generate_shapes.F90 13.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2018 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! FILE CONTENTS:
!SUBROUTINE generate_circle_points
!SUBROUTINE generate_rectangle_points
!SUBROUTINE generate_Dshape_points
!SUBROUTINE generate_arc_points
!SUBROUTINE generate_semicircle_points
!
!SUBROUTINE generate_circle_points
!
! NAME
!     SUBROUTINE generate_circle_points
!
! DESCRIPTION
!     write a circle with specified x,y centre and radius to file for plotting with gnuplot
!
!     
! COMMENTS
!     return the extent of the plotting area...
!
! HISTORY
!
!     started 10/05/2013 CJS
!
!
SUBROUTINE generate_circle_points(npts,shape_x,shape_y,x,y,r)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)
  real(dp),intent(IN)                :: x,y,r                 ! centre x and y coordinates and radius
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  real(dp) x4,y4
  
  integer :: loop
  
! START

! write the circle as four arcs

  x1=x
  y1=y+r
  
  x2=x-r
  y2=y
  
  x3=x
  y3=y-r
  
  x4=x+r
  y4=y

  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x1,y1,x2,y2)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x2,y2,x3,y3)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x3,y3,x4,y4)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x4,y4,x1,y1)
  
    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop
   
  RETURN
  
END SUBROUTINE generate_circle_points
!
!SUBROUTINE generate_rectangle_points
!
! NAME
!     SUBROUTINE generate_rectangle_points
!
! DESCRIPTION
!     write a rectangle with specified x,y centre, width, height and angle to file for plotting with gnuplot
!
!     
! COMMENTS
!     return the extent of the plotting area...
!
! HISTORY
!
!     started 23/9/2016 CJS
!
!
SUBROUTINE generate_rectangle_points(npts,shape_x,shape_y,x,y,theta,w,h)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)

  real(dp),intent(IN)    :: x,y,w,h,theta         ! centre x and y coordinates, width, height and angle of rectangle
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  real(dp) x4,y4
  real(dp) xt,yt
  
  integer :: loop
 
! START

! first point

  xt=w/2d0
  yt=h/2d0
  
! rotate then translate, note save the first point
  
  x1=x+xt*cos(theta)-yt*sin(theta)
  y1=y+xt*sin(theta)+yt*cos(theta)
  
! second point

  xt=-w/2d0
  yt=h/2d0
! rotate then translate 
  x2=x+xt*cos(theta)-yt*sin(theta)
  y2=y+xt*sin(theta)+yt*cos(theta)
  
! third point

  xt=-w/2d0
  yt=-h/2d0
! rotate then translate 
  x3=x+xt*cos(theta)-yt*sin(theta)
  y3=y+xt*sin(theta)+yt*cos(theta)
  
! fourth point

  xt=w/2d0
  yt=-h/2d0
! rotate then translate 
  x4=x+xt*cos(theta)-yt*sin(theta)
  y4=y+xt*sin(theta)+yt*cos(theta)
  
  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_line_points(npts,shape_x,shape_y,loop,x1,y1,x2,y2)
  
    CALL generate_line_points(npts,shape_x,shape_y,loop,x2,y2,x3,y3)
  
    CALL generate_line_points(npts,shape_x,shape_y,loop,x3,y3,x4,y4)
  
    CALL generate_line_points(npts,shape_x,shape_y,loop,x4,y4,x1,y1)
  
    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop
   
  RETURN
  
END SUBROUTINE generate_rectangle_points

!
! NAME
!     SUBROUTINE generate_Dshape_points
!
! DESCRIPTION
!     write a Dshape with specified x,y centre, width1, width2, conductor separation, shell offset and angle to file for plotting with gnuplot
!
!     
! COMMENTS
!     Also return the extent of the plotting area
!
! HISTORY
!
!     started 15/11/2016 CJS
!
!
SUBROUTINE generate_Dshape_points(npts,shape_x,shape_y,x,y,w1,w2,s,r,theta)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)

  real(dp),intent(IN)    :: x,y,w1,w2,s,r,theta  ! centre x and y coordinates, width1, width2, separation of wire rows, offset of D shapeand angle
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  real(dp) x4,y4
  real(dp) x5,y5
  real(dp) x6,y6
  real(dp) x7,y7
  real(dp) x8,y8
  real(dp) x9,y9
  real(dp) x10,y10
  real(dp) x11,y11
  real(dp) x12,y12
  
  real(dp) xt,yt
  real(dp) vx,vy
  real(dp) voxl,voyl
  real(dp) norm
 
  integer :: loop
  
! START

! vector from top left conductor to bottem left conductor      
  vx=w1-w2
  vy=-2d0*s

! perpendicular vector to -x edge
  norm=sqrt(vx*vx+vy*vy)
  voxl=vy*r/norm
  voyl=-vx*r/norm

! POINT 1      ! top right
  xt=w1
  yt=s+r 
  x1=x+xt*cos(theta)-yt*sin(theta)
  y1=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 2      ! top left
  xt=-w1
  yt=s+r
  x2=x+xt*cos(theta)-yt*sin(theta)
  y2=y+xt*sin(theta)+yt*cos(theta)
       
! POINT 3      ! top left centre
  xt=-w1
  yt=s
  x3=x+xt*cos(theta)-yt*sin(theta)
  y3=y+xt*sin(theta)+yt*cos(theta)
     
! POINT 4      ! top left edge
  xt=-w1+voxl
  yt=s+voyl
  x4=x+xt*cos(theta)-yt*sin(theta)
  y4=y+xt*sin(theta)+yt*cos(theta)
        
! POINT 5      ! bottom left edge
  xt=-w2+voxl
  yt=-s+voyl
  x5=x+xt*cos(theta)-yt*sin(theta)
  y5=y+xt*sin(theta)+yt*cos(theta)  
      
! POINT 6      ! bottom left centre
  xt=-w2
  yt=-s
  x6=x+xt*cos(theta)-yt*sin(theta)
  y6=y+xt*sin(theta)+yt*cos(theta)
       
! POINT 7      ! bottom left
  xt=-w2
  yt=-(s+r)
  x7=x+xt*cos(theta)-yt*sin(theta)
  y7=y+xt*sin(theta)+yt*cos(theta)
         
! POINT 8      ! bottom right
  xt=w2
  yt=-(s+r)
  x8=x+xt*cos(theta)-yt*sin(theta)
  y8=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 9      ! bottom right centre
  xt=w2
  yt=-s
  x9=x+xt*cos(theta)-yt*sin(theta)
  y9=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 10      ! bottom right edge
  xt=w2-voxl
  yt=-s+voyl
  x10=x+xt*cos(theta)-yt*sin(theta)
  y10=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 11      ! top right edge
  xt=w1-voxl
  yt=s+voyl
  x11=x+xt*cos(theta)-yt*sin(theta)
  y11=y+xt*sin(theta)+yt*cos(theta)
       
! POINT 12      ! top right centre
  xt=w1
  yt=s
  x12=x+xt*cos(theta)-yt*sin(theta)
  y12=y+xt*sin(theta)+yt*cos(theta)
     
  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_line_points(npts,shape_x,shape_y,loop,x1,y1,x2,y2)
    
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x3,y3,x2,y2,x4,y4)

    CALL generate_line_points(npts,shape_x,shape_y,loop,x4,y4,x5,y5)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x6,y6,x5,y5,x7,y7)

    CALL generate_line_points(npts,shape_x,shape_y,loop,x7,y7,x8,y8)

    CALL generate_arc_points(npts,shape_x,shape_y,loop,x9,y9,x8,y8,x10,y10)

    CALL generate_line_points(npts,shape_x,shape_y,loop,x10,y10,x11,y11)

    CALL generate_arc_points(npts,shape_x,shape_y,loop,x12,y12,x11,y11,x1,y1)
   
    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop

  RETURN
  
END SUBROUTINE generate_Dshape_points
!
! NAME
!     SUBROUTINE generate_arc_points
!
! DESCRIPTION
!     generate a set of points describing an arc
!     The arc is always in an anticlockwise direction.
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 20/4/2017 CJS
!
!
SUBROUTINE generate_arc_points(npts,shape_x,shape_y,loop,xc,yc,x1,y1,x2,y2)

USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts       ! point count
  real(dp),allocatable,intent(INOUT)  :: shape_x(:) ! x coordinate value list
  real(dp),allocatable,intent(INOUT)  :: shape_y(:) ! y coordinate value list
  
  integer,intent(IN)    :: loop                  ! loop indicator. If loop=1, just count the points, if loop=2 set the coordinate values

  real(dp),intent(IN)    :: xc,yc                ! centre coordinates
  real(dp),intent(IN)    :: x1,y1                ! arc end 1 coordinates
  real(dp),intent(IN)    :: x2,y2                ! arc end 2 coordinates
   
! local variables

  real(dp) :: r           ! arc radius
  real(dp) :: x,y         ! point coordinates
  real(dp) :: tmin        ! minimum angle
  real(dp) :: tmax        ! maximum angle
  real(dp) :: t           ! angle
  real(dp) :: dt          ! angle step
  integer  :: tloop       ! theta loop variable
  
  integer,parameter :: nt=40  ! number of points in an arc
   
! START
! calculate the radius
  r=sqrt((x1-xc)**2+(y1-yc)**2)

! calculate the angle of the first point from the x axis
  tmin=atan2(y1-yc,x1-xc)

! calculate the angle of the last point from the x axis
  tmax=atan2(y2-yc,x2-xc)

! ensure that tmax is greater than tmin i.e. the arc is in an anticlockwise direction  
  if (tmax.LT.tmin) tmax=tmax+2d0*pi
  
  dt=(tmax-tmin)/dble(nt)

! first point of the arc

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x1
    shape_y(npts)=y1
  end if

! write the interior points of the arc

! loop over theta    

  do tloop=1,nt-1
  
    t=tmin+dt*dble(tloop)

    x=xc+r*cos(t)
    y=yc+r*sin(t)
  
    npts=npts+1
    if (loop.EQ.2) then
      shape_x(npts)=x
      shape_y(npts)=y
    end if
  
  end do

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x2
    shape_y(npts)=y2
  end if
  
  RETURN

END SUBROUTINE generate_arc_points
!
! NAME
!     SUBROUTINE generate_line_points
!
! DESCRIPTION
!     generate a set of points describing a line
!  
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 20/4/2017 CJS
!
!
SUBROUTINE generate_line_points(npts,shape_x,shape_y,loop,x1,y1,x2,y2)

USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts       ! point count
  real(dp),allocatable,intent(INOUT)  :: shape_x(:) ! x coordinate value list
  real(dp),allocatable,intent(INOUT)  :: shape_y(:) ! y coordinate value list
  
  integer,intent(IN)    :: loop                  ! loop indicator. If loop=1, just count the points, if loop=2 set the coordinate values

  real(dp),intent(IN)    :: x1,y1                ! line end 1 coordinates
  real(dp),intent(IN)    :: x2,y2                ! line end 2 coordinates
   
! local variables

  real(dp) :: x,y         ! point coordinates
  real(dp) :: t           ! normalised distance along line
  integer  :: tloop       ! loop variable
  
  integer,parameter :: nt=16  ! number of points in a line
   
! START

! first point of the line

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x1
    shape_y(npts)=y1
  end if

! write the interior points of the line

! loop over theta    

  do tloop=1,nt-1
  
    t=dble(tloop)/dble(nt)

    x=x1+(x2-x1)*t
    y=y1+(y2-y1)*t
  
    npts=npts+1
    if (loop.EQ.2) then
      shape_x(npts)=x
      shape_y(npts)=y
    end if
  
  end do

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x2
    shape_y(npts)=y2
  end if
  
  RETURN

END SUBROUTINE generate_line_points
!
!SUBROUTINE generate_semicircle_points
!
! NAME
!     SUBROUTINE generate_semicircle_points
!
! DESCRIPTION
!     write a semicircle with specified x,y centre and radius to file for plotting with gnuplot
!     the semicircle is in the region y>=ycentre
!
!     
! COMMENTS
!     return the extent of the plotting area...
!
! HISTORY
!
!     started 10/05/2013 CJS
!
!
SUBROUTINE generate_semicircle_points(npts,shape_x,shape_y,x,y,r)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)
  real(dp),intent(IN)                :: x,y,r                 ! centre x and y coordinates and radius
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  
  integer :: loop
  
! START

! write the semicircle as two arcs and a straight line to close the shape
! the straght line is formed by the first and last points of the arc

  x1=x+r
  y1=y
  
  x2=x
  y2=y+r
  
  x3=x-r
  y3=y

  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x1,y1,x2,y2)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x2,y2,x3,y3)
        
    CALL generate_line_points(npts,shape_x,shape_y,loop,x3,y3,x1,y1)

    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop
   
  RETURN
  
END SUBROUTINE generate_semicircle_points