spacewire.F90
23.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2017 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE spacewire_set_parameters
! SUBROUTINE spacewire_set_internal_domain_information
! SUBROUTINE spacewire_plot
!
! NAME
! spacewire_set_parameters
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Set the overall parameters for a spacewire cable
!
! COMMENTS
!
!
! HISTORY
!
! started 5/9/2016 CJS based on spacewire.F90
!
!
SUBROUTINE spacewire_set_parameters(cable)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(INOUT) :: cable
! local variables
! START
cable%cable_type=cable_geometry_type_spacewire
cable%tot_n_conductors=13
cable%tot_n_domains=10
cable%n_external_conductors=1
cable%n_internal_conductors=12
cable%n_internal_domains=9
cable%n_parameters=13
cable%n_dielectric_filters=3
cable%n_transfer_impedance_models=2
END SUBROUTINE spacewire_set_parameters
!
! NAME
! spacewire_set_internal_domain_information
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Set the overall parameters for a spacewire cable
!
! COMMENTS
! Set the dimension of the domain transformation matrices to include an external reference conductor for the cable
!
!
! HISTORY
!
! started 12/4/201 CJS
! 8/9/2016 CJS common mode/ differential mode loss correction
! 19/9/2016 CJS frequency dependent dielectric in Laplace solver
! 2/11/2016 CJS inhomogeneous dielectric in twisted pair model
! 8/5/2017 CJS: Include references to Theory_Manual
!
!
SUBROUTINE spacewire_set_internal_domain_information(cable)
USE type_specifications
USE constants
USE general_module
USE maths
USE PUL_parameter_module
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(INOUT) :: cable
! local variables
integer :: n_conductors
integer :: dim
integer :: domain
integer :: inner_cable
real(dp) :: d,ctheta
real(dp) :: L11,L12,L13
real(dp) :: C11,C12
real(dp) :: LC,LD,CC,CD
logical :: dielectric_is_homogeneous
integer :: conductor_1,conductor_2,reference_conductor
integer :: diff,com,inner_shield,outer_shield
type(PUL_type) :: PUL
real(dp) :: C_air
type(Sfilter) :: jw
integer :: ierr,i
real(dp) :: epsr
! variables for cable parameter checks
logical :: cable_spec_error
real(dp) :: rw
real(dp) :: rd
real(dp) :: s
real(dp) :: rs
real(dp) :: rd2
real(dp) :: stpr
real(dp) :: rs2
real(dp) :: rd3
real(dp) :: t1
real(dp) :: t2
real(dp) :: sigma_w
real(dp) :: sigma_s1
real(dp) :: sigma_s2
type(Sfilter) :: epsr1,epsr2,epsr3,ZT1,ZT2
type(Sfilter) :: YC,YD
character(LEN=error_message_length) :: message
! START
! Check the cable parameters
rw=cable%parameters(1)
rd=cable%parameters(2)
s=cable%parameters(3)
rs=cable%parameters(4)
t1=cable%parameters(5)
rd2=cable%parameters(6)
stpr=cable%parameters(7)
rs2=cable%parameters(8)
t2=cable%parameters(9)
rd3=cable%parameters(10)
sigma_w=cable%parameters(11)
sigma_s1=cable%parameters(12)
sigma_s2=cable%parameters(13)
epsr1=cable%dielectric_filter(1)
epsr2=cable%dielectric_filter(2)
epsr3=cable%dielectric_filter(3)
ZT1=cable%transfer_impedance(1)
ZT2=cable%transfer_impedance(2)
write(*,*)'CHECKING FOR ERRORS'
cable_spec_error=.FALSE. ! assume no errors initially
message=''
CALL spacewire_check(rw,rd,s,rs,rd2,stpr,rs2,rd3,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_w,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_s1,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_s2,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr1,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr2,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr3,cable_spec_error,cable%cable_name,message)
CALL transfer_impedance_check(ZT1,cable_spec_error,cable%cable_name,message)
CALL transfer_impedance_check(ZT2,cable_spec_error,cable%cable_name,message)
CALL surface_impedance_check(ZT1,sigma_s1,rs,t1,cable_spec_error,cable%cable_name,message)
CALL surface_impedance_check(ZT2,sigma_s2,rs2,t2,cable_spec_error,cable%cable_name,message)
if (cable_spec_error) then
run_status='ERROR in cable_model_builder, error on parameters for cable:'//trim(cable%cable_name)//'. '//trim(message)
CALL write_program_status()
STOP 1
end if
write(*,*)'Use laplace=',use_laplace
! pre-calculate inductance matrix elements for two conductors in a cylindrical shield
! See C.R. Paul, 1st edition, equation 3.67a,b with cos(thetaij)=-1
epsr=evaluate_Sfilter_high_frequency_limit(cable%dielectric_filter(1))
jw=jwA_filter(1d0)
domain=1
if (use_laplace) then
! allocate memory for the PUL parameter solver interface
if(verbose) write(*,*)'Domain:',domain
if(verbose) write(*,*)'Allocating PUL data structure for shielded twisted pairs'
n_conductors=3
CALL allocate_and_reset_PUL_data(PUL,n_conductors)
PUL%shape(1:n_conductors)=circle
PUL%x(1)=-s/2d0
PUL%y(1)=0.0
PUL%r(1)=rw
PUL%rd(1)=rd
PUL%epsr(1)=epsr1
PUL%x(2)=s/2d0
PUL%y(2)=0.0
PUL%r(2)=rw
PUL%rd(2)=rd
PUL%epsr(2)=epsr1
PUL%epsr_background = 1d0 ! permittivity of homogeneous dielectric medium surrounding the insulated conductors (air)
! no ground plane
PUL%ground_plane_present=.FALSE.
! add overshield i.e. the twinax shield
PUL%overshield_present=.TRUE.
PUL%overshield_x = 0d0 ! shield is centred at the origin in this calculation
PUL%overshield_y = 0d0
PUL%overshield_r = rs ! twinax shield radius
CALL PUL_LC_Laplace(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain)
! there may be slight asymmmetry due to meshing so average diagonal and off diagonal elements
! Theory_Manual_Eqn 3.21
L11=(PUL%L%mat(1,1)+PUL%L%mat(1,1))/2d0
L12=(PUL%L%mat(1,2)+PUL%L%mat(2,1))/2d0
C11=(PUL%C%mat(1,1)+PUL%C%mat(1,1))/2d0
C12=(PUL%C%mat(1,2)+PUL%C%mat(2,1))/2d0
dielectric_is_homogeneous=.FALSE.
CALL shielded_twisted_pair_cm_dm_parameter_calculation(L11,L12,C11,C12,epsr,LC,LD,CC,CD,dielectric_is_homogeneous)
! Theory_Manual_Eqn 3.22
YD=0.5d0*( PUL%Yfilter%sfilter_mat(1,1)+((-1d0)*PUL%Yfilter%sfilter_mat(1,2)) )
YC=2.0d0*( PUL%Yfilter%sfilter_mat(1,1)+PUL%Yfilter%sfilter_mat(1,2) )
else
! See C.R. Paul, 1st edition, equation 3.67a,b with cos(thetaij)=-1 ! Theory_Manual_Eqn 2.27, 2.28
L11=(mu0/(2d0*pi))*log( (rs**2-(s/2d0)**2)/(rs*rw) )
L12=(mu0/(2d0*pi))*log( (s/(2d0*rs)) * (rs**2+(s/2d0)**2)/(2d0*(s/2d0)**2) )
dielectric_is_homogeneous=.TRUE.
CALL shielded_twisted_pair_cm_dm_parameter_calculation(L11,L12,C11,C12,epsr,LC,LD,CC,CD,dielectric_is_homogeneous)
YD=CD*jw
YC=CC*jw
end if
if (use_laplace) CALL deallocate_PUL_data(PUL) ! deallocate the PUL data structure
domain=0
do inner_cable=1,4
! DOMAIN 1 of this sub-cable: Set the parameters for the internal differential mode domain
domain=domain+1
cable%n_internal_conductors_in_domain(domain)=2
! The number of modes in the internal differential mode domain is 1
dim=1
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
cable%L_domain(domain)%mat(1,1)=LD
cable%Z_domain(domain)%sfilter_mat(1,1)=cable%L_domain(domain)%mat(1,1)*jw
cable%C_domain(domain)%mat(1,1)=CD
cable%Y_domain(domain)%sfilter_mat(1,1)=YD
! DOMAIN 2 of this sub-cable: Set the parameters for the internal common mode domain
domain=domain+1
cable%n_internal_conductors_in_domain(domain)=2
! The number of modes in the internal common mode domain is 2
dim=1
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
cable%L_domain(domain)%mat(1,1)=LC
cable%Z_domain(domain)%sfilter_mat(1,1)=cable%L_domain(domain)%mat(1,1)*jw
cable%C_domain(domain)%mat(1,1)=CC
cable%Y_domain(domain)%sfilter_mat(1,1)=YC
end do ! next inner cable
! now set the parameters for the domain consisting of the outer shield and shields of the inner cables
domain=domain+1
cable%n_internal_conductors_in_domain(domain)=5
! The number of modes in this domain is 4
dim=4
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
! get the parameters for this domain
d=stpr ! radius on which the centres of the 4 shielded twisted pairs sit
epsr=evaluate_Sfilter_high_frequency_limit(epsr2) !
if (use_laplace) then
! allocate memory for the PUL parameter solver interface
if(verbose) write(*,*)'Domain:',domain
if(verbose) write(*,*)'Allocating PUL data structure for shielded twisted pairs'
n_conductors=5
CALL allocate_and_reset_PUL_data(PUL,n_conductors)
PUL%shape(1:n_conductors)=circle
PUL%x(1)=stpr
PUL%y(1)=0.0
PUL%r(1)=rs
PUL%rd(1)=rd2
PUL%epsr(1)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%x(2)=0.0
PUL%y(2)=stpr
PUL%r(2)=rs
PUL%rd(2)=rd2
PUL%epsr(2)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%x(3)=-stpr
PUL%y(3)=0.0
PUL%r(3)=rs
PUL%rd(3)=rd2
PUL%epsr(3)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%x(4)=0.0
PUL%y(4)=-stpr
PUL%r(4)=rs
PUL%rd(4)=rd2
PUL%epsr(4)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%epsr_background =1d0 ! permittivity of homogeneous medium surrounding the insulated shields (air)
! no ground plane
PUL%ground_plane_present=.FALSE.
! add overshield i.e. the twinax shield
PUL%overshield_present=.TRUE.
PUL%overshield_x = 0d0 ! shield is centred at the origin in this calculation
PUL%overshield_y = 0d0
PUL%overshield_r = rs2 ! twisted pair shield radius
CALL PUL_LC_Laplace(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain)
cable%L_domain(domain)%mat(:,:)=PUL%L%mat(:,:)
cable%C_domain(domain)%mat(:,:)=PUL%C%mat(:,:)
cable%Z_domain(domain)%sfilter_mat(:,:)=PUL%Zfilter%sfilter_mat(:,:)
cable%Y_domain(domain)%sfilter_mat(:,:)=PUL%Yfilter%sfilter_mat(:,:)
else
! See C.R. Paul, 1st edition, equation 3.67a,b ! Theory_Manual_Eqn 2.27, 2.28
! self inductance
L11=(mu0/(2d0*pi))*log( (rs2**2-d**2)/(rs2*rs) )
! adjacent conductors, theta=90degrees, cos(theta)=0
ctheta=0
L12=(mu0/(2d0*pi))*log( (d/(rs2)) * &
sqrt( ((d*d)**2+rs2**4-2d0*d*d*rs2*rs2*ctheta)/((d*d)**2+d**4-2d0*(d**4)*ctheta) ) )
! opposite conductors, theta=180 degrees, cos(theta)=-1
ctheta=-1d0
L13=(mu0/(2d0*pi))*log( (d/(rs2)) * &
sqrt( ((d*d)**2+rs2**4-2d0*d*d*rs2*rs2*ctheta)/((d*d)**2+d**4-2d0*(d**4)*ctheta) ) )
cable%L_domain(domain)%mat(1,1)=L11
cable%L_domain(domain)%mat(1,2)=L12
cable%L_domain(domain)%mat(1,3)=L13
cable%L_domain(domain)%mat(1,4)=L12
cable%L_domain(domain)%mat(2,1)=L12
cable%L_domain(domain)%mat(2,2)=L11
cable%L_domain(domain)%mat(2,3)=L12
cable%L_domain(domain)%mat(2,4)=L13
cable%L_domain(domain)%mat(3,1)=L13
cable%L_domain(domain)%mat(3,2)=L12
cable%L_domain(domain)%mat(3,3)=L11
cable%L_domain(domain)%mat(3,4)=L12
cable%L_domain(domain)%mat(4,1)=L12
cable%L_domain(domain)%mat(4,2)=L13
cable%L_domain(domain)%mat(4,3)=L12
cable%L_domain(domain)%mat(4,4)=L11
! calculate the capacitance matrix from the inverse of the inductance matrix *eps0*epsr*mu0
ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
CALL dinvert_Gauss_Jordan(cable%L_domain(domain)%mat,4,cable%C_domain(domain)%mat,4,ierr)
cable%C_domain(domain)%mat(:,:)=eps0*epsr*mu0*cable%C_domain(domain)%mat(:,:)
CALL Z_Y_from_L_C(cable%L_domain(domain),cable%C_domain(domain),cable%Z_domain(domain),cable%Y_domain(domain))
end if
if (use_laplace) CALL deallocate_PUL_data(PUL) ! deallocate the PUL data structure
! Set the domain decomposition matrices ! Theory_Manual_Eqn 6.13, 6.14
! The dimension of the domain transformation matrices is 14
dim=14
cable%MI%dim=dim
ALLOCATE(cable%MI%mat(dim,dim))
cable%MV%dim=dim
ALLOCATE(cable%MV%mat(dim,dim))
cable%MI%mat(1:dim,1:dim)=0d0
cable%MV%mat(1:dim,1:dim)=0d0
! domain decomposition for the 4 sheilded twisted pair cables
do inner_cable=1,4
conductor_1=2*(inner_cable-1)+1
conductor_2=conductor_1+1
diff=2*(inner_cable-1)+1
com=diff+1
inner_shield=8+inner_cable
cable%MI%mat(diff,conductor_1)=0.5d0
cable%MI%mat(diff,conductor_2)=-0.5d0
cable%MI%mat(com,conductor_1)=1d0
cable%MI%mat(com,conductor_2)=1d0
cable%MV%mat(diff,conductor_1)=1d0
cable%MV%mat(diff,conductor_2)=-1d0
cable%MV%mat(com,conductor_1)=0.5d0
cable%MV%mat(com,conductor_2)=0.5d0
cable%MV%mat(com,inner_shield)=-1d0
end do
! domain decomposition for the domain between outer shield and twisted pair shields
outer_shield=13
do inner_cable=1,4
conductor_1=2*(inner_cable-1)+1
conductor_2=conductor_1+1
inner_shield=8+inner_cable
cable%MI%mat(inner_shield,conductor_1)=1d0
cable%MI%mat(inner_shield,conductor_2)=1d0
cable%MI%mat(inner_shield,inner_shield)=1d0
cable%MV%mat(inner_shield,inner_shield)=1d0
cable%MV%mat(inner_shield,outer_shield)=-1d0
end do
! domain decomposition for the external domain conductor.
cable%MI%mat(13,1:13)=1d0
cable%MV%mat(13,13)=1d0
cable%MV%mat(13,14)=-1d0
! domain decomposition for the reference domain conductor. Outer shield current is equal to the sum of all other currents
cable%MI%mat(14,1:14)=1d0
cable%MV%mat(14,14)=1d0
! Set the local reference conductor numbering
ALLOCATE( cable%local_reference_conductor(13) )
cable%local_reference_conductor(1)=2 ! differential mode, reference is the second conductor
cable%local_reference_conductor(2)=9 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(3)=3 ! differential mode, reference is the second conductor
cable%local_reference_conductor(4)=10 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(5)=4 ! differential mode, reference is the second conductor
cable%local_reference_conductor(6)=11 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(7)=5 ! differential mode, reference is the second conductor
cable%local_reference_conductor(8)=12 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(9)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(10)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(11)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(12)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(13)=0 ! external domain conductor, reference not known
! Set the local domain information: include a reference conductor in the count
ALLOCATE( cable%local_domain_n_conductors(1:cable%tot_n_domains) )
cable%local_domain_n_conductors(1)=2 ! differential mode domain
cable%local_domain_n_conductors(2)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(3)=2 ! differential mode domain
cable%local_domain_n_conductors(4)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(5)=2 ! differential mode domain
cable%local_domain_n_conductors(6)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(7)=2 ! differential mode domain
cable%local_domain_n_conductors(8)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(9)=5 ! domain within outer shield
cable%local_domain_n_conductors(10)=2 ! external domain
! Set the external domain conductor and dielectric information
ALLOCATE( cable%external_model(cable%n_external_conductors) )
CALL reset_external_conductor_model(cable%external_model(1))
cable%external_model(1)%conductor_type=circle
cable%external_model(1)%conductor_radius=rs2
cable%external_model(1)%dielectric_radius=rd3
cable%external_model(1)%dielectric_epsr=epsr3
! set the conductor impedance model for the four pairs of inner conductors
do i=1,7,2
cable%conductor_impedance(i)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity
cable%conductor_impedance(i)%radius=rw
cable%conductor_impedance(i)%conductivity=sigma_w
cable%conductor_impedance(i)%Resistance_multiplication_factor=1.5d0
cable%conductor_impedance(i+1)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity
cable%conductor_impedance(i+1)%radius=rw
cable%conductor_impedance(i+1)%conductivity=sigma_w
cable%conductor_impedance(i+1)%Resistance_multiplication_factor=0.5d0
end do
! set the conductor impedance model for the four inner shields
do i=9,12
cable%conductor_impedance(i)%impedance_model_type=impedance_model_type_cylindrical_shield
cable%conductor_impedance(i)%radius=rs
cable%conductor_impedance(i)%thickness=t1
cable%conductor_impedance(i)%conductivity=sigma_s1
cable%conductor_impedance(i)%ZT_filter=ZT1
end do
! set the transfer impedance model for the outer shield conductor
cable%conductor_impedance(13)%impedance_model_type=impedance_model_type_cylindrical_shield
cable%conductor_impedance(13)%radius=rs2
cable%conductor_impedance(13)%thickness=t2
cable%conductor_impedance(13)%conductivity=sigma_s2
cable%conductor_impedance(13)%ZT_filter=ZT2
! Deallocate all filters
CALL deallocate_Sfilter(epsr1)
CALL deallocate_Sfilter(epsr2)
CALL deallocate_Sfilter(epsr3)
CALL deallocate_Sfilter(ZT1)
CALL deallocate_Sfilter(ZT2)
CALL deallocate_Sfilter(jw)
END SUBROUTINE spacewire_set_internal_domain_information
!
! NAME
! spacewire_plot
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! plot spacewire cable
!
! COMMENTS
! The angle has an impact here
! The conductor geometry must be consistent with the documentation...
!
! HISTORY
!
! started 14/4/2016 CJS
!
!
SUBROUTINE spacewire_plot(cable,x_offset,y_offset,theta,xmin,xmax,ymin,ymax)
USE type_specifications
USE general_module
USE constants
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(IN) :: cable
real(dp),intent(IN) :: x_offset,y_offset,theta
real(dp),intent(INOUT) :: xmin,xmax,ymin,ymax
! local variables
real(dp) :: x,y
real(dp) :: rw,rd
real(dp) :: s,rstp
real(dp) :: xstp,ystp
real(dp) :: isr ! inner shield radius
real(dp) :: idr ! inner dielectric radius
real(dp) :: osr ! outer shield radius
real(dp) :: odr ! outer dielectric radius
integer :: inner_cable
! START
rw=cable%parameters(1) ! inner conductor radius
rd=cable%parameters(2) ! inner conductor dielectric radius
s=cable%parameters(3) ! inner conductor separation
isr=cable%parameters(4) ! inner shield radius
idr=cable%parameters(6) ! inner dielectric radius
rstp=cable%parameters(7) ! inner conductor separation
osr=cable%parameters(8) ! outer shield radius
odr=cable%parameters(10) ! outer dielectric radius
do inner_cable=1,4
! calculate the centre for this inner cable
xstp=x_offset+rstp*sin((inner_cable-1)*pi/2d0-theta)
ystp=y_offset+rstp*cos((inner_cable-1)*pi/2d0-theta)
! plot inner conductor, 1
x=xstp+(s/2d0)*sin(-theta)
y=ystp+(s/2d0)*cos(-theta)
CALL write_circle(x,y,rw,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot inner conductor, 2
x=xstp-(s/2d0)*sin(-theta)
y=ystp-(s/2d0)*cos(-theta)
CALL write_circle(x,y,rw,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot inner conductor dielectric, 1
x=xstp+(s/2d0)*sin(-theta)
y=ystp+(s/2d0)*cos(-theta)
CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot inner conductor dielectric, 2
x=xstp-(s/2d0)*sin(-theta)
y=ystp-(s/2d0)*cos(-theta)
CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot shield conductor
x=xstp
y=ystp
CALL write_circle(x,y,isr,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot circular dielectric
x=xstp
y=ystp
CALL write_circle(x,y,idr,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
end do ! next inner cable
! plot outer shield conductor
x=x_offset
y=y_offset
CALL write_circle(x,y,osr,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot outer circular dielectric
x=x_offset
y=y_offset
CALL write_circle(x,y,odr,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
RETURN
END SUBROUTINE spacewire_plot