cable_bundle_module.F90 40 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! MODULE cable_bundle_module
!   CONTAINS
!     SUBROUTINE read_cable_bundle
!     SUBROUTINE write_cable_bundle
!     SUBROUTINE deallocate_cable_bundle
!     SUBROUTINE check_cables_wrt_ground_plane
!     SUBROUTINE check_cable_intersections
!
! NAME
!     MODULE cable_bundle_module
!
!     Data strunctures and subroutines relating to cable bundles
!     
! COMMENTS
!     Need to improve error handling in file reading 
!  Not sure that some arrays in the type_specification need to be in this structure as they are only used in one subroutine...    
!
! HISTORY
!    started 25/11/2015 CJS
!    stage 3 developments started 21/3/2015 CJS
!    generalise conductor impedance for transfer impedance model (stage 5) CJS 12/5/2016
!    CJS 25/08/2016   updates for revised transfer impedance and conductor impedance model for shields
!     16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!
MODULE cable_bundle_module

USE type_specifications
USE cable_module

IMPLICIT NONE

! This is a general structure used to hold conductor based lists, 

TYPE::conductor_list_type

  integer             :: n_elements
  integer,allocatable :: element(:)

END TYPE conductor_list_type

! This is the main structure used to hold all the bundle information

TYPE::bundle_specification_type 

  character(LEN=line_length)    :: version 
  character(LEN=line_length)    :: bundle_name
  
  integer            :: tot_n_conductors
  integer            :: tot_n_shielded_conductors
  integer            :: tot_n_external_conductors
  
! dimension of the global matrix system (total number of conductors-1)
  integer            :: system_dimension

! cable information, total number of cables including and excluding the ground plane (if it exists)
  integer            :: n_cables
  integer            :: n_cables_without_ground_plane
  
! Array of cable specification data for all the cables in this bundle
  type(cable_specification_type),allocatable    :: cable(:)
  
! list of cable positions in the bundle cross section and rotation angles
  real(dp),allocatable        :: cable_x_offset(:)
  real(dp),allocatable        :: cable_y_offset(:)
  real(dp),allocatable        :: cable_angle(:)
  
! ground plane information: note we have two notations at the moment. 
! This will need to be sorted out and one only adopted

  logical             :: ground_plane_present
  
  real(dp)            :: ground_plane_angle
  real(dp)            :: ground_plane_offset
  
  real(dp)            :: ground_plane_x,ground_plane_y,ground_plane_theta
  real(dp)            :: ground_plane_nx,ground_plane_ny
  
  integer             :: ground_plane_cable_side    ! +1 if the cables are on the normal direction side of the ground plane, -1 otherwise

! domain based information  
  integer             :: tot_n_domains

  integer,allocatable :: n_conductors(:)  ! number of conductors in each domain
  
  type(conductor_list_type),allocatable  :: terminal_conductor_list(:) ! external conductor number for coonductors in each domain
  
  type(matrix),allocatable        :: L(:)  ! 'high frequency' inductance matrix for each domain
  type(matrix),allocatable        :: C(:)  ! 'high frequency' capacitance matrix for each domain
  
  type(Sfilter_matrix),allocatable    :: Z(:)  ! frequency dependent impedance matrix for each domain
  type(Sfilter_matrix),allocatable    :: Y(:)  ! frequency dependent admittance matrix for each domain
  
! global conductor based information  
  type(matrix)        :: global_MI     ! global domain current transformation matrix
  type(matrix)        :: global_MV     ! global domain voltage transformation matrix
  
  type(matrix)        :: global_L       ! global 'high frequency' inductance matrix 
  type(matrix)        :: global_C       ! global 'high frequency' capacitance matrix
  
  type(Sfilter_matrix)    :: global_Z    ! global frequency dependent impedance matrix 
  type(Sfilter_matrix)    :: global_Y    ! global frequency dependent admittance matrix

! global conductor impedance model information for each conductor
  type(conductor_impedance_model),allocatable    :: conductor_impedance(:)
  
! global conductor position in the bundle cross-section
  real(dp),allocatable        :: conductor_x_offset(:)
  real(dp),allocatable        :: conductor_y_offset(:)

! arrays for cross referecing numbering information from the global (external) conductor numbering and the domain based numbering systems
  logical,allocatable :: terminal_conductor_is_shield_flag(:)
  integer,allocatable :: terminal_conductor_to_inner_domain(:)
  integer,allocatable :: terminal_conductor_to_outer_domain(:)
  integer,allocatable :: terminal_conductor_to_global_domain_conductor(:)
  integer,allocatable :: terminal_conductor_to_local_domain_conductor(:)
  integer,allocatable :: terminal_conductor_to_reference_terminal_conductor(:)
  
! Y matrix element function fitting information for frequency dependent dielectrics

! model order for filter fitting
  integer    :: Y_fit_model_order
      
! frequency range specification 
  type(frequency_specification) :: Y_fit_freq_spec
  
  character(LEN=line_length),allocatable   :: conductor_label(:)
    
END TYPE bundle_specification_type

CONTAINS

! The following subroutines apply to all bundles and cable types

! NAME
!     SUBROUTINE read_cable_bundle(unit)
!
!     read cable bundle structure from a specified unit
!     
! COMMENTS
!     
!
! HISTORY
!    started 2/12/2015 CJS
!    stage 3 developments started 21/3/2015 CJS
!    generalise conductor impedance for transfer impedance model (stage 5) CJS 12/5/2016
!

  SUBROUTINE read_cable_bundle(bundle,file_unit)

  USE type_specifications
  USE constants
  USE general_module
  USE cable_module
  USE maths

  IMPLICIT NONE

! variables passed to subroutine

  type(bundle_specification_type),intent(INOUT) :: bundle
  integer ,intent(IN)                           :: file_unit
  
! local variables
    
  character(len=filename_length)    :: filename
  logical                :: file_exists
  character(len=line_length)        :: line

  integer                :: cable
  integer                :: n_domains
  integer                :: domain
  integer                :: matrix_dimension
  integer                :: n_conductors
  integer                :: conductor
  
  integer                :: ierr

! START

! Open the (.bundle) file to read

  filename=trim(MOD_bundle_lib_dir)//trim(bundle%bundle_name)//bundle_file_extn

  inquire(file=trim(filename),exist=file_exists)
  if (.NOT.file_exists) then
    run_status='ERROR, Cannot find the required bundle file:'//trim(filename)
    CALL write_program_status()
    STOP 1
  end if 
  open(unit=file_unit,file=trim(filename))

  if (verbose) write(*,*)'Opened file:',trim(filename)

! read .bundle file
  read(file_unit,'(A)',ERR=9000)bundle%version
  read(file_unit,'(A)',ERR=9000)bundle%bundle_name
  
! read cable information
  read(file_unit,*,ERR=9000)bundle%n_cables_without_ground_plane
  read(file_unit,*,ERR=9000)bundle%n_cables
  
! allocate and read cable information and cable positions in bundle 
  ALLOCATE( bundle%cable(1:bundle%n_cables) )
  ALLOCATE( bundle%cable_x_offset(1:bundle%n_cables) )
  ALLOCATE( bundle%cable_y_offset(1:bundle%n_cables) )
  ALLOCATE( bundle%cable_angle(1:bundle%n_cables) )

  do cable=1,bundle%n_cables_without_ground_plane
    read(file_unit,'(A)')bundle%cable(cable)%cable_name
    CALL read_cable(bundle%cable(cable),cable_file_unit)
    read(file_unit,*,ERR=9000)bundle%cable_x_offset(cable),bundle%cable_y_offset(cable),bundle%cable_angle(cable)
! convert angle to radians
    bundle%cable_angle(cable)=bundle%cable_angle(cable)*pi/180d0
  end do ! next cable
  
! read ground plane specification

  read(file_unit,'(A)',IOSTAT=ierr)line
    if (ierr.NE.0) then 
      run_status='ERROR reading ground plane present/ absent information'
      CALL write_program_status()
      STOP 1
    end if 
  CALL convert_to_lower_case(line,line_length)
  
  bundle%ground_plane_present=(line.eq.'ground_plane')
  
  if (bundle%ground_plane_present) then
  
    read(file_unit,*,IOSTAT=ierr)bundle%ground_plane_x,bundle%ground_plane_y,bundle%ground_plane_angle
    read(file_unit,*,IOSTAT=ierr)bundle%ground_plane_nx,bundle%ground_plane_ny
    read(file_unit,*,IOSTAT=ierr)bundle%ground_plane_cable_side
    
    if (ierr.NE.0) then 
      run_status='ERROR reading ground plane position and angle'
      CALL write_program_status()
      STOP 1
    end if 
! convert ground plane angle to radians
    bundle%ground_plane_angle=bundle%ground_plane_angle*pi/180d0
! calculate offset
    bundle%ground_plane_offset=-bundle%ground_plane_x*sin(bundle%ground_plane_angle)+  &
                                bundle%ground_plane_y*cos(bundle%ground_plane_angle)
                                
! set the geometric data for the last cable in the list i.e. the ground plane

    cable=bundle%n_cables
    bundle%cable_x_offset(cable)=bundle%ground_plane_x
    bundle%cable_y_offset(cable)=bundle%ground_plane_y
    bundle%cable_angle(cable)=bundle%ground_plane_angle-pi/2d0  ! note there are two ground plane spec formats at the moment...
 
  else
! set x, y, angle and offset to 0
    bundle%ground_plane_x=0d0
    bundle%ground_plane_y=0d0
    bundle%ground_plane_nx=0d0
    bundle%ground_plane_ny=0d0
    bundle%ground_plane_cable_side=0
    bundle%ground_plane_angle=0d0
    bundle%ground_plane_offset=0d0
  end if
  
! read system dimension information
  read(file_unit,*)bundle%tot_n_conductors
  read(file_unit,*)bundle%tot_n_external_conductors
  read(file_unit,*)bundle%system_dimension
  
! read domain information
  read(file_unit,*,ERR=9000)bundle%tot_n_domains
     
  ALLOCATE( bundle%n_conductors(1:bundle%tot_n_domains) ) 
  
  ALLOCATE( bundle%L(1:bundle%tot_n_domains) ) 
  ALLOCATE( bundle%C(1:bundle%tot_n_domains) )
  ALLOCATE( bundle%Z(1:bundle%tot_n_domains))
  ALLOCATE( bundle%Y(1:bundle%tot_n_domains))
  
  ALLOCATE( bundle%terminal_conductor_list(1:bundle%tot_n_domains))

  n_domains=bundle%tot_n_domains

  do domain=1,bundle%tot_n_domains
  
    read(file_unit,*,ERR=9000)   ! comment line
    
    read(file_unit,*)bundle%n_conductors(domain)
    
    read(file_unit,*,ERR=9000)  ! comment line
    read(file_unit,*,ERR=9000)bundle%terminal_conductor_list(domain)%n_elements    
    ALLOCATE( bundle%terminal_conductor_list(domain)%element(1:bundle%terminal_conductor_list(domain)%n_elements) )
    do conductor=1,bundle%terminal_conductor_list(domain)%n_elements
      read(file_unit,*,ERR=9000)bundle%terminal_conductor_list(domain)%element(conductor)
    end do
        
    read(file_unit,*,ERR=9000)   ! comment line
    
    read(file_unit,*)matrix_dimension
    bundle%L(domain)%dim=matrix_dimension
    ALLOCATE( bundle%L(domain)%mat(1:matrix_dimension,1:matrix_dimension) ) 
    CALL dread_matrix(bundle%L(domain)%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)

    write(*,*)'L='
    CALL dwrite_matrix(bundle%L(domain)%mat,matrix_dimension,matrix_dimension,matrix_dimension,0) ! ******
    
    read(file_unit,*,ERR=9000)   ! comment line
    read(file_unit,*)matrix_dimension
    bundle%C(domain)%dim=matrix_dimension
    ALLOCATE( bundle%C(domain)%mat(1:matrix_dimension,1:matrix_dimension) ) 
    CALL dread_matrix(bundle%C(domain)%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)

    write(*,*)'C='
    CALL dwrite_matrix(bundle%C(domain)%mat,matrix_dimension,matrix_dimension,matrix_dimension,0) ! ******

    read(file_unit,*,ERR=9000) ! comment line 
    CALL read_Sfilter_matrix( bundle%Z(domain),file_unit )
      
    read(file_unit,*,ERR=9000) ! comment line 
    CALL read_Sfilter_matrix( bundle%Y(domain),file_unit )

  end do
  
  read(file_unit,*,ERR=9000)    ! comment line
  read(file_unit,*)matrix_dimension
  bundle%global_MI%dim=matrix_dimension
  ALLOCATE( bundle%global_MI%mat(1:matrix_dimension,1:matrix_dimension) ) 
  CALL dread_matrix(bundle%global_MI%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)
  
  read(file_unit,*,ERR=9000)    ! comment line
  read(file_unit,*)matrix_dimension
  bundle%global_MV%dim=matrix_dimension
  ALLOCATE( bundle%global_MV%mat(1:matrix_dimension,1:matrix_dimension) ) 
  CALL dread_matrix(bundle%global_MV%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)
  
  read(file_unit,*,ERR=9000)    ! comment line
  read(file_unit,*)matrix_dimension
  bundle%global_L%dim=matrix_dimension
  ALLOCATE( bundle%global_L%mat(1:matrix_dimension,1:matrix_dimension) ) 
  CALL dread_matrix(bundle%global_L%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)
  
  read(file_unit,*,ERR=9000)    ! comment line
  read(file_unit,*)matrix_dimension
  bundle%global_C%dim=matrix_dimension
  ALLOCATE( bundle%global_C%mat(1:matrix_dimension,1:matrix_dimension) ) 
  CALL dread_matrix(bundle%global_C%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)

  read(file_unit,*,ERR=9000) ! comment line 
  CALL read_Sfilter_matrix( bundle%global_Z,file_unit )
    
  read(file_unit,*,ERR=9000) ! comment line 
  CALL read_Sfilter_matrix( bundle%global_Y,file_unit )
  
! read the loss model information for each conductor

  ALLOCATE( bundle%conductor_impedance(1:bundle%tot_n_conductors) )
  
  read(file_unit,*)  ! comment line
  do conductor=1,bundle%tot_n_conductors
    CALL read_conductor_impedance_model(bundle%conductor_impedance(conductor),file_unit)
  end do
  
! read the x and y position for each conductor: this is needed for incident field excitation

  ALLOCATE( bundle%conductor_x_offset(1:bundle%tot_n_conductors) )
  ALLOCATE( bundle%conductor_y_offset(1:bundle%tot_n_conductors) )

  read(file_unit,*)  ! comment line
  do conductor=1,bundle%tot_n_conductors
    read(file_unit,*)bundle%conductor_x_offset(conductor),bundle%conductor_y_offset(conductor)
  end do
  
 ! numbering information
  read(file_unit,*)  ! comment line
  
  ALLOCATE( bundle%terminal_conductor_is_shield_flag(1:bundle%tot_n_conductors) )
  ALLOCATE( bundle%terminal_conductor_to_inner_domain(1:bundle%tot_n_conductors) )
  ALLOCATE( bundle%terminal_conductor_to_outer_domain(1:bundle%tot_n_conductors) )
  ALLOCATE( bundle%terminal_conductor_to_global_domain_conductor(1:bundle%tot_n_conductors) )
  ALLOCATE( bundle%terminal_conductor_to_local_domain_conductor(1:bundle%tot_n_conductors) )
  ALLOCATE( bundle%terminal_conductor_to_reference_terminal_conductor(1:bundle%tot_n_conductors) )
  
  do conductor=1,bundle%tot_n_conductors
  
    read(file_unit,*)bundle%terminal_conductor_is_shield_flag(conductor),      &
                     bundle%terminal_conductor_to_inner_domain(conductor),     &
                     bundle%terminal_conductor_to_outer_domain(conductor),     &
                     bundle%terminal_conductor_to_global_domain_conductor(conductor), &
                     bundle%terminal_conductor_to_local_domain_conductor(conductor), &
                     bundle%terminal_conductor_to_reference_terminal_conductor(conductor)
  end do
  
! read the conductor labels
  ALLOCATE( bundle%conductor_label(1:bundle%tot_n_conductors) )
  read(file_unit,*)  ! comment line
  do conductor=1,bundle%tot_n_conductors
    read(file_unit,'(A)')bundle%conductor_label(conductor)
  end do

! close .bundle file

  CLOSE(unit=file_unit)

  if (verbose) write(*,*)'Closed file:',trim(filename)

  RETURN
  
9000  run_status='ERROR reading the bundle file:'//trim(filename)
      CALL write_program_status()
      STOP 1
  
  END SUBROUTINE read_cable_bundle

! NAME
!     SUBROUTINE write_cable_bundle
!
!     write the cable bundle structure to a specified unit
!     
! COMMENTS
!    
!
! HISTORY
!    started 2/12/2015 CJS
!    stage 3 developments started 21/3/2015 CJS
!    generalise conductor impedance for transfer impedance model (stage 5) CJS 12/5/2016
!

  SUBROUTINE write_cable_bundle(bundle,file_unit)

  USE type_specifications
  USE constants
  USE general_module
  USE cable_module
  USE maths

  IMPLICIT NONE

! variables passed to subroutine

  type(bundle_specification_type),intent(INOUT) :: bundle
  integer,intent(IN)                            :: file_unit
  
! local variables

  character(len=filename_length)    :: filename
  character(len=line_length)        :: line
  integer                :: cable
  integer                :: domain
  integer                :: matrix_dimension
  integer                :: conductor
  integer                :: n_cables_to_write

! START

! Open the output (.bundle) file

  filename=trim(MOD_bundle_lib_dir)//trim(bundle%bundle_name)//bundle_file_extn
  open(unit=file_unit,file=trim(filename))

! write .bundle file
  write(file_unit,'(A)')trim(bundle%version)
  write(file_unit,'(A)')trim(bundle%bundle_name)
  
  write(file_unit,*)bundle%n_cables_without_ground_plane,'  ! number of cables not including ground plane'
  write(file_unit,*)bundle%n_cables,'  ! number of cables, cable name and x y coordinates follow...'

! write cable names and coordinates
  
  do cable=1,bundle%n_cables_without_ground_plane
    write(file_unit,'(A)')trim(bundle%cable(cable)%cable_name)
    write(file_unit,*)bundle%cable_x_offset(cable),bundle%cable_y_offset(cable),    &
                      bundle%cable_angle(cable),' x y coordinates and angle of cable '
  end do ! next cable
   
! write ground plane specification  
  
  if (bundle%ground_plane_present) then
    write(file_unit,'(A)')'ground_plane'
! note: convert angle back to degrees
    write(file_unit,*)bundle%ground_plane_x,bundle%ground_plane_y,bundle%ground_plane_angle*180d0/pi, &
                      ' x y coordinates and angle of ground plane '
    write(file_unit,*)bundle%ground_plane_nx,bundle%ground_plane_ny,' ground plane normal direction'
    write(file_unit,*)bundle%ground_plane_cable_side,' orientation of cables wrt ground plane'
  else
    write(file_unit,'(A)')'no_ground_plane'
  end if  
  
  write(file_unit,*)bundle%tot_n_conductors,'  # total number of conductors'
  write(file_unit,*)bundle%tot_n_external_conductors,'  # total number of external conductors'
  write(file_unit,*)bundle%system_dimension,'  # dimension of the matrix system characterising the MTL propagation'
  
  write(file_unit,*)bundle%tot_n_domains,'  # number of domains'

  do domain=1,bundle%tot_n_domains
  
    write(file_unit,*)'Domain number',domain
    write(file_unit,*)bundle%n_conductors(domain),' number of conductors in this domain'   
    
    write(file_unit,*)'terminal_conductor_list'
    write(file_unit,*)bundle%terminal_conductor_list(domain)%n_elements,' ! number of elements '
    do conductor=1,bundle%terminal_conductor_list(domain)%n_elements
      write(file_unit,*)bundle%terminal_conductor_list(domain)%element(conductor)
    end do
    
    matrix_dimension=bundle%L(domain)%dim
    write(file_unit,*)'Per-Unit-length Inductance Matrix, [L]'
    write(file_unit,*)matrix_dimension,' Dimension of [L]'
    CALL dwrite_matrix(bundle%L(domain)%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)
  
    write(file_unit,*)'Per-Unit-length Capacitance Matrix, [C]'
    write(file_unit,*)matrix_dimension,' Dimension of [C]'
    CALL dwrite_matrix(bundle%C(domain)%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)

    write(file_unit,*)'Per-Unit-length Impedance Matrix, Z'
    CALL write_Sfilter_matrix( bundle%Z(domain),file_unit )
      
    write(file_unit,*)'Per-Unit-length Admittance Matrix, Y'
    CALL write_Sfilter_matrix( bundle%Y(domain),file_unit )

  end do
  
  write(file_unit,*)'# Global current domain transformation matrix, [MI]'
  matrix_dimension=bundle%global_MI%dim-1 
  write(file_unit,*)matrix_dimension,' Dimension of [MI]'
  CALL dwrite_matrix(bundle%global_MI%mat,matrix_dimension,matrix_dimension,bundle%global_MI%dim,file_unit)
  
  write(file_unit,*)'# Global voltage domain transformation matrix, [MV]'
  matrix_dimension=bundle%global_MV%dim-1
  write(file_unit,*)matrix_dimension,' Dimension of [MV]'
  CALL dwrite_matrix(bundle%global_MV%mat,matrix_dimension,matrix_dimension,bundle%global_MI%dim,file_unit)
  
  write(file_unit,*)'# Global domain based inductance matrix, [L]'
  matrix_dimension=bundle%global_L%dim
  write(file_unit,*)matrix_dimension,' Dimension of [L]'
  CALL dwrite_matrix(bundle%global_L%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)
  
  write(file_unit,*)'# Global domain based capacitance matrix, [C]'
  matrix_dimension=bundle%global_C%dim
  write(file_unit,*)matrix_dimension,' Dimension of [C]'
  CALL dwrite_matrix(bundle%global_C%mat,matrix_dimension,matrix_dimension,matrix_dimension,file_unit)
 
  write(file_unit,*)'Global domain based Per-Unit-length Impedance Matrix, Z'
  CALL write_Sfilter_matrix( bundle%global_Z,file_unit )
      
  write(file_unit,*)'Global domain based Per-Unit-length Admittance Matrix, Y'
  CALL write_Sfilter_matrix( bundle%global_Y,file_unit )
  
! write the loss model information for each conductor
  write(file_unit,*)' # conductor impedance models' 
  do conductor=1,bundle%tot_n_conductors
  
    CALL write_conductor_impedance_model(bundle%conductor_impedance(conductor),file_unit)
                      
  end do
  
! write the x and y position for each conductor: this is needed for incident field excitation
  write(file_unit,*)' # conductor x y positions' 
  do conductor=1,bundle%tot_n_conductors
    write(file_unit,*)bundle%conductor_x_offset(conductor),bundle%conductor_y_offset(conductor)
  end do

 ! numbering information
  write(file_unit,'(A)')'is_shield  tc_to_in_domain  tc_to_out_domain  tc_to_gdc    tc_to_ldc    tc_to_ref_tc  ' 

  do conductor=1,bundle%tot_n_conductors
  
    write(file_unit,8000)bundle%terminal_conductor_is_shield_flag(conductor),      &
                         bundle%terminal_conductor_to_inner_domain(conductor),     &
                         bundle%terminal_conductor_to_outer_domain(conductor),     &
                         bundle%terminal_conductor_to_global_domain_conductor(conductor), &
                         bundle%terminal_conductor_to_local_domain_conductor(conductor), &
                         bundle%terminal_conductor_to_reference_terminal_conductor(conductor)
8000 format(L5,5I15)
  end do
 
! write the conductor labels
  write(file_unit,*)' # Conductor labels' 
  do conductor=1,bundle%tot_n_conductors
    write(file_unit,*)trim(bundle%conductor_label(conductor))
  end do

! close .bundle file

  CLOSE(unit=file_unit)
  
  RETURN

  END SUBROUTINE write_cable_bundle

! NAME
!     SUBROUTINE deallocate_cable_bundle
!
!     deallocate cable_bundle structure data
!     
! COMMENTS
!     
!
! HISTORY
!    started 2/12/2015 CJS
!    generalise conductor impedance for transfer impedance model (stage 5) CJS 12/5/2016
!

  SUBROUTINE deallocate_cable_bundle(bundle)

  USE type_specifications
  USE general_module
  USE cable_module

  IMPLICIT NONE

! variables passed to subroutine

  type(bundle_specification_type),intent(INOUT)    :: bundle
  
! local variables

  integer    :: cable
  integer    :: domain
  integer    :: conductor

! START

  do cable=1,bundle%n_cables
    CALL deallocate_cable(bundle%cable(cable))
  end do
  
  
  if (allocated(bundle%cable)) DEALLOCATE( bundle%cable )
  if (allocated(bundle%cable_x_offset )) DEALLOCATE( bundle%cable_x_offset )
  if (allocated(bundle%cable_y_offset )) DEALLOCATE( bundle%cable_y_offset )
  if (allocated(bundle%cable_angle ))    DEALLOCATE( bundle%cable_angle )
  
  if (allocated(bundle%n_conductors )) DEALLOCATE( bundle%n_conductors ) 
  
  if (allocated(bundle%terminal_conductor_list )) then  
    do domain=1,bundle%tot_n_domains    
      if (allocated(bundle%terminal_conductor_list(domain)%element )) &
        DEALLOCATE( bundle%terminal_conductor_list(domain)%element )
    end do 
    DEALLOCATE( bundle%terminal_conductor_list ) 
  end if
 
  if (allocated(bundle%L )) then  
    do domain=1,bundle%tot_n_domains    
      if (allocated(bundle%L(domain)%mat )) DEALLOCATE( bundle%L(domain)%mat )
    end do 
    DEALLOCATE( bundle%L ) 
  end if
 
  if (allocated(bundle%C )) then  
    do domain=1,bundle%tot_n_domains    
      if (allocated(bundle%C(domain)%mat )) DEALLOCATE( bundle%C(domain)%mat )
    end do 
    DEALLOCATE( bundle%C ) 
  end if
  
  if (ALLOCATED(bundle%Z)) then  
    do domain=1,bundle%tot_n_domains
      CALL deallocate_Sfilter_matrix( bundle%Z(domain) )
    end do  
    DEALLOCATE(bundle%Z)
  end if
  
  if (ALLOCATED(bundle%Y)) then  
    do domain=1,bundle%tot_n_domains
      CALL deallocate_Sfilter_matrix( bundle%Y(domain) )
    end do  
    DEALLOCATE(bundle%Y)
  end if
   
  if (allocated(bundle%global_MI%mat)) DEALLOCATE( bundle%global_MI%mat )
  if (allocated(bundle%global_MV%mat)) DEALLOCATE( bundle%global_MV%mat )
  
  if (allocated(bundle%global_L%mat)) DEALLOCATE( bundle%global_L%mat )
  if (allocated(bundle%global_C%mat)) DEALLOCATE( bundle%global_C%mat )
  
  CALL deallocate_Sfilter_matrix( bundle%global_Z )
  CALL deallocate_Sfilter_matrix( bundle%global_Y )

  if (ALLOCATED(bundle%conductor_impedance)) then  
    do conductor=1,bundle%tot_n_conductors
      CALL deallocate_conductor_impedance_model(bundle%conductor_impedance(conductor))
    end do
    DEALLOCATE(bundle%conductor_impedance)
  end if
  
  if (ALLOCATED( bundle%conductor_x_offset )) DEALLOCATE( bundle%conductor_x_offset )
  if (ALLOCATED( bundle%conductor_y_offset )) DEALLOCATE( bundle%conductor_y_offset )

! Numbering information required for transfer impedance calculation

  if(ALLOCATED( bundle%terminal_conductor_is_shield_flag ))  DEALLOCATE( bundle%terminal_conductor_is_shield_flag )
  if(ALLOCATED( bundle%terminal_conductor_to_inner_domain )) DEALLOCATE( bundle%terminal_conductor_to_inner_domain )
  if(ALLOCATED( bundle%terminal_conductor_to_outer_domain )) DEALLOCATE( bundle%terminal_conductor_to_outer_domain )
  if(ALLOCATED( bundle%terminal_conductor_to_global_domain_conductor ))  &
    DEALLOCATE( bundle%terminal_conductor_to_global_domain_conductor )
  if(ALLOCATED( bundle%terminal_conductor_to_local_domain_conductor ))  &
    DEALLOCATE( bundle%terminal_conductor_to_local_domain_conductor )
  if(ALLOCATED( bundle%terminal_conductor_to_reference_terminal_conductor )) &
    DEALLOCATE( bundle%terminal_conductor_to_reference_terminal_conductor )
  
  if (ALLOCATED( bundle%conductor_label )) then
    DEALLOCATE(bundle%conductor_label)
  end if

  RETURN

  END SUBROUTINE deallocate_cable_bundle
!
! NAME
!     SUBROUTINE check_cables_wrt_ground_plane
!
!     check that the cables are all on one side of the ground plane to ensure consistency
!     and indicate which side the cables are on by setting bundle%ground_plane_cable_side
!     
! COMMENTS
!     
!
! HISTORY
!    started 29/06/2016 CJS
!

  SUBROUTINE check_cables_wrt_ground_plane(bundle)

  USE type_specifications
  USE general_module
  USE cable_module

  IMPLICIT NONE

! variables passed to subroutine

  type(bundle_specification_type),intent(INOUT)    :: bundle
  
! local variables

  integer    :: cable
  
  real(dp)   :: norm_x,norm_y
  real(dp)   :: p
  real(dp)   :: gp_offset
  real(dp)   :: gp_offset_cable_1
  
! START

! calculate the ground plane normal direction

  norm_x=bundle%ground_plane_nx
  norm_y=bundle%ground_plane_ny

! The equation of the ground plane is r.norm-P=0, calculate P here  
  P=bundle%ground_plane_x*norm_x+bundle%ground_plane_y*norm_y

! loop over all of the cables, calculating the offset from the ground plane in the normal direction
! offset=r.norm-P, and check that all offsets have the same sign

 if (verbose) then
   write(*,*)'Checking the orientation of cables wrt the ground plane'
   write(*,*)'GP normal:',norm_x,norm_y
   write(*,*)'GP offset:',bundle%ground_plane_x+bundle%ground_plane_y
   write(*,*)'P=',P
 end if

  do cable=1,bundle%n_cables_without_ground_plane
  
    gp_offset=bundle%cable_x_offset(cable)*norm_x+bundle%cable_y_offset(cable)*norm_y-P
    
    if (verbose) then
      write(*,*)'Cable',cable,' offset',gp_offset
    end if
    
    if (cable.EQ.1) then
    
      gp_offset_cable_1=gp_offset
      
    else
! check consistency of ground plane offsets

      if (gp_offset_cable_1*gp_offset.LE.0d0) then
        run_status='ERROR there are cables both sides of the ground plane'
        CALL write_program_status()
        STOP 1
      end if
          
    end if  ! cable.NE.1
    
  end do  ! next cable to check
  
  if (gp_offset_cable_1.GT.0d0) then
    bundle%ground_plane_cable_side=1
  else
    bundle%ground_plane_cable_side=-1
  end if
  
  RETURN

  END SUBROUTINE check_cables_wrt_ground_plane
!
! NAME
!     SUBROUTINE check_cable_intersections
!
!     check that the cables do not intersect
!     the intersection test checks intersection of the outer shape of each cable
!     which is usually the outer dielectric layer apart from overshields or D connectors which
!     are assumed not to have dielectric
!     
! COMMENTS
!     Revised to work with all cable types
!
! HISTORY
!    started 8/10/2016 CJS
!
!
  SUBROUTINE check_cable_intersection(bundle)

  USE type_specifications
  USE general_module
  USE cable_module

  IMPLICIT NONE

! variables passed to subroutine

  type(bundle_specification_type),intent(IN)    :: bundle
  
! local variables

  integer    :: cable1,cable2
  integer    :: nec1,nec2,ec1,ec2
  
  integer    :: shape1,shape2
  integer    :: type1,type2
  
  real(dp)   :: ox,oy,theta
  real(dp)   :: r

  real(dp)   :: wd,hd
  integer    :: nc,ncrow(2)
  real(dp)   :: rw,p,s,o,W(2)
  
  integer :: npts1
  real(dp),allocatable :: shape1_x(:)
  real(dp),allocatable :: shape1_y(:)
   
  integer :: npts2
  real(dp),allocatable :: shape2_x(:)
  real(dp),allocatable :: shape2_y(:)

  logical :: intersect
  logical :: intersect2
  logical :: nested_1_in_2
  logical :: nested_2_in_1
  logical :: gp_intersect
  
  logical :: intersection_found
  
! START

  intersection_found=.FALSE.

! loop over cable 1
  do cable1=1,bundle%n_cables_without_ground_plane
  
    ox=bundle%cable_x_offset(cable1)
    oy=bundle%cable_y_offset(cable1)
    theta=bundle%cable_angle(cable1)
    type1=bundle%cable(cable1)%cable_type
    
    if (bundle%cable(cable1)%cable_type.NE.cable_geometry_type_flex_cable) then
      nec1=bundle%cable(cable1)%n_external_conductors
    else
      nec1=1
    end if
    
! loop over the external conductors of cable 1
    do ec1=1,nec1
    
      shape1=bundle%cable(cable1)%external_model(ec1)%conductor_type
         
! generate a list of points on cable 1 outer surface
      if (shape1.EQ.rectangle) then
    
        wd=bundle%cable(cable1)%external_model(1)%dielectric_width
        hd=bundle%cable(cable1)%external_model(1)%dielectric_height
        CALL generate_rectangle_points(npts1,shape1_x,shape1_y,ox,oy,theta,wd,hd)
      
      else if (shape1.EQ.circle) then
    
        r=bundle%cable(cable1)%external_model(ec1)%dielectric_radius
        CALL generate_circle_points(npts1,shape1_x,shape1_y,ox,oy,r)
     
      else if (shape1.EQ.Dshape) then
    
        nc=bundle%cable(cable1)%tot_n_conductors 
        rw=bundle%cable(cable1)%parameters(1)
        p=bundle%cable(cable1)%parameters(2)
        s=bundle%cable(cable1)%parameters(3)
        o=bundle%cable(cable1)%parameters(4)
        ncrow(1)=nc/2
        ncrow(2)=(nc-1)-ncrow(1)
        w(1)=(ncrow(1)-1)*p
        w(2)=(ncrow(2)-1)*p
        CALL generate_Dshape_points(npts1,shape1_x,shape1_y,ox,oy,w(1)/2d0,w(2)/2d0,s/2d0,rw+o,theta)
      
      end if
          
      if (bundle%ground_plane_present) then
! check for intersection of the cables with the ground plane
        gp_intersect=.FALSE.
        
        if (verbose) write(*,*)'TESTING: intersection of cable',cable1,' with the ground plane'

        CALL gptest(npts1,shape1_x,shape1_y,gp_intersect)

        if (gp_intersect) then
          if (verbose) write(*,*)'Cable ',cable1,' intersects the ground plane'
          intersection_found=.TRUE.
        end if
              
      end if
      
! loop over cable 2
      do cable2=cable1+1,bundle%n_cables_without_ground_plane
  
        ox=bundle%cable_x_offset(cable2)
        oy=bundle%cable_y_offset(cable2)
        theta=bundle%cable_angle(cable2)
        type2=bundle%cable(cable2)%cable_type
    
        if (bundle%cable(cable2)%cable_type.NE.cable_geometry_type_flex_cable) then
          nec2=bundle%cable(cable2)%n_external_conductors
        else
          nec2=1
        end if
    
! loop over the external conductors of cable 2
        do ec2=1,nec2

          shape2=bundle%cable(cable2)%external_model(ec2)%conductor_type
         
! generate a list of points on cable 1 outer surface
          if (shape2.EQ.rectangle) then
    
            wd=bundle%cable(cable2)%external_model(1)%dielectric_width
            hd=bundle%cable(cable2)%external_model(1)%dielectric_height
            CALL generate_rectangle_points(npts2,shape2_x,shape2_y,ox,oy,theta,wd,hd)
      
          else if (shape2.EQ.circle) then
    
            r=bundle%cable(cable2)%external_model(ec2)%dielectric_radius
            CALL generate_circle_points(npts2,shape2_x,shape2_y,ox,oy,r)
     
          else if (shape2.EQ.Dshape) then
    
            nc=bundle%cable(cable2)%tot_n_conductors 
            rw=bundle%cable(cable2)%parameters(1)
            p=bundle%cable(cable2)%parameters(2)
            s=bundle%cable(cable2)%parameters(3)
            o=bundle%cable(cable2)%parameters(4)
            ncrow(1)=nc/2
            ncrow(2)=(nc-1)-ncrow(1)
            w(1)=(ncrow(1)-1)*p
            w(2)=(ncrow(2)-1)*p
            CALL generate_Dshape_points(npts2,shape2_x,shape2_y,ox,oy,w(1)/2d0,w(2)/2d0,s/2d0,rw+o,theta)
      
          end if

! assume that there is no intersection and the shapes are not nested

          intersect=.FALSE.
          nested_1_in_2=.FALSE.
          nested_2_in_1=.FALSE.
          
! check for the intersection of cable 1 with cable 2 and flag if cable 1 is nested within cable 2.
        
          if (verbose) write(*,*)'TESTING: intersection of cable',cable1,' with cable ',cable2
          CALL shape_test(npts1,shape1_x,shape1_y,npts2,shape2_x,shape2_y,intersect,nested_1_in_2)

          if (intersect) then
            if (verbose) write(*,*)'Cable ',cable1,' intersects Cable',cable2
            intersection_found=.TRUE.
          end if

! Cables can only be nested if the outer cable is an overshield
          if ( nested_1_in_2 ) then
            if (type1.NE.cable_geometry_type_overshield) then
              if (verbose) write(*,*)'Cable ',cable2,' is inside Cable',cable1
              intersection_found=.TRUE.
            else
               if (verbose) write(*,*)'Cable ',cable2,' is OK inside Overshield Cable',cable1
            end if
          end if

! check for the intersection of cable 1 with cable 2 and flag if cable 1 is nested within cable 2.

          if (verbose) write(*,*)'TESTING: intersection of cable',cable2,' with cable ',cable1
          CALL shape_test(npts2,shape2_x,shape2_y,npts1,shape1_x,shape1_y,intersect2,nested_2_in_1)

          if (intersect) then
            if (verbose) write(*,*)'Cable ',cable2,' intersects Cable',cable1
            intersection_found=.TRUE.
          end if

! Cables can only be nested if the outer cable is an overshield          
          if ( nested_2_in_1 ) then
            if (type2.NE.cable_geometry_type_overshield) then
              if (verbose) write(*,*)'Cable ',cable1,' is inside Cable',cable2
              intersection_found=.TRUE.
            else
              if (verbose) write(*,*)'Cable ',cable1,' is OK inside Overshield Cable',cable2
            end if
          end if
          
          DEALLOCATE( shape2_x )
          DEALLOCATE( shape2_y )
                           
        end do ! next external conductor of cable 2
               
      end do ! next cable 2  
          
      DEALLOCATE( shape1_x )
      DEALLOCATE( shape1_y )
    
    end do  ! next external conductor of cable1
  
  end do  ! next cable1
  
  if (intersection_found) then
    run_status='ERROR there are cables in the bundle which intersect'
    CALL write_program_status()
    STOP 1
  end if
    
  RETURN

  END SUBROUTINE check_cable_intersection
!
! NAME
!     SUBROUTINE gptest
!
!     check that a cable does not intersect the ground plane
!     
! COMMENTS
!     
!
! HISTORY
!    started 20/4/2017 CJS
!
!
SUBROUTINE gptest(npts,shape_x,shape_y,gp_intersect)

USE type_specifications

IMPLICIT NONE

integer,intent(IN) :: npts
real(dp),intent(IN) :: shape_x(npts)
real(dp),intent(IN) :: shape_y(npts)

logical,intent(OUT) :: gp_intersect

! local variables

integer :: i

! START

do i=1,npts

  if (shape_y(i).LE.0D0) then
    gp_intersect=.TRUE.
    RETURN
  end if

end do ! next point

RETURN

END SUBROUTINE gptest
!
! NAME
!     SUBROUTINE shape_test
!
!     check that cables do not intersect, also flag whether the first cable is nested 
!     i.e. lies entirely within the second
!     
! COMMENTS
!     We assume that the shape of the cable is convex and that the shape is closed
!
! HISTORY
!    started 20/4/2017 CJS
!
!
SUBROUTINE shape_test(npts1,shape1_x,shape1_y,npts2,shape2_x,shape2_y,intersect,nested)

USE type_specifications

IMPLICIT NONE

integer,intent(IN)  :: npts1
real(dp),intent(IN) :: shape1_x(npts1)
real(dp),intent(IN) :: shape1_y(npts1)

integer,intent(IN)  :: npts2
real(dp),intent(IN) :: shape2_x(npts2)
real(dp),intent(IN) :: shape2_y(npts2)

logical,intent(OUT) :: intersect            ! flag to indicate that shapes 1 and 2 intersect
logical,intent(OUT) :: nested               ! flag to indicate shape 2 lies within shape 1

! local variables

integer :: i,j

real(dp) :: vx1,vy1
real(dp) :: vx2,vy2
real(dp) :: vp
real(dp) :: dirn

logical :: inside_point_found
logical :: outside_point_found

logical :: local_outside_point_found

! START

intersect=.FALSE.
nested=.FALSE.

inside_point_found=.FALSE.
outside_point_found=.FALSE.

! loop around test points in shape 2
do j=1,npts2

  local_outside_point_found=.FALSE.

  dirn=0.0  ! set to zero initially to indicate that it is not known
  
! loop around line segments in shape 1. Note there is one less line segment than the number of points
  do i=1,npts1-1

! vector along line segment in shape 1
    vx1=shape1_x(i+1)-shape1_x(i)
    vy1=shape1_y(i+1)-shape1_y(i)
    
! vector from first point in line segment to test point
    vx2=shape2_x(j)-shape1_x(i)
    vy2=shape2_y(j)-shape1_y(i)
    
! calculate the z component of the vector product of the two vectors
    vp=vx1*vy2-vx2*vy1
    
    if (dirn.EQ.0D0) then    ! maybe we need to use abs(dirn).LT.small here...
    
! this is the first value so this sets the direction to test for all other sets of points

      dirn=vp
      
    else
    
! test whether the sign of the direction has changed

      if (dirn*vp.LT.0.0) then
      
! the signs are different then this indicates a test point outside shape 1
  
        local_outside_point_found=.TRUE.
      
      end if  ! change in sign of direction
      
    end if  ! first test line segment.

  end do  ! next line segment in shape 1
  
  if (local_outside_point_found) then
    outside_point_found=.TRUE.
  else
    inside_point_found=.TRUE.  
  end if

end do ! next test point in shape 2

! work out whether we have an intersection

if (inside_point_found.AND.outside_point_found) intersect=.TRUE.
  
! work out whether we have a nested shape

if (inside_point_found.AND.(.NOT.outside_point_found)) nested=.TRUE.

RETURN

END SUBROUTINE 

END MODULE cable_bundle_module