PUL_LC_Laplace.F90 53 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2018 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! 
!     SUBROUTINE PUL_LC_Laplace
!
! NAME
!     SUBROUTINE PUL_LC_Laplace
!
! DESCRIPTION
!     Wrapping subroutine to control the calculation of PUL_parameters by the Finite Element method
!     which is implemented in Laplace.F90
!
!     The finite element mesh is greated by the open source software gmsh: see http://gmsh.info/
!
!     The process is divided into the following stages:
! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)
! STAGE 2: Work out the numbers of conductors, points, lines, line loops and surfaces in the cross section geometry
! STAGE 3: Create the input file for the mesh generator, gmsh.
! STAGE 4: Call the mesh generator, gmsh
! STAGE 5: Call Laplace to calculate the L,C and G matrices, using the mesh that we have just generated
!     
! COMMENTS
!    This subroutine is never called in the case of a homogeneous frequency dependent dielectric region
!    If this were to change then the logic of how Laplace is called in stage 5 will have to change to 
!    take this into account.
!
! HISTORY
!    started 5/7/2016 CJS. 
!    add dielectric regions 13/7/2016 CJS. 
!    Consolidated ground_plane, overhsield and open_boundary subroutines into a single subroutine here 13/12/2016 CJS.
!    14/10/2017 CJS make the filter fitting minimum aorder=1, border=0 and
!                   ensure that border=aorder-1 to make the choice of model order more sensible
!     16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!    4/3/2018 CJS Start to include the infinite ground plane option
!
!    16/3/2018 CJS add offset to x and y for shapes. Relates to ML_flex cables
!
SUBROUTINE PUL_LC_Laplace(PUL,name,fit_order,freq_spec,domain)
!
USE type_specifications
USE constants
USE general_module
USE maths
USE filter_module
USE filter_module
USE Sfilter_fit_module
USE frequency_spec
!
IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type), intent(INOUT)            :: PUL        ! per-unit-length parameter calculation structure
  character(LEN=line_length),intent(IN)    :: name       ! string used as the base for filenames 
  integer, intent(IN)                      :: fit_order  ! filter fit_order for frequency dependent dielectrics
  type(frequency_specification),intent(IN) :: freq_spec  ! filter frequency range specification for frequency dependent dielectrics
  integer, intent(IN)                      :: domain     ! domain number used to label the mesh files
  
! parameters 
  integer,parameter :: inside =1 
  integer,parameter :: outside=2
 
! local variables

! flags to indicate the configuration
  logical :: ground_plane
  logical :: finite_ground_plane
  logical :: infinite_ground_plane
  logical :: overshield
  logical :: open_boundary

! counters and loop limits which depend on the configuration required  
  integer :: end_conductor_loop
  integer :: end_conductor_to_dielectric_loop
  integer :: tot_n_boundaries_without_dielectric
  integer :: first_conductor_shape
 
! local variables

  character(LEN=filename_length) :: geom_filename            ! filename for the geometry - i.e. the input file for gmsh
  character(LEN=filename_length) :: mesh_filename            ! filename for the mesh     - i.e. the output file from gmsh

! temposrary strings used to construct filenames
  character(LEN=filename_length) :: string1,string2
  character(LEN=filename_length) :: temp_string
  character(LEN=filename_length) :: mesh_name

  real(dp) :: xmin,xmax,ymin,ymax    ! extent of bundle conductors
  real(dp) :: xc,yc                  ! centre of bundle conductors
  real(dp) :: rboundary              ! free space boundary radius

! variables required for generating the gmsh geometry input file: we may be able to simplify 
! things here as there is some overlap with the PUL structure
  integer,allocatable  :: shape_type(:)  ! holds a nuber which indicates the shape type
  integer,allocatable  :: loop_number(:) ! holds the loop number for this shape
  real(dp),allocatable :: x(:)           ! x coordinate of the centre of the cable to which this shape belongs
  real(dp),allocatable :: y(:)           ! y coordinate of the centre of the cable to which this shape belongs
  real(dp),allocatable :: r(:)           ! radius of a circular shape or curve radius for a Dshape
  real(dp),allocatable :: rw(:)          ! width1  (x dimension) of rectangular/ Dshape
  real(dp),allocatable :: rw2(:)         ! width2  (x dimension) of rectangular/ Dshape
  real(dp),allocatable :: rh(:)          ! height (y dimension) of rectangular shape
  real(dp),allocatable :: rox(:)         ! offset in the x direction of this shape from the centre (x():),y(:) above)
  real(dp),allocatable :: roy(:)         ! offset in the y direction of this shape from the centre (x():),y(:) above)
  real(dp),allocatable :: rtheta(:)      ! rotation angle of conductor
  real(dp),allocatable :: dl(:)          ! edge length for the mesh on this shape
  logical,allocatable  :: conductor_has_dielectric(:) ! flag to indicate that a conductor has a dielectric around it
  
  real(dp)             :: dl_gp          ! edge length at the centre of the ground plane

  real(dp) :: dl_local                   ! edge length for the mesh at rectangle edge centre
  
  complex(dp) :: epsr  ! relative permittivity value
  
  integer,allocatable  :: shape_to_region(:,:)     ! array which stores the inner and outer region numbers for each shape 
                                                   ! undefined regions (inside PEC or outside the outer boundary) are set to -1
  
  logical  :: first_surface_is_free_space_boundary ! flag to indicate properties on the first surface defined
  
! counters for conductors, points, lines etc. Should be self explanatory
  integer  :: n_conductors_without_ground_plane
  integer  :: tot_n_conductors,conductor
  integer  :: tot_n_boundaries
  integer  :: n_points,point
  integer  :: n_lines,line
  integer  :: n_line_loops,line_loop
  integer  :: n_surfaces,surface  
  integer  :: n_dielectric_regions,tot_n_dielectric_regions,dielectric_region
  integer  :: n_shapes,shape,conductor_shape
  integer  :: matrix_dimension
  
  complex(dp),allocatable :: dielectric_region_epsr(:)  ! list of the relative permittivity of each region

! temporary variables used in writing the geometry input file for gmsh  
  real(dp) :: rl,rt,rdl,rx1,rx2,ry1,ry2
  real(dp) :: xp,yp,xt,yt
  integer  :: p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12
  real(dp) :: edge_length

  character(LEN=filename_length) :: command                  ! string used for the command which runs gmsh from the shell
  integer  :: gmsh_exit_stat     ! exit status from the shell command which runs gmsh.
    
  type(matrix)        :: mat1    ! temporary matrix
  type(matrix)        :: mat2    ! temporary matrix
  
! frequency dependent dielectric variables

  integer         :: floop               ! frequency loop variable
  real(dp)        :: f                   ! frequency
  
  type(matrix),allocatable   :: C_freq(:)    ! frequency dependent Capacitance matrices for each frequency of evaluation
  type(matrix),allocatable   :: G_freq(:)    ! frequency dependent Conductance matrices for each frequency of evaluation
  
  complex(dp),allocatable :: function_to_fit(:)    ! complex function to be fitted using Sfilter_fit

  logical :: dielectric_defined                ! flag to indicate whether there is a dielectric   
  logical :: frequency_dependent_dielectric    ! flag to indicate whether there is a frequency dependent dielectric
  
  integer  :: gpline1,gpline2            ! line segments for infinite ground plane
  
  integer  :: row,col            ! loop variables for matrix elements
  
  integer  :: i,ii               ! temporary loop variables

! START
  if (verbose) write(*,*)'CALLED: PUL_LC_Laplace'

! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)

  ground_plane=.FALSE.
  infinite_ground_plane=.FALSE.
  finite_ground_plane=.FALSE.
  overshield=.FALSE.
  open_boundary=.FALSE.
  
  if ((.NOT.PUL%overshield_present).AND.(.NOT.PUL%ground_plane_present)) then

! SOLUTION TYPE 1: NO OVERSHIELD, NO GROUND PLANE

    open_boundary=.TRUE.
    first_surface_is_free_space_boundary=.TRUE.
    end_conductor_loop=PUL%n_conductors
    end_conductor_to_dielectric_loop=PUL%n_conductors
    tot_n_boundaries_without_dielectric=PUL%n_conductors+1   ! add a free space boundary
    first_conductor_shape=2                    ! shape 1 is for the outer boundary
         
  else if ((.NOT.PUL%overshield_present).AND.(PUL%ground_plane_present)) then 

! SOLUTION TYPE 2:  NO OVERSHIELD, WITH GROUND PLANE

    ground_plane=.TRUE.
    if (inf_gnd) then
      infinite_ground_plane=.TRUE.
    else
      finite_ground_plane=.TRUE.    
    end if
    
    tot_n_boundaries_without_dielectric=PUL%n_conductors+1   ! add a free space boundary
    first_surface_is_free_space_boundary=.TRUE.
    end_conductor_loop=PUL%n_conductors-1                    ! the ground plane is not included here - added separately
    end_conductor_to_dielectric_loop=PUL%n_conductors    
    first_conductor_shape=2                    ! shape 1 is for the outer boundary

  else
  
! SOLUTION TYPE 3:  THERE IS AN OVERSHIELD WHICH FORMS THE OUTER BOUNDARY OF THE DOMAIN

    overshield=.TRUE.
    first_surface_is_free_space_boundary=.FALSE.
    end_conductor_loop=PUL%n_conductors-1
    end_conductor_to_dielectric_loop=PUL%n_conductors-1      ! overshield has no dielectric in the internal domain
    tot_n_boundaries_without_dielectric=PUL%n_conductors
    first_conductor_shape=1                    ! shape 1 is a conductor

  end if ! no overshield
  
  if (verbose) then
    write(*,*)'ground_plane:',ground_plane
    write(*,*)'infinite_ground_plane:',infinite_ground_plane
    write(*,*)'finite_ground_plane:',finite_ground_plane
    write(*,*)'open_boundary:',open_boundary
    write(*,*)'overshield:',overshield
    write(*,*)'first_surface_is_free_space_boundary:',first_surface_is_free_space_boundary
    write(*,*)'N_conductors:',PUL%n_conductors
    write(*,*)'end_conductor_loop:',end_conductor_loop
    write(*,*)'end_conductor_to_dielectric_loop:',end_conductor_to_dielectric_loop
    write(*,*)'tot_n_boundaries_without_dielectric:',tot_n_boundaries_without_dielectric
    write(*,*)'first_conductor_shape:',first_conductor_shape
  end if  ! verbose
  
! STAGE 2: Work out the numbers of conductors, points, lines, line loops and surfaces in the cross section geometry
  
  tot_n_conductors  = PUL%n_conductors        ! the conductor count includes the ground plane if present

! Count the dielectric regions: 
! Each dielectric region adds a boundary and another surface to mesh so work out whether a dielectric 
! is present for each conductor.
! A dielectric region is assumed to exist if the dielectric radius is larger than the conductor radius and
! the relative permittivity at d.c. is not equal to 1 or the permittivity model order is not equal to zero

  ALLOCATE ( conductor_has_dielectric(1:PUL%n_conductors) )
  
  n_dielectric_regions=0
  do conductor=1,end_conductor_loop           

! assume no dielectric initially          
    conductor_has_dielectric(conductor)=.FALSE.

! If the low freq permittivity is not 1.0 or the order of the filter model is not 0 then assume we have a dielectric
    dielectric_defined=.FALSE.
    
! check the low frequency value of epsr  
    epsr=PUL%epsr(conductor)%a%coeff(0)/PUL%epsr(conductor)%b%coeff(0)
    if ( abs(epsr-1d0).GT.small ) dielectric_defined=.TRUE.
    
! check the model order  
    if ( (PUL%epsr(conductor)%a%order.GT.0).OR. (PUL%epsr(conductor)%b%order.GT.0) ) dielectric_defined=.TRUE.

! for now use the high frequency limit of epsr  
    epsr=evaluate_Sfilter_high_frequency_limit(PUL%epsr(conductor))
    
    if (PUL%shape(conductor).EQ.circle) THEN

      if (  ( (PUL%rd(conductor)-PUL%r(conductor)).GT.small ).AND.( dielectric_defined )  ) then
        n_dielectric_regions= n_dielectric_regions+1
        conductor_has_dielectric(conductor)=.TRUE.
      end if
      
    else if (PUL%shape(conductor).EQ.rectangle) THEN
    
! include dielectric region if the dielectric is not air and there is a dielectric region surrounding the conductor    

      if (  ( dielectric_defined ).AND. ( ( PUL%rdw(conductor).GT.small ).AND.( PUL%rdw(conductor).GT.small ) )  ) then
        n_dielectric_regions= n_dielectric_regions+1
        conductor_has_dielectric(conductor)=.TRUE.
      end if   
    
    end if
    
  end do  ! next conductor
  
  tot_n_boundaries  = tot_n_boundaries_without_dielectric+n_dielectric_regions 
  tot_n_dielectric_regions = n_dielectric_regions+1                ! add a dielectric region for the 'free space' region
  
  n_points    = 5*tot_n_boundaries       ! Each region is enclosed by a shape, defined by 5 points
  n_lines     = 4*tot_n_boundaries       ! Each region is enclosed by a shape, defined by 4 lines
  n_line_loops=   tot_n_boundaries       ! Each region is enclosed by a shape, defined by a single line loop
  n_surfaces  =   n_dielectric_regions+1 ! Each dielectric region plus the free space region are a separate surface
  
  if (verbose) then
    write(*,*)'Number of dielectric regions   =',n_dielectric_regions
    write(*,*)'Total number of regions        =',tot_n_dielectric_regions
    write(*,*)'Total number of conductors     =',tot_n_conductors
    write(*,*)'Total number of boundaries     =',tot_n_boundaries
    write(*,*)'first_surface_is_free_space_boundary? ',first_surface_is_free_space_boundary
  end if

! STAGE 3: Create the input file for the mesh generator, gmsh.

! Allocate the memory required for all the boundaries in the cross section geometry
  n_shapes=tot_n_boundaries
  ALLOCATE( shape_type(1:n_shapes) )
  shape_type(1:n_shapes)=circle       ! set all boudaries to type circle initially
  ALLOCATE( loop_number(1:n_shapes) )
  loop_number(1:n_shapes)=-1          ! set all boudaries to -1 i.e. not set
  ALLOCATE( x(1:n_shapes) )
  ALLOCATE( y(1:n_shapes) )
  ALLOCATE( r(1:n_shapes) )
  ALLOCATE( rw(1:n_shapes) )
  ALLOCATE( rw2(1:n_shapes) )
  ALLOCATE( rh(1:n_shapes) )
  ALLOCATE( rox(1:n_shapes) )   
  ALLOCATE( roy(1:n_shapes) )   
  ALLOCATE( rtheta(1:n_shapes) )
  ALLOCATE( dl(1:n_shapes) )
  ALLOCATE( shape_to_region(1:n_shapes,1:2) )
  shape_to_region(1:n_shapes,1:2)=-1          ! set all regions to undefined initially
  
  ALLOCATE( dielectric_region_epsr(0:n_dielectric_regions) )
  
  if (.NOT.overshield) then 
  
! Set the position of the outer free space boundary. This is related to the size of the cable bundle enclosed
! by the Laplace_boundary_constant

! First get the extent of the bundle
    xmin=large
    xmax=-large
    ymin=large
    ymax=-large
  
    do i=1,end_conductor_loop            ! if the last conductor is the ground plane it is included in x/y,max/min calculation later
      if (PUL%shape(i).EQ.circle) then
    
        xmin=min(xmin,PUL%x(i)-PUL%r(i)+PUL%ox(i))  
        xmax=max(xmax,PUL%x(i)+PUL%r(i)+PUL%ox(i))  
        ymin=min(ymin,PUL%y(i)-PUL%r(i)+PUL%oy(i)) 
        ymax=max(ymax,PUL%y(i)+PUL%r(i)+PUL%oy(i)) 

      else if (PUL%shape(i).EQ.rectangle) then
    
        xmin=min(xmin,PUL%x(i)-PUL%rw(i)+PUL%ox(i)) 
        xmax=max(xmax,PUL%x(i)+PUL%rw(i)+PUL%ox(i)) 
        ymin=min(ymin,PUL%y(i)-PUL%rh(i)+PUL%oy(i)) 
        ymax=max(ymax,PUL%y(i)+PUL%rh(i)+PUL%oy(i)) 
      
      else if (PUL%shape(i).EQ.Dshape) then

!*** Does this have to take rotation into account ? *****
        xmin=min(xmin,PUL%x(i)-PUL%rw(i))
        xmax=max(xmax,PUL%x(i)+PUL%rw(i))
        ymin=min(ymin,PUL%y(i)-PUL%rh(i))
        ymax=max(ymax,PUL%y(i)+PUL%rh(i))

! note don't check semicircle as this is only for infinite ground only

      else if (PUL%shape(i).NE.semicircle) then
      
        write(*,*)'Unknown shape type',PUL%shape(i)
        
      end if
    end do ! next conductor
     
    if (ground_plane) then 
! include the ground plane in the bundle sizing by adding the origin point
! here we assume that the ground plane is along the x axis.

      xmin=min(xmin,0d0)
      xmax=max(xmax,0d0)
      ymin=min(ymin,0d0)
      ymax=max(ymax,0d0)
           
    end if ! ground_plane
  
! Centre of conductor bundle 
    
    xc=(xmax+xmin)/2d0
    yc=(ymax+ymin)/2d0
  
  rboundary=max((xmax-xmin),(ymax-ymin))*Laplace_boundary_constant
  
    if (verbose) then
      write(*,*)'bundle xmin=',xmin,' bundle xmax=',xmax
      write(*,*)'bundle ymin=',ymin,' bundle ymax=',ymax
      write(*,*)'bundle centre=',xc,yc
      write(*,*)'boundary radius=',rboundary
    end if
  
! set the first shape information to relate to the outer boundary
! 
! If we have a finite gound plane of free space boundary then this is a circle, centred on the bundle centre
! note that for the Laplace calculation the geometry will be shifted so that the origin is at xc,yc so the
! free space outer boundary is centred on the origin. This is required for the free space boundary condition in Laplace to work correctly.

    if (.NOT.infinite_ground_plane) then
    
      x(1)=xc
      y(1)=yc
      r(1)=rboundary
      rw(1)=0d0
      rw2(1)=0d0
      rh(1)=0d0
      rox(1)=0d0     
      roy(1)=0d0     
      rtheta(1)=0d0
      dl(1)=r(1)/(2*Laplace_surface_mesh_constant)
      shape_to_region(1,inside) =0      ! inside is the dielectric region
      shape_to_region(1,outside)=-1     ! no outside region
      
    else
!
! If we have an infinite ground plane then we have a semicircle centred on the origin

      shape_type(1)=semicircle
      xc=0d0
      yc=0d0
      x(1)=xc
      y(1)=yc
      r(1)=rboundary
      rw(1)=0d0
      rw2(1)=0d0
      rh(1)=0d0
      rox(1)=0d0     
      roy(1)=0d0     
      rtheta(1)=0d0
      dl(1)=r(1)/(2*Laplace_surface_mesh_constant)
      shape_to_region(1,inside) =0      ! inside is the dielectric region
      shape_to_region(1,outside)=-1     ! no outside region
      
      dl_gp=min(gp_edge_length,dl(1))

    end if ! infinite ground plane
       
  else  ! there is an overshield specified so we do not need to offset the bundle to define a free space outer boundary
    
    xc=0d0
    yc=0d0
        
  end if ! overshield

  dielectric_region_epsr(0)= evaluate_Sfilter_high_frequency_limit(PUL%epsr_background) ! set material properties in region 0, the background region
  
! copy the conductor information from the PUL structure to the shape based structure

  do i=1,end_conductor_loop  ! all conductors except the ground plane if it exists
    shape=first_conductor_shape-1+i
    shape_type(shape)=PUL%shape(i)
    x(shape)=PUL%x(i)
    y(shape)=PUL%y(i)
    r(shape)=PUL%r(i)
    rw(shape)=PUL%rw(i)
    rw2(shape)=PUL%rw2(i)
    rh(shape)=PUL%rh(i)
    rox(shape)=PUL%ox(i)  
    roy(shape)=PUL%oy(i)  
    rtheta(shape)=PUL%rtheta(i)
    if (shape_type(shape).EQ.circle) then
      dl(shape)=r(shape)/Laplace_surface_mesh_constant
    else if (shape_type(shape).EQ.rectangle) then
      dl(shape)=min(rw(shape),rh(shape))/Laplace_surface_mesh_constant   
    else if (shape_type(shape).EQ.Dshape) then
      dl(shape)=r(shape)/(2D0*Laplace_surface_mesh_constant)
    else if (shape_type(shape).EQ.semicircle) then
      dl(shape)=r(shape)/Laplace_surface_mesh_constant
    else
      write(*,*)'Unknown shape type',shape_type(shape),' i=',i,' shape=',shape
    end if
  end do
  
  if (ground_plane) then ! Add the ground plane information
  
    shape=PUL%n_conductors+1   ! ground plane
    
    if (finite_ground_plane) then
    
      shape_type(shape)=rectangle      
      rl=rboundary*Laplace_ground_plane_ratio         ! width of the ground plane (x dimension)  see constants.F90 for parameter
      rt=rl*Laplace_ground_plane_thickness_ratio      ! height of the ground plane (y dimension)  see constants.F90 for parameter
      rdl=rt/2d0
      x(shape)=xc                           ! x centre of ground plane rectangle
      y(shape)=-rt                          ! y centre of ground plane rectangle
      r(shape)=0d0                          ! not used
      rw(shape)=rl*2d0                      ! x extent of the ground plane
      rw2(shape)=rw(shape)                  ! x extent of the ground plane
      rh(shape)=rt*2d0                      ! y extent of the ground plane
      rox(shape)=0d0                        ! no offset from centre
      roy(shape)=0d0                        ! no offset from centre
      rtheta(shape)=0d0                     ! always zero for ground plane
      dl(shape)=rdl                         ! this is the thickness of the ground plane
      shape_to_region(shape,inside)           =-1     !  no internal region 
      shape_to_region(shape,outside)          = 0     !  no dielectric so a free space region   
    
    else
    
      shape_type(shape)=semicircle_diameter    
      rl=0d0                                ! not used
      rt=0d0                                ! not used          
      rdl=0d0                               ! not used    
      x(shape)=0d0                          ! x centre of ground plane 
      y(shape)=0d0                          ! y centre of ground plane 
      r(shape)=rboundary                    ! semicircle radius    
      rw(shape)=0d0                         ! not used
      rw2(shape)=0d0                        ! not used
      rh(shape)=0d0                         ! not used
      rox(shape)=0d0                         ! no offset from centre
      roy(shape)=0d0                         ! no offset from centre
      rtheta(shape)=0d0                     ! always zero for infinite ground plane
      dl(shape)=r(1)/(2*Laplace_surface_mesh_constant)
      shape_to_region(shape,inside)           =-1     !  no internal region 
      shape_to_region(shape,outside)          = 0     !  no dielectric so a free space region   
    
    end if ! infinite ground plane
  
  else if (overshield) then ! Add the overshield conductor information 

    shape=PUL%n_conductors
    shape_type(shape)=PUL%overshield_shape
    x(shape)=PUL%overshield_x
    y(shape)=PUL%overshield_y
    r(shape)=PUL%overshield_r
    rw(shape)=PUL%overshield_w
    rw2(shape)=PUL%overshield_w2
    rh(shape)=PUL%overshield_h
    rox(shape)=0d0   
    roy(shape)=0d0   
    rtheta(shape)=0d0
    dl(shape)=r(shape)/(2d0*Laplace_surface_mesh_constant)
    shape_to_region(shape,inside) = 0        ! inside the overshield is the free space region
  
  end if ! overshield
  
! loop over conductors copying the associated dielectric information from the PUL structure, 
! also associate shapes with regions

  dielectric_region=0
  
  do i=1,end_conductor_loop       ! exclude the ground plane if it exists as it has no dielectric region

    conductor_shape=first_conductor_shape-1+i   ! shape number for the conductor
    shape_to_region(conductor_shape,inside) =-1  ! conductors have no inner surface
    
    if (conductor_has_dielectric(i)) then
    
      dielectric_region=dielectric_region+1
      shape=shape+1                            ! create a new shape number for the dielectric
      shape_type(shape)=PUL%shape(i)           ! the dielectric is the same shape as the conductor 
      x(shape)=PUL%x(i)
      y(shape)=PUL%y(i)
      r(shape)=PUL%rd(i)
      rw(shape)=PUL%rdw(i)          
      rw2(shape)=PUL%rw2(i)         
      rh(shape)=PUL%rdh(i)          
      rox(shape)=PUL%rdox(i)          
      roy(shape)=PUL%rdoy(i)          
      rtheta(shape)=PUL%rtheta(i)   
      
      if (shape_type(shape).EQ.circle) then                 
        dl(shape)=r(shape)/Laplace_surface_mesh_constant
      else if (shape_type(shape).EQ.rectangle) then
        dl(shape)=min(rw(shape),rh(shape))/Laplace_surface_mesh_constant   
      else if (shape_type(shape).EQ.Dshape) then
        dl(shape)=r(shape)/(2D0*Laplace_surface_mesh_constant)
      else
        write(*,*)'Unknown shape type',shape_type(shape)
      end if
      
      shape_to_region(shape,inside)            =dielectric_region
      shape_to_region(shape,outside)           =0                   ! free space region
      dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_high_frequency_limit(PUL%epsr(i))
      
    else
! no dielectric

      shape_to_region(conductor_shape,outside)           =0      !  no dielectric so a free space region 
      
    end if  ! this conductor has a dielectric or not
    
  end do    ! next conductor
  
! Work out which conductors are associated with which dielectrics 
  
  do i=1,end_conductor_loop       
  
    conductor_shape=first_conductor_shape-1+i   ! shape number for the conductor
    dielectric_region=0
    
! calculate the centre of the conductor (the test point)

! xp,yp is the coordinate of the centre of the conductor relative to the centre of the cable
    xp=rox(conductor_shape)
    yp=roy(conductor_shape)

! rotate the cable about it's origin then translate to the cable position to give the final conductor position      
    xt=x(conductor_shape)+xp*cos(rtheta(conductor_shape))-yp*sin(rtheta(conductor_shape))
    yt=y(conductor_shape)+xp*sin(rtheta(conductor_shape))+yp*cos(rtheta(conductor_shape))
    
! loop over dielectrc shapes
    do shape=tot_n_boundaries_without_dielectric+1,tot_n_boundaries   
      dielectric_region=dielectric_region+1
      
! check whether the conductor is inside the dielectric
      if (point_is_inside(xt,yt,shape_type(shape),x(shape),y(shape),r(shape),rh(shape),rw(shape),  &
                          rox(shape),roy(shape),rtheta(shape))) then
                          
        shape_to_region(conductor_shape,outside) =dielectric_region
       
        write(*,*)'Conductor ',i,' is inside dielectric',dielectric_region,'(shape',shape,'):'

      endif
      
    end do ! next dielectric shape
    
  end do ! next conductor
  
  
  if (verbose) then
    write(*,*)'      shape shape_type  x(shape)   y(shape)   r(shape)  rh(shape)  rw(shape) rtheta(shape) dl(shape)'
    do shape=1,n_shapes
      write(*,'(2I10,7F12.6)')shape,shape_type(shape),x(shape),y(shape),r(shape),rw(shape),rh(shape),rtheta(shape),dl(shape)
    end do
  end if

! Open a file for the gmsh geometry input data

  temp_string=trim(name)//'_geometry_domain_'
  CALL add_integer_to_string(temp_string,domain,geom_filename)
  geom_filename=trim(geom_filename)//gmsh_geometry_file_extn

  open (unit=gmsh_geometry_file_unit,file=trim(geom_filename))
  if (verbose) write(*,*)'Opened file:',trim(geom_filename)

! open a file for the boundary information  
  open(unit=boundary_file_unit,file=boundary_file_name)
  if (verbose) write(*,*)'Opened file:',boundary_file_name

! write the points required to define the each shape
    
! Translate all coordinates by (-xc,-yc) such that a free space outer boundary is centred at the origin
  point=0
  
  do i=1,n_shapes
    
    if (shape_type(i).EQ.circle) then
    
      write(gmsh_geometry_file_unit,*)' // circle ',i
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i),','    &
                                       ,y(i)-yc+roy(i),',',0.0,','     ,dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i),','    &
                                       ,y(i)-yc-r(i)+roy(i),',',0.0,',',dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i)+r(i),','    &
                                      ,y(i)-yc+roy(i),',',0.0,','     ,dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i),','    &
                                      ,y(i)-yc+r(i)+roy(i),',',0.0,',',dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i)-r(i),','    &
                                      ,y(i)-yc+roy(i),',',0.0,','     ,dl(i),' };'
      
    else if (shape_type(i).EQ.rectangle) then

      write(gmsh_geometry_file_unit,*)' // rectangle ',i

! corner point
      point=point+1      
      xt=rw(i)/2d0+rox(i)
      yt=rh(i)/2d0+roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      edge_length=min(max_mesh_edge_length,dl(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',edge_length,' };'

! edge centre point
      point=point+1      
      xt=rox(i)
      yt=rh(i)/2d0+roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      dl_local=min(max_mesh_edge_length,rw(i)/Laplace_surface_mesh_constant)
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl_local,' };'

! corner point
      point=point+1      
      xt=-rw(i)/2d0+rox(i)
      yt=rh(i)/2d0+roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      edge_length=min(max_mesh_edge_length,dl(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',edge_length,' };'

! edge centre point
      point=point+1      
      xt=-rw(i)/2d0+rox(i)
      yt=roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      dl_local=min(max_mesh_edge_length,rh(i)/Laplace_surface_mesh_constant)
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl_local,' };'

! corner point
      point=point+1      
      xt=-rw(i)/2d0+rox(i)
      yt=-rh(i)/2d0+roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      edge_length=min(max_mesh_edge_length,dl(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',edge_length,' };'

! edge centre point
      point=point+1      
      xt=rox(i)
      yt=-rh(i)/2d0+roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      dl_local=min(max_mesh_edge_length,rw(i)/Laplace_surface_mesh_constant)
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl_local,' };'

! corner point
      point=point+1      
      xt=rw(i)/2d0+rox(i)
      yt=-rh(i)/2d0+roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      edge_length=min(max_mesh_edge_length,dl(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',edge_length,' };'

! edge centre point
      point=point+1      
      xt=rw(i)/2d0+rox(i)
      yt=roy(i)
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      dl_local=min(max_mesh_edge_length,rh(i)/Laplace_surface_mesh_constant)
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl_local,' };'
      
    else if (shape_type(i).EQ.Dshape) then

      CALL write_Dshape_gmsh(x(i),y(i),rw(i),rw2(i),rh(i),r(i),rox(i),roy(i),rtheta(i),dl(i),point,i,gmsh_geometry_file_unit)
 
    else if (shape_type(i).EQ.semicircle) then
        
      write(gmsh_geometry_file_unit,*)' // semicircle ',i
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i),','         &
                                      ,y(i)-yc+roy(i),',',0.0,','     ,dl_gp,' };'         ! middle of ground plane point
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i)+r(i),','    &
                                      ,y(i)-yc+roy(i),',',0.0,',',dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i)     ,','    &
                                      ,y(i)-yc+r(i)+roy(i),',',0.0,','     ,dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+rox(i)-r(i),','    &
                                      ,y(i)-yc+roy(i),',',0.0,',',dl(i),' };'
    
    end if

  end do ! next shape
       
! write the boudary line segment definitions for each shape, these are constructed from the previously defined points

  write(gmsh_geometry_file_unit,*)' '
  
  point=0      ! initialise point counter
  line=0       ! initialise line counter
  
  do i=1,n_shapes
    
    if (shape_type(i).EQ.circle) then
    
      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
      p5=point+5
      
      write(gmsh_geometry_file_unit,*)' // circle ',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p2,',',p1,',',p3,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p3,',',p1,',',p4,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p4,',',p1,',',p5,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p5,',',p1,',',p2,' };'
      
      point=point+5
     
    else if (shape_type(i).EQ.rectangle) then

      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
      p5=point+5
      p6=point+6
      p7=point+7
      p8=point+8
     
      write(gmsh_geometry_file_unit,*)' // rectangle line segments ',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p1,',',p2,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p2,',',p3,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p3,',',p4,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p4,',',p5,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p5,',',p6,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p6,',',p7,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p7,',',p8,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p8,',',p1,' };'
      
      point=point+8
     
    else if (shape_type(i).EQ.Dshape) then

      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
      p5=point+5
      p6=point+6
      p7=point+7
      p8=point+8
      p9=point+9
      p10=point+10
      p11=point+11
      p12=point+12
    
      write(gmsh_geometry_file_unit,*)' // Dshape line segments',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p1,',',p2,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p2,',',p3,',',p4,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p4,',',p5,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p5,',',p6,',',p7,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p7,',',p8,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p8,',',p9,',',p10,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p10,',',p11,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p11,',',p12,',',p1,' };'
     
      point=point+12
      
    else if (shape_type(i).EQ.semicircle) then
    
      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
      
      write(gmsh_geometry_file_unit,*)' // semicircle ',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p2,',',p1,',',p3,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p3,',',p1,',',p4,' };'
      
      point=point+4
      
    else if (shape_type(i).EQ.semicircle_diameter) then
! this is the infinite ground plane line so pick points from the outer boundary circle
      p1=4     ! semicircle end point 2
      p2=1     ! centre
      p3=2     ! semicircle end point 1
      
      write(gmsh_geometry_file_unit,*)' // semicircle_diameter ',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p1,',',p2,' };'
      gpline1=line
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p2,',',p3,' };'
      gpline2=line
     
    end if
    
  end do ! next shape

! write the number of boundary segments to the boundary file
  write(boundary_file_unit,*)line,'    # number of boundary segments'
  
! Create the closed boundary line loops for each shape, these are constructed from the preciously defined line segments.

  write(gmsh_geometry_file_unit,*)' '

  line_loop=0      ! initialise line_loop counter 
  line=0           ! reset the line counter to the first line
  do i=1,n_shapes
          
    if ( (shape_type(i).EQ.circle) ) then
      
      line_loop=line_loop+1  
      loop_number(i)=line_loop
      
      write(gmsh_geometry_file_unit,*)'Line Loop(',line_loop,' ) = {',line+1,',',line+2,',',line+3,',',line+4,' };'  
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,4
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
     
      line=line+4
          
    else if ( shape_type(i).EQ.rectangle ) then
      
      line_loop=line_loop+1  
      loop_number(i)=line_loop
      
      write(gmsh_geometry_file_unit,*)'Line Loop(',line_loop,' ) = {',line+1,',',line+2,',',line+3,',',line+4,',',     &
                                                                      line+5,',',line+6,',',line+7,',',line+8,' };'  
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,8
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
     
      line=line+8
      
    else if (shape_type(i).EQ.semicircle) then
    
! this is the outer boundary with infinite ground plane.
! the line loop consists of 4 lines, 2 for the semicircle and 2 for the ground plane

      line_loop=line_loop+1  
      loop_number(i)=line_loop
      
      write(gmsh_geometry_file_unit,*)'Line Loop(',line_loop,' ) = {',line+1,',',line+2,',',gpline1,',',gpline2,' };' 
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,2
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
      
      line=line+2
      
    else if (shape_type(i).EQ.Dshape) then  
        
      line_loop=line_loop+1  
      loop_number(i)=line_loop

      write(gmsh_geometry_file_unit,*)'Line Loop(',line_loop,' ) = {',line+1,',',line+2,',',line+3,',',line+4,',',     &
                                                                      line+5,',',line+6,',',line+7,',',line+8,' };'  
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,8
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
      
      line=line+8

      
    else if (shape_type(i).EQ.semicircle_diameter) then  
! note there is no line loop for the semicircle_diameter shape as this is dealt with along with the semicircle
! just skip these lines
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,2
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
              
      line=line+2
        
    end if
        
  end do ! next shape
  
! Create the plane Surfaces, one for each dielectric region. Surfaces are defined by their boundling line loops
! Note that the order of the line loop specification is important for the orientation of the elements in the mesh

  write(gmsh_geometry_file_unit,*)' '

  surface=0     ! initialise surface counter 

! loop over the dielectric regions (including free space) as each one contributes a surface to be meshed.

  do dielectric_region=0,n_dielectric_regions   ! 0 is the free space region which always exists

    surface=surface+1
    
    string1='  Plane Surface('
    CALL add_integer_to_string(string1,surface,string2)
    string1=trim(string2)//') = {'

! for this surface, write a list of all the line loops bounding the surface
! in order to construct this list we loop over all shapes (line loops) 
! and check whether the inside or outside region of the line loop is associated with the current region
  
    if (surface.eq.1) then    
! order the line loops for the free space region outer boundary first

      if (overshield) then
! The overshield reference conductor should be the last conductor

        i=PUL%n_conductors
        line_loop=loop_number(i)
        if( (shape_to_region(i,inside).EQ.dielectric_region).OR. &
            (shape_to_region(i,outside).EQ.dielectric_region) )    then         
          CALL add_integer_to_string(string1,line_loop,string2)
          string1=trim(string2)//', '        
        end if    
        
      end if ! overshield
      
      do i=1,n_shapes      ! don't include ground plane in check
        line_loop=loop_number(i)
        if ((.NOT.overshield).OR.(i.NE.PUL%n_conductors)) then
          if( (shape_to_region(i,inside).EQ.dielectric_region).OR. &
              (shape_to_region(i,outside).EQ.dielectric_region) )    then       
            if (line_loop.GT.0) then  
              CALL add_integer_to_string(string1,line_loop,string2)
              string1=trim(string2)//', '   
            end if     
          end if          
        end if          
      end do  ! next shape      
      
    else ! not the fisrt surface
! dielectric boundaries are defined second so reverse the order of the loop for dielectric regions

      do i=n_shapes,1,-1
        line_loop=loop_number(i)
        if( (shape_to_region(i,inside).EQ.dielectric_region).OR. &
            (shape_to_region(i,outside).EQ.dielectric_region) )    then   
          if (line_loop.GT.0) then  
            CALL add_integer_to_string(string1,line_loop,string2)
            string1=trim(string2)//', '   
          end if                                 
        end if          
      end do
   
    end if

    string1=trim(string2)//'} '
    write(gmsh_geometry_file_unit,'(A,A)')trim(string1),' ;'

  end do ! next region (surface) to mesh

  write(gmsh_geometry_file_unit,*)' '

! Close the file for the gmsh input data
  close(gmsh_geometry_file_unit)
  if (verbose) write(*,*)'Closed file:',trim(geom_filename)

! close the boundary information file
  close(unit=boundary_file_unit)
  if (verbose) write(*,*)'Closed file:',boundary_file_name
  
! Dealllocate the local shape geometry data.
  
  if (allocated( shape_type ))  DEALLOCATE( shape_type )
  if (allocated( loop_number ))  DEALLOCATE( loop_number )
  if (allocated( x ))  DEALLOCATE( x )
  if (allocated( y ))  DEALLOCATE( y )
  if (allocated( r ))  DEALLOCATE( r )
  if (allocated( rw ))  DEALLOCATE( rw )
  if (allocated( rw2 ))  DEALLOCATE( rw2 )
  if (allocated( rh ))  DEALLOCATE( rh )
  if (allocated( rox ))  DEALLOCATE( rox )
  if (allocated( roy ))  DEALLOCATE( roy )
  if (allocated( rtheta ))  DEALLOCATE( rtheta )
  if (allocated( dl )) DEALLOCATE( dl )
  if (allocated( shape_to_region )) DEALLOCATE( shape_to_region )

! STAGE 4: Call the mesh generator, gmsh

  temp_string=trim(name)//'_mesh_domain_'
  CALL add_integer_to_string(temp_string,domain,mesh_filename)
  mesh_filename=trim(mesh_filename)//mesh_file_extn
  
  write(*,*)'CALLING gmsh for domain',domain
  command='gmsh -2 -o '//trim(mesh_filename)//' '//trim(geom_filename)
  CALL execute_command_line(command,EXITSTAT=gmsh_exit_stat)
  
! Check that the mesh generator finished correctly, if not exit and write the gmsh error code to the screen
  if (gmsh_exit_stat.NE.0) then
  
! gmsh returned with a non zdero exit code indicating an error
    write(run_status,*)'ERROR in PUL_LC_Laplace. gmsh exit status=',gmsh_exit_stat
    CALL write_program_status()
    STOP 1

  end if
  
! STAGE 5: Call Laplace to calculate the L,C and G matrices, using the mesh that we have just generated

! Work out the dimension of the per-unit-length matrices  

  matrix_dimension=PUL%n_conductors-1
  
  if (verbose) then
    write(*,*)'Number of conductors=',PUL%n_conductors
    write(*,*)'matrix dimension=',matrix_dimension
  end if
  
! check we have a valid system
  if (matrix_dimension.LT.1) then
    run_status='ERROR in PUL_LC_Laplace, Matrix dimension is less than 1 '
    CALL write_program_status()
    STOP 1
  end if
  
! work out if we have any frequency dependent dielectric
  frequency_dependent_dielectric=.FALSE.
  dielectric_region=0
  
  if ( (PUL%epsr_background%a%order.GT.0).OR. (PUL%epsr_background%b%order.GT.0) ) then
    frequency_dependent_dielectric=.TRUE.
  end if
      
! check the external dielectric first

  do i=1,end_conductor_loop    ! don't include the ground plane in the conductor loop for the dielectric region count
  
    write(*,*)'Check dielectric loop',i,' conductor has dielectric:',conductor_has_dielectric(i)
  
    if (conductor_has_dielectric(i)) then
    
      write(*,*)'aorder,border',PUL%epsr(i)%a%order,PUL%epsr(i)%b%order
    
      if ( (PUL%epsr(i)%a%order.GT.0).OR. (PUL%epsr(i)%b%order.GT.0) ) then
        frequency_dependent_dielectric=.TRUE.
      end if
      
    end if
  end do    ! next conductor
  
  if (verbose) write(*,*)'Frequency dependent dielectric:',frequency_dependent_dielectric
  
! Check for special case which is not currently used but could happen in future developments maybe...
  if ( (frequency_dependent_dielectric).AND.(n_dielectric_regions.EQ.0) ) then
    run_status='Error in PUL_LC_Laplace. Conductors are situated in a homogeneous frequency dependent dielectric'
    CALL write_program_status()
    STOP 1
  end if

! Allocate the per-unit-length matrices  
  PUL%L%dim=matrix_dimension
  ALLOCATE( PUL%L%mat(1:PUL%L%dim,1:PUL%L%dim) )
  PUL%C%dim=matrix_dimension
  ALLOCATE( PUL%C%mat(1:PUL%C%dim,1:PUL%C%dim) )
  PUL%G%dim=matrix_dimension
  ALLOCATE( PUL%G%mat(1:PUL%G%dim,1:PUL%G%dim) )

! Allocate the impedance and admittance filter matrices  
  PUL%Zfilter%dim=matrix_dimension
  ALLOCATE(PUL%Zfilter%sfilter_mat(1:PUL%Zfilter%dim,1:PUL%Zfilter%dim))
  PUL%Yfilter%dim=matrix_dimension
  ALLOCATE(PUL%Yfilter%sfilter_mat(1:PUL%Yfilter%dim,1:PUL%Yfilter%dim))

  if (verbose) write(*,*)'CALLING: Laplace'
  
  if (n_dielectric_regions.EQ.0) then
! no dielectrics or frequency dependent proximity effects so we can calculate L, C and G in the same solution

    f=1D0   ! arbitrary frequency here for lossless dielectric but a frequency must be set. The value will have no effect in this case.
    CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                 n_dielectric_regions,dielectric_region_epsr,f,PUL%L%mat,PUL%C%mat,PUL%G%mat,xc,yc)

! calculate the impedance and admittance filters for a frequency independent model

    CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
                 
  else
  
! there are dielectrics present or proximity effects

    ALLOCATE( mat1%mat(1:matrix_dimension,1:matrix_dimension) )
    mat1%dim=matrix_dimension
    ALLOCATE( mat2%mat(1:matrix_dimension,1:matrix_dimension) )
    mat2%dim=matrix_dimension
    
! Firstly solve using the 'high frequency' dielectric material properties

    dielectric_region=0
    do i=1,end_conductor_loop    ! don't include the ground plane in the dielectric region count
      if (conductor_has_dielectric(i)) then
        dielectric_region=dielectric_region+1         
        dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_high_frequency_limit(PUL%epsr(i))
      end if
    end do    ! next conductor
    
! call first with the dielectric materials and solve for C and G first
    f=1D0   ! arbitrary frequency here for lossless dielectric 
    CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                 n_dielectric_regions,dielectric_region_epsr,f,mat1%mat,PUL%C%mat,PUL%G%mat,xc,yc)
                 
! call second with all materials set to free space properties and solve for L

    dielectric_region_epsr(:)=(1d0,0d0)
          
    f=1D0   ! arbitrary frequency here for lossless dielectric 
    CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                 n_dielectric_regions,dielectric_region_epsr,f,PUL%L%mat,mat1%mat,mat2%mat,xc,yc)
          
    if ((.NOT.frequency_dependent_dielectric).OR.(freq_spec%n_frequencies.EQ.1)) then             
    
 ! calculate the impedance and admittance filters

      CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
     
    else

! There are frequency dependent dielectrics  present             
! We calculate the capacitance matrix at a number of frequencies before fitting filter functions
! to each of the frequency dependent admittance matrix entries.
    
! allocate the frequency dependent matrices
      ALLOCATE( C_freq(1:freq_spec%n_frequencies) )
      ALLOCATE( G_freq(1:freq_spec%n_frequencies) )

! loop over frequency    
      do floop=1,freq_spec%n_frequencies

! allocate the matrices for this frequency    
        ALLOCATE( C_freq(floop)%mat(1:matrix_dimension,1:matrix_dimension) )
        C_freq(floop)%dim=matrix_dimension
        ALLOCATE( G_freq(floop)%mat(1:matrix_dimension,1:matrix_dimension) )
        G_freq(floop)%dim=matrix_dimension

! evaluate the complex dielectric constant at the current frequency

        f=freq_spec%freq_list(floop)

! set material properties in region 0, the background region
        dielectric_region=0
        dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_frequency_response(PUL%epsr_background,f)
        
        do i=1,end_conductor_loop    ! don't include the ground plane in the dielectric region count
          if (conductor_has_dielectric(i)) then
            dielectric_region=dielectric_region+1         
            dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_frequency_response(PUL%epsr(i),f)
          end if
        end do    ! next conductor

! solve for C and G matrices at this frequency
       
! call Laplace to solve for C and G at this frequency

        CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                     n_dielectric_regions,dielectric_region_epsr,f,mat1%mat,C_freq(floop)%mat,G_freq(floop)%mat,xc,yc)
                                      
      end do ! next frequency

! we now have frequency domain C and G matrices.

! loop over the elements of C and G and calculate the Y matrix by filter fitting to Y=G(f)+jwC(f), and the Z matrix as jwL  
      ALLOCATE( function_to_fit(1:freq_spec%n_frequencies) )
    
      do row=1,matrix_dimension
        do col=row,matrix_dimension

! get the function values for this matrix element function_to_fit=G+jwC
          do floop=1,freq_spec%n_frequencies
            function_to_fit(floop)=G_freq(floop)%mat(row,col)+              &
                                   j*2d0*pi*freq_spec%freq_list(floop)*C_freq(floop)%mat(row,col)
          end do
        
! calculate the Yfilter matrix using the filter fitting process
! note aorder=border and no restrictions are put on the function

          CALL Calculate_Sfilter(function_to_fit,freq_spec%freq_list,freq_spec%n_frequencies,  &
                                 PUL%Yfilter%sfilter_mat(row,col),fit_order+1,-1,0) 

          PUL%Zfilter%sfilter_mat(row,col)=jwA_filter( PUL%L%mat(row,col) )       

          if (col.NE.row) then       
! make the matrix symmetrical
            PUL%Yfilter%sfilter_mat(col,row)=PUL%Yfilter%sfilter_mat(row,col)
            PUL%Zfilter%sfilter_mat(col,row)=PUL%Zfilter%sfilter_mat(row,col)
          end if
        
        end do ! next col
      
      end do ! next row
    
      DEALLOCATE( function_to_fit )

! deallocate the temporary matrices associated with the frequency dependent C and G matrices  
      do floop=1,freq_spec%n_frequencies

! allocate the matrices for this frequency    
        DEALLOCATE( C_freq(floop)%mat )
        DEALLOCATE( G_freq(floop)%mat )
      
      end do ! next frequency
    
      DEALLOCATE( C_freq )
      DEALLOCATE( G_freq )
    
    end if ! frequency dependent dielectric
                 
    DEALLOCATE( mat1%mat )
    DEALLOCATE( mat2%mat )  
    
  end if ! any dielectrics
    
  if (verbose) then
    write(*,*)'FINISHED: Laplace'
    write(*,*)'Inductance matrix, L'
    CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
    write(*,*)'Capacitance matrix, C'
    CALL dwrite_matrix(PUL%C%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
    write(*,*)'Conductance matrix, G'
    CALL dwrite_matrix(PUL%G%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
  end if
  
  if (allocated( dielectric_region_epsr )) DEALLOCATE( dielectric_region_epsr )

  if (verbose) write(*,*)'FINISHED PUL_LC_Laplace'

END SUBROUTINE PUL_LC_Laplace