j1)
do j2=j1+1,jmax-1
Lmat(j1,j2)=Inductance_energy(j1,j2)
Cmat(j1,j2)=Capacitance_energy(j1,j2)
Gmat(j1,j2)=Conductance_energy(j1,j2)
Lmat(j2,j1)=Inductance_energy(j1,j2)
Cmat(j2,j1)=Capacitance_energy(j1,j2)
Gmat(j2,j1)=Conductance_energy(j1,j2)
end do
end do
! STAGE 16: plot potentials to vtk file for visualisation if required
if (plot_potential) then
! We write out the potentials in vtk format here....
! calculate a scale for the problem
scale=0d0
do i=1,N_nodes
scale=max( scale,sqrt(node_coordinates(i,2)**2+node_coordinates(i,3)**2) )
end do
! write potential as a vtk file
do j1=1,jmax-1
do j2=1,jmax-1
write(filename,'(A,A,I1,I1,A4)')trim(mesh_filename),'_V',j1,j2,'.vtk'
open(unit=10,file=trim(filename))
! write header information
! write vtk header
write(10,'(A)')'# vtk DataFile Version 2.0'
write(10,'(A)')'V.vtk'
write(10,'(A)')'ASCII'
write(10,'(A)')'DATASET POLYDATA'
write(10,'(A,I10,A)')'POINTS',n_nodes,' float'
! write point data
do i=1,N_nodes
write(10,8005)node_coordinates(i,2)+ox,node_coordinates(i,3)+oy,real(phi(j1,j2,i)*scale)
end do
! write element data (note node numbering starts from 0 in vtk format)
write(10,'(A,2I10)')'POLYGONS',n_elements,n_elements*4
do i=1,N_elements
write(10,8010)3,Element_data(i,2)-1,Element_data(i,3)-1,Element_data(i,4)-1
end do
! STAGE 6. write data associated with points
! write point based data
write(10,'(A,I10)')'POINT_DATA ',n_nodes
write(10,'(A)')'SCALARS Field_on_cells float 1'
write(10,'(A)')'LOOKUP_TABLE field_on_cells_table'
do i=1,N_nodes
write(10,8020)real(phi(j1,j2,i))
end do
close(unit=10)
end do
end do
end if ! plot_potential
! STAGE 17: plot mesh to vtk file for visualisation if required
if (plot_mesh) then
! We write out the mesh in vtk format here....
! calculate a scale for the problem
scale=0d0
do i=1,N_nodes
scale=max( scale,sqrt(node_coordinates(i,2)**2+node_coordinates(i,3)**2) )
end do
! write potential as a vtk file
filename=trim(mesh_filename)//'.vtk'
open(unit=10,file=trim(filename))
! write header information
! write vtk header
write(10,'(A)')'# vtk DataFile Version 2.0'
write(10,'(A)')'V.vtk'
write(10,'(A)')'ASCII'
write(10,'(A)')'DATASET POLYDATA'
write(10,'(A,I10,A)')'POINTS',n_nodes,' float'
! write point data
do i=1,N_nodes
write(10,8005)node_coordinates(i,2)+ox,node_coordinates(i,3)+oy,0d0
end do
! write element data (note node numbering starts from 0 in vtk format)
write(10,'(A,2I10)')'POLYGONS',n_elements,n_elements*4
do i=1,N_elements
write(10,8010)3,Element_data(i,2)-1,Element_data(i,3)-1,Element_data(i,4)-1
end do
! STAGE 6. write data associated with points
! write point based data
write(10,'(A,I10)')'POINT_DATA ',n_nodes
write(10,'(A)')'SCALARS Field_on_cells float 1'
write(10,'(A)')'LOOKUP_TABLE field_on_cells_table'
do i=1,N_nodes
write(10,8020)real(0d0)
end do
close(unit=10)
end if ! plot_mesh
! format specifications for potential and mesh outputs
8005 format(3E14.5)
8010 format(I3,4I12)
8020 format(E14.5)
! STAGE 18: deallocate memory
if (verbose) write(*,*)' Deallocate memory'
DEALLOCATE ( node_coordinates )
DEALLOCATE ( Element_data )
DEALLOCATE ( N_elements_boundary )
DEALLOCATE ( N_nodes_boundary )
do i=1,N_boundaries_max
if (allocated( boundary_info(i)%boundary_elements )) DEALLOCATE ( boundary_info(i)%boundary_elements )
if (allocated( boundary_info(i)%boundary_nodes )) DEALLOCATE ( boundary_info(i)%boundary_nodes)
end do
DEALLOCATE ( boundary_info )
DEALLOCATE( boundary_segment_to_boundary_number_list )
DEALLOCATE ( Mat_Prop )
DEALLOCATE ( Node_Type )
DEALLOCATE ( Node_to_Known_Unknown )
DEALLOCATE ( Vector_of_Knowns )
DEALLOCATE ( V )
DEALLOCATE( b )
DEALLOCATE( c )
DEALLOCATE( delta )
DEALLOCATE( eps_r )
DEALLOCATE( i_K )
DEALLOCATE( j_K )
DEALLOCATE( s_K )
if ( ALLOCATED(s_K_re) ) DEALLOCATE( s_K_re )
DEALLOCATE( i_K_rhs )
DEALLOCATE( j_K_rhs )
DEALLOCATE( s_K_rhs )
DEALLOCATE ( x )
DEALLOCATE ( x_tmp )
DEALLOCATE ( b_tmp )
DEALLOCATE ( v_tmp )
if ( ALLOCATED(K) ) DEALLOCATE ( K )
if ( ALLOCATED(KI) ) DEALLOCATE ( KI )
DEALLOCATE ( K_rhs )
DEALLOCATE( phi )
DEALLOCATE ( energy )
DEALLOCATE ( Capacitance_energy )
DEALLOCATE ( Conductance_energy )
DEALLOCATE ( Inductance_energy )
if (verbose) write(*,*)'FINISHED Laplace'
RETURN
9000 write(run_status,*)'ERROR in Laplace opening the mesh file:',trim(mesh_filename)
CALL write_program_status()
STOP 1
9010 write(run_status,*)'ERROR in Laplace reading the mesh file:',trim(mesh_filename)
CALL write_program_status()
STOP 1
9020 write(run_status,*)'ERROR in Laplace opening the boundary file:',boundary_file_name
CALL write_program_status()
STOP 1
9030 write(run_status,*)'ERROR in Laplace reading the boundary file:',boundary_file_name
CALL write_program_status()
STOP 1
END SUBROUTINE Laplace
!
!_________________________________________________________________________________
!
!
FUNCTION ismember(number,array,size,element2) RESULT(res)
! return 1 if number is found in the array, 0 otherwise
integer,intent(IN) :: number,size,element2
integer,intent(IN) :: array(1:size,1:2)
integer :: res
! local variables
integer :: i
! start
res=0
do i=1,size
if (number.EQ.array(i,element2)) then
res=1
RETURN
end if
end do
RETURN
END FUNCTION ismember