shield_conductor_and_transfer_impedance_model_builder.F90 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! PROGRAM shield_conductor_and_transfer_impedance_model_builder
!
! NAME
!     shield_conductor_and_transfer_impedance_model_builder
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     Calculate the transfer impedance and conductor impedance of a shield 
!     based on the geometrical and electrical properties of the braid forming
!     the shield. The calculations are based on the NLR theory presented in the Theory Manual
!
! Example input file:
!0.002           ! braid diameter, D (m)
!8               ! Number of carriers, C
!10              ! Number of wires in a carrier, N
!0.000025        ! diameter of a single wire, d (m)
!5E7             ! conductivity of wires (S/m)
!50.0            ! pitch angle of the braid (degrees)
!4               ! order of transfer impedance model
!log             ! frequency range type
!1E5   1E9  1000 ! fmin, fmax, number of frequencies
!
! COMMENTS
!     The braid equivalent thickness is calculated from the d.c. resistance of the braid and the braid conductivity
!
! HISTORY
!
!     started 22/08/2016 CJS 
!
!
PROGRAM shield_conductor_and_transfer_impedance_model_builder

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

! local variables

character(len=filename_length)    :: braid_name     ! name of the braid model
character(len=filename_length)    :: filename       ! filename for the braid model specification
    
logical        :: file_exists

real(dp) :: D                      ! braid diameter, D (m)
integer  :: C                      ! Number of carriers, C
integer  :: N                      ! Number of wires in a carrier, N
real(dp) :: dw                     ! diameter of a single wire, d (m)
real(dp) :: sigma                  ! conductivity of wires (S/m)
real(dp) :: alpha                  ! pitch angle of the braid (degrees)
integer  :: order                  ! order of transfer impedance and conductor impedance model

type(frequency_specification) :: frequency_data  ! frequency range data for transfer impedance and conductor impedance model

complex(dp),allocatable  :: Zd(:)      ! Frequency dependent diffusion impedance data
complex(dp),allocatable  :: Zt(:)      ! Frequency dependent transfer impedance data
complex(dp),allocatable  :: Zc(:)      ! Frequency dependent shield conductor impedance data
complex(dp)  :: Zt_fit       ! Vector fit model Frequency dependent transfer impedance data
complex(dp)  :: Zc_fit       ! Vector fit model Frequency dependent shield conductor impedance data

type(Sfilter)  :: Zd_filter      ! Frequency dependent diffusion impedance rational function model
type(Sfilter)  :: Zt_filter      ! Frequency dependent transfer impedance rational function model
type(Sfilter)  :: Zc_filter      ! Frequency dependent shield conductor impedance rational function model

complex(dp)              :: M          ! Total contribution originating from braid magnetic field leakage 
complex(dp)              :: M12        ! per-unit-length hole inductance 
complex(dp)              :: Mb         ! braid inductance
complex(dp)              :: Ms         ! skin inductance

real(dp)                 :: w          ! angular frequency

real(dp)    :: R0       ! d.c. resistance of shield
complex(dp) :: gamma    ! complex propagation constant in shield
real(dp)    :: delta    ! skin depth in shield
real(dp)    :: T        ! shield conductor thickness
real(dp)    :: lh       ! hole length
real(dp)    :: wh       ! hole width
real(dp)    :: S        ! hole area
real(dp)    :: req      ! equivalent hole radius

real(dp)    :: b       ! width between holes
real(dp)    :: hh      ! average height for braid inductance calculation
real(dp)    :: Dm      ! Mean diameter of braid for braid inductance calculation

real(dp)    :: v     ! Number of holes per unit length
real(dp)    :: gc    ! constant used in hole inductance calculation
real(dp)    :: F     ! Fill factor of braid
real(dp)    :: K     ! Optical coverage of braid
real(dp)    :: Ck    ! constant used in hole inductance calculation

! variables for intermediate quantities used in the calculations
real(dp)    :: P     
real(dp)    :: kappa 
complex(dp) :: sinh_gT  
complex(dp) :: cosh_gT
complex(dp) :: u
complex(dp) :: nu

integer        :: floop  ! frequency loop variable

integer        :: Zt_aorder,Zt_border  ! order of transfer impedance model

integer        :: i      

integer        :: ierr  ! integer to return error codes from file reads

! START

! Open the input file describing the braid parameters
! This file could be created by the associated GUI or otherwise generated

  verbose=.TRUE.

  program_name="shield_conductor_and_transfer_impedance_model_builder"
  run_status='Started'
  CALL write_program_status()
  
  CALL read_version()
    
  CALL write_license()

  write(*,*)'Enter the name of the shield braid specification data (without .braid_spec extension)'

  read(*,'(A)')braid_name
  filename=trim(braid_name)//braid_spec_file_extn

  inquire(file=trim(filename),exist=file_exists)
  if (.NOT.file_exists) then
    run_status='ERROR in shield_conductor_and_transfer_impedance_model_builder, Cannot find the file:'//trim(filename)
    CALL write_program_status()
    STOP 1
  end if 
  
! open and read the file
  
  OPEN(unit=braid_spec_file_unit,file=filename)

  if(verbose) write(*,*)'Opened file:',trim(filename)
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)D
  if (ierr.NE.0) then 
    run_status='ERROR reading shield diameter'
    CALL write_program_status()
    STOP 1
  end if
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)C
  if (ierr.NE.0) then 
    run_status='ERROR reading number of carriers'
    CALL write_program_status()
    STOP 1
  end if
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)N
  if (ierr.NE.0) then 
    run_status='ERROR reading number of number of wires in a carrier'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)dw
  if (ierr.NE.0) then 
    run_status='ERROR reading wire diameter'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)sigma
  if (ierr.NE.0) then 
    run_status='ERROR reading wire conductivity'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)alpha
  if (ierr.NE.0) then 
    run_status='ERROR reading pitch angle of the braid'
    CALL write_program_status()
    STOP 1
  end if
! convert alpha to radians
  alpha=alpha*pi/180d0
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)order
  if (ierr.NE.0) then 
    run_status='ERROR reading the model order for the transfer impedance and conductor impedance models'
    CALL write_program_status()
    STOP 1
  end if
  
  CALL read_and_set_up_frequency_specification(frequency_data,braid_spec_file_unit)

! close the file with the cable data
  CLOSE(unit=braid_spec_file_unit)
  
! Evaluate the shield transfer impedance and conductor impedance over the specified frequency range

  ALLOCATE(Zd(1:frequency_data%n_frequencies))
  ALLOCATE(Zt(1:frequency_data%n_frequencies))
  ALLOCATE(Zc(1:frequency_data%n_frequencies))

! Calculate the solution parameters which are frequency independent  

  gc=(2d0/pi)**(3d0/2d0)
  P=C*tan(alpha)/(2d0*pi*D)
  v=P*C
  F=N*C*dw/(2d0*pi*D*cos(alpha))   ! fill factor
  K=2d0*F-F*F   ! optical coverage
  
  lh=(1d0-F)*N*dw/(F*sin(alpha))
  wh=(1d0-F)*N*dw/(F*cos(alpha))
  
  R0=4d0/(pi*dw*dw*N*C*sigma*cos(alpha))    ! d.c. resistance. equation 5.63 of D1
  
  S=pi*wh*lh/4d0   ! hole area
  req=sqrt(S/pi)
  kappa=1.84d0/req  

! Calculate an equivalent shield thickness from R0, D and sigma

  T=1d0/(2d0*pi*sigma*(D/2d0)*R0)
  
  Ck=0.875d0*exp(-j*kappa*T)

  Dm=D+2d0*dw
  b=(2d0*pi*Dm/C)*cos(alpha)-N*dw
  if (b.GT.dw) then
    hh=2d0*dw/(1d0+b/dw)
  else
    hh=dw
  end if
    
! Hole inductance term  ! equation 5.82 of D1
        
  M12=1.08D0*gc*(pi*mu0/(6d0*C))*((1-K)**(3d0/3d0))*(2d0-cos(alpha))*Ck
    
! Braid inductance term
    
  Mb=-mu0*(hh/(4d0*pi*Dm))*(1d0-(tan(alpha))**2)
    
! Skin inductance term. Assumed to be zero here.

  Ms=0d0

! Total field leakage contributions

  M=M12+Mb+Ms
  
  if (verbose) then
   
    write(*,*)'braid circummference, cb=',pi*D
    write(*,*)'C=',C,' Number of carriers'
    write(*,*)'N=',N,' Number of conductors in each carrier'
    write(*,*)'W=',N*dw,' Width of each carrier'
    write(*,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
    write(*,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
    write(*,*)'P=',P
    write(*,*)'v=',v,'  Number of holes per unit length in braid'
    write(*,*)'F=',F,'  Fill factor'
    write(*,*)'K=',K,'  Optical coverage'
    write(*,*)'l=',lh,'  hole length'
    write(*,*)'w=',wh,'  hole width'
    write(*,*)'S=',S, '  hole area'
    write(*,*)'req=',req,'  hole equivalent radius'
    write(*,*)'k=',kappa,'  hole cutoff k value'
    write(*,*)'Ck=',Ck,'  hole inductance factor'
    
    write(*,*)'Ro',R0,'  braid d.c. resistance'
    write(*,*)'T ',T,'  braid equivalent thickness'
    write(*,*)'mean braid diameter, Dm=',Dm
    write(*,*)'Width between holes,  b=',b
    write(*,*)'Average height for braid inductance,  hh=',hh
    
    write(*,*)'M12=',M12,' Hole inductance'
    write(*,*)'Mb =',Mb,' Braid inductance'
    write(*,*)'Ms=',Ms,' Skin inductance'
    write(*,*)'M=',M,' Total transfer inductance'
 
  end if ! verbose
  
  open(unit=83,file='Zt_Zc.dat')
  
  do floop=1,frequency_data%n_frequencies
  
    w=2d0*pi*frequency_data%freq_list(floop)

! Diffusion impedance term
    delta=sqrt(2d0/(w*mu0*sigma))             ! skin depth in conductor
    gamma=cmplx(1d0,1d0)/cmplx(delta)         ! complex propagation constant in shield
        
    sinh_gT=(exp(gamma*T)-exp(-gamma*T))/(2d0,0d0)
    cosh_gT=(exp(gamma*T)+exp(-gamma*T))/(2d0,0d0)
    
    Zd(floop)=R0*gamma*T/sinh_gT      ! equation 5.62 of D1
    
! Terms for calculation in Schelkunoff's notation
    nu=j*w*mu0/gamma
    u=t*sqrt(2d0*sigma*w*mu0)

! Transfer impedance is the sum of the diffusion impedance and the transfer inductance
    Zt(floop)=Zd(floop)+j*w*M
    
! Conductor impedance term
    Zc(floop)=R0*gamma*T*cosh_gT/sinh_gT
    
    write(83,8000)frequency_data%freq_list(floop),real(Zt(floop)),aimag(Zt(floop)),real(Zc(floop)),aimag(Zc(floop))
8000 format(5ES16.6)

  end do ! next frequency
  
  close(unit=83)

! Create a rational function model of the transfer impedance data in two stages
! First, create a rational function model of the frequency dependent diffusion impedance
! Then add the transfer inductance term jwM

! call calculate_Sfilter with border=aorder+1 and with fit_type=0 i.e. Zd->0 as f-> infinity

  if (verbose) write(*,*)'Calculate_Sfilter for diffusion impedance, Zd'
  CALL Calculate_Sfilter(Zd,frequency_data%freq_list,frequency_data%n_frequencies,Zd_filter,order,1,0) ! call with fit_type=0
  
! Add the transfer inductance term to the diffusion impedance filter i.e. Zt=Zd+j*w*M

  Zt_aorder=max(Zd_filter%a%order,Zd_filter%b%order+1)
  Zt_border=Zd_filter%b%order
  
  Zt_filter=allocate_Sfilter(Zt_aorder,Zt_border)
  
  Zt_filter%wnorm=Zd_filter%wnorm
  if (verbose) write(*,*)'Zt_filter%wnorm=',Zt_filter%wnorm
  
! copy a coefficients from Zd_filter to Zt_filter

  do i=0,Zd_filter%a%order
    Zt_filter%a%coeff(i)=Zd_filter%a%coeff(i)
  end do
  
! copy b coefficients from Zd_filter to Zt_filter

  do i=0,Zd_filter%b%order
    Zt_filter%b%coeff(i)=Zd_filter%b%coeff(i)
  end do

! add the jwM term  

  do i=0,Zd_filter%b%order
    Zt_filter%a%coeff(i+1)=Zt_filter%a%coeff(i+1)+(M*Zt_filter%wnorm)*Zd_filter%b%coeff(i)
  end do
  
! Create a rational function model of the shield conductor impedance data

! call calculate_Sfilter with border=aorder and with fit_type=0
  if (verbose) write(*,*)'Calculate_Sfilter for surface impedance, Zc'
  CALL Calculate_Sfilter(Zc,frequency_data%freq_list,frequency_data%n_frequencies,Zc_filter,order,0,0) ! call with fit_type=0

! Write vector fit models to file
  open(unit=84,file='Zt_fit.fout')
  open(unit=85,file='Zc_fit.fout')
  do floop=1,frequency_data%n_frequencies
  
    Zt_fit=evaluate_Sfilter_frequency_response(Zt_filter,frequency_data%freq_list(floop))
    Zc_fit=evaluate_Sfilter_frequency_response(Zc_filter,frequency_data%freq_list(floop))
    
    write(84,8000)frequency_data%freq_list(floop),real(Zt_fit),aimag(Zt_fit)
    write(85,8000)frequency_data%freq_list(floop),real(Zc_fit),aimag(Zc_fit)
    
  end do
  
  close(unit=84)
  close(unit=85)

! Open a file for the shield model
  
  filename=trim(braid_name)//shield_model_file_extn
  open(unit=shield_model_file_unit,file=filename)

! Write the shield equivalent thickness and conductivity 

  write(shield_model_file_unit,*)D/2d0,' # Parameter Shield radius (m)'
  write(shield_model_file_unit,*)T,    ' # Parameter Equivalent shield thickness (m)'
  write(shield_model_file_unit,*)sigma,' # Parameter Shield conductivity (S/m)'

! Write the transfer impedance model to the shield model file

  write(shield_model_file_unit,*)'# Transfer impedance model'
  CALL Write_Sfilter(Zt_filter,shield_model_file_unit)

! Write the shield conductor model to the shield model file

  write(shield_model_file_unit,*)'Conductor surface impedance model'
  CALL Write_Sfilter(Zc_filter,shield_model_file_unit)

! Write the solution parameters to the shield model file  
   
  write(shield_model_file_unit,*)'# Shield parameters used in the shield model calculation'
  write(shield_model_file_unit,*)'braid circummference, cb=',pi*D
  write(shield_model_file_unit,*)'C=',C,' Number of carriers'
  write(shield_model_file_unit,*)'N=',N,' Number of conductors in each carrier'
  write(shield_model_file_unit,*)'W=',N*dw,' Width of each carrier'
  write(shield_model_file_unit,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
  write(shield_model_file_unit,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
  write(shield_model_file_unit,*)'P=',P
  write(shield_model_file_unit,*)'v=',v,'  Number of holes per unit length in braid'
  write(shield_model_file_unit,*)'F=',F,'  Fill factor'
  write(shield_model_file_unit,*)'K=',K,'  Optical coverage'
  write(shield_model_file_unit,*)'l=',lh,'  hole length'
  write(shield_model_file_unit,*)'w=',wh,'  hole width'
  write(shield_model_file_unit,*)'S=',S, '  hole area'
  write(shield_model_file_unit,*)'req=',req,'  hole equivalent radius'
  write(shield_model_file_unit,*)'k=',kappa,'  hole cutoff k value'
  write(shield_model_file_unit,*)'Ck=',Ck,'  hole inductance factor'
  
  write(shield_model_file_unit,*)'Ro',R0,'  braid d.c. resistance'
  write(shield_model_file_unit,*)'T ',T,'  braid equivalent thickness'
  write(shield_model_file_unit,*)'mean braid diameter, Dm=',Dm
  write(shield_model_file_unit,*)'Width between holes,  b=',b
  write(shield_model_file_unit,*)'Average height for braid inductance,  hh=',hh
  
  write(shield_model_file_unit,*)'M12=',M12,' Hole inductance'
  write(shield_model_file_unit,*)'Mb =',Mb,' Braid inductance'
  write(shield_model_file_unit,*)'Ms=',Ms,' Skin inductance'
  write(shield_model_file_unit,*)'M=',M,' Total transfer inductance'

! Close the shield model file

  close(unit=shield_model_file_unit)

! deallocate memory and finish up
  DEALLOCATE(Zd)
  DEALLOCATE(Zt)
  DEALLOCATE(Zc)

  run_status='Finished_Correctly'
  CALL write_program_status()
  
END PROGRAM shield_conductor_and_transfer_impedance_model_builder