include_minimum_resistance_function.F90 11.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE calculate_min_resistance_function(H,R,w0)
! SUBROUTINE calculate_min_resistance_value(H,R,w0)
!
! NAME
!     calculate_min_resistance_value
!
! DESCRIPTION
!     This subroutine calculates the minimum resistance of a rational transfer function
!     and the angular frequency at which it occurs
!     See F. F. Kuo, "Network Analysis and Synthesis" section 10.3
!
!     The algorithm first obtains an expression for the real part of the rational function as
!     a function of frequency. This is then differentiated and the minima calculated.
!     The lowest minimum, or the resistance as f-> infinty if is smaller is then the minimum resistance
!
! SEE ALSO
!
!
! HISTORY
!
!     started 05/10/2017 CJS
!
  SUBROUTINE calculate_min_resistance_value(H,R,w0)

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

! variables passed to subroutine  
  type(Sfilter),intent(INOUT)       :: H        ! Input Rational transfer function 
  real(dp),intent(OUT)              :: R        ! Output Minimum resistance (real part of the transfer function)
  real(dp),intent(OUT)              :: w0       ! Output Angular frequency at which the minimum occurs
  
! local variables

  type(Sfilter)    :: Hnew
  type(polynomial) :: m1,m2,n1,n2,t1,t2,A2,A,Ap,B,B2,Bp,Q
  integer  :: i,ii,order,m_order,n_order,a_order
  
  integer      :: poly_order
  complex(dp),allocatable :: roots(:)
  complex(dp),allocatable :: rroots(:)
  complex(dp),allocatable :: croots(:)
  integer                 :: nreal
  integer                 :: ncomplex
  
  integer  :: root
  real(dp) :: min_R,min_w0,w,f,R_w
  
  logical :: pole_at_zero
  logical :: local_verbose

    
!START

!  local_verbose=.TRUE.
  local_verbose=.FALSE.

  if (local_verbose) then
    write(*,*)'CALLED calculate_min_resistance_value'
    write(*,*)'Input filter function:'
    CALL write_Sfilter(H,0)
  end if
  
  if (abs(H%b%coeff(0)).LT.zero_test_small) then
    pole_at_zero=.TRUE.
  else
    pole_at_zero=.FALSE.
  end if
  
! assemble the odd and even polynomials m1 and n1 from the numerator of H 

  order=H%a%order
  if (mod(order,2).EQ.0) then
    m_order=order
    n_order=max(order-1,0)
  else
    m_order=max(order-1,0)
    n_order=order 
  end if
  
  m1=allocate_polynomial(m_order)
  n1=allocate_polynomial(n_order)
  
  m1%coeff(:)=0d0
  do i=0,m_order,2
    m1%coeff(i)=H%a%coeff(i)
  end do
  
  n1%coeff(:)=0d0
  do i=1,n_order,2
    n1%coeff(i)=H%a%coeff(i)
  end do
  
  if (local_verbose) then
    write(*,*)'Numerator:'
    CALL write_poly_local3(H%a)  
    write(*,*)'m1: even order terms'
    CALL write_poly_local3(m1)  
    write(*,*)'n1: odd order terms'
    CALL write_poly_local3(n1)  
  end if

! assemble the odd and even polynomials m2 and n2 from the denominator of H 

  order=H%b%order
  if (mod(order,2).EQ.0) then
    m_order=order
    n_order=max(order-1,0)
  else
    m_order=max(order-1,0)
    n_order=order 
  end if
  
  m2=allocate_polynomial(m_order)
  n2=allocate_polynomial(n_order)
  
  m2%coeff(:)=0d0
  do i=0,m_order,2
    m2%coeff(i)=H%b%coeff(i)
  end do
  
  n2%coeff(:)=0d0
  do i=1,n_order,2
    n2%coeff(i)=H%b%coeff(i)
  end do
  
  if (local_verbose) then
    write(*,*)'Denominator:'
    CALL write_poly_local3(H%b)  
    write(*,*)'m2: even order terms'
    CALL write_poly_local3(m2)  
    write(*,*)'n2: odd order terms'
    CALL write_poly_local3(n2)  
  end if

! Calculate the polynomial A2(jw)=m1(jw)m2(jw)-n1(jw)n2(jw)

  t1=m1*m2
  t2=n1*n2
  A2=t1-t2
  
  CALL get_min_order_poly(A2)
  
  if (local_verbose) then
    write(*,*)'A2(jw)=m1m2-n1n2'
    CALL write_poly_local3(A2)  
   end if
   
! Calculate the coefficients of A(w)

  order=A2%order
  if (mod(order,2).EQ.0) then
    a_order=order
  else
    write(*,*)'Error in calculate_min_resistance_function. Order of A2(jw) is not an even number'
  end if
  
  A=allocate_polynomial(a_order)
  
  do i=0,a_order
    A%coeff(i)=A2%coeff(i)
  end do

! At the moment A is a function of (jw) not w with zero odd order coefficients
! We get the function of w by making the jw**2n order coefficients negative
  do i=2,a_order,4
    A%coeff(i)=-A%coeff(i)
  end do
    
  CALL get_min_order_poly(A)
  
  if (local_verbose) then
    write(*,*)'A(w)='
    CALL write_poly_local3(A)  
   end if

! Calculate the polynomial B2(jw)=m2(jw)m2(jw)-n2(jw)n2(jw)

  t1=m2*m2
  t2=n2*n2
  B2=t1-t2
  
  CALL get_min_order_poly(B2)
  
  if (local_verbose) then
    write(*,*)'B2(jw)=m1m2-n1n2'
    CALL write_poly_local3(B2)  
   end if
   
! Calculate the coefficients of B(w)

  order=B2%order
  if (mod(order,2).EQ.0) then
    a_order=order
  else
    write(*,*)'Error in calculate_min_resistance_function. Order of B2(jw) is not an even number'
  end if
  
  B=allocate_polynomial(a_order)
  
  do i=0,a_order
    B%coeff(i)=B2%coeff(i)
  end do

! Bt the moment B is a function of (jw) not w with zero odd order coefficients
! We get the function of w by making the jw**2n order coefficients negative
  do i=2,a_order,4
    B%coeff(i)=-B%coeff(i)
  end do
    
  CALL get_min_order_poly(B)
  
  if (local_verbose) then
    write(*,*)'B(w)='
    CALL write_poly_local3(B)  
   end if

! Calculate the derivative of A(w)/B(w) wrt w

  order=max(0,A%order-1)
  Ap=allocate_polynomial(order)
  
  if (A%order.GT.0) then
    do i=0,Ap%order
      Ap%coeff(i)=A%coeff(i+1)*dble(i+1)
    end do
  end if
  
  if (local_verbose) then
    write(*,*)"Deivative function A'(w)="
    CALL write_poly_local3(Ap)  
   end if

  order=max(0,B%order-1)
  Bp=allocate_polynomial(order)

  if (B%order.GT.0) then
    do i=0,Bp%order
      Bp%coeff(i)=B%coeff(i+1)*dble(i+1)
    end do
  end if
  
  if (local_verbose) then
    write(*,*)"Deivative function B'(w)="
    CALL write_poly_local3(Bp)  
   end if
  
! Calculate the zeros of the derivative function d/dw(A(w)/B(w))=
  t1=Ap*B
  t2=A*Bp
  Q=t1-t2
   
  if (local_verbose) then
    write(*,*)"we require Q(w)=0 where Q="
    CALL write_poly_local3(Q)  
   end if
 
  CALL get_min_order_poly(Q)
  
  if (local_verbose) then
    write(*,*)"we require Q(w)=0 where Q="
    CALL write_poly_local3(Q)  
   end if

  poly_order=Q%order
  ALLOCATE( roots(1:poly_order) )
  CALL findroots(Q,roots,poly_order)
  
  if (local_verbose) then
    write(*,*)'Roots of the derivative function are'
    do root=1,poly_order
      write(*,*)roots(root)
    end do
  end if
  
  ALLOCATE( rroots(1:poly_order) )
  ALLOCATE( croots(1:poly_order) )
  CALL rootsort(poly_order,roots,rroots,             &
                croots,nreal,ncomplex,poly_order)
                     
  if (local_verbose) write(*,*)'Getting the high frequency resistance' 
  
  
  write(*,*)'Getting the high frequency resistance of H:' 
  CALL write_Sfilter(H,0)
  write(*,*)'aorder=',H%a%order
  write(*,*)'border=',H%b%order
  
  min_w0=1D30
  min_R=evaluate_Sfilter_high_frequency_limit(H)
  if (local_verbose) write(*,*)'High frequency resistance=',min_R 
  
  if (local_verbose) write(*,*)'Checking real roots: number of roots=',nreal,poly_order 
  do root=1,nreal
    
    w=-dble(rroots(root))
    f=w*H%wnorm/(2d0*pi)  
    
    if ((pole_at_zero).AND.(abs(f).LT.zero_test_small)) then
! perturb the frequency slightly away from the pole at zero
      write(*,*)'Special case, f=',f
      write(*,*)'(pole_at_zero).AND.(abs(f).LT.zero_test_small),zero_test_small=',zero_test_small
      f=f+zero_test_small
      write(*,*)'new f=',f
    end if

    R_w=evaluate_Sfilter_frequency_response(H,f)
    
    if (local_verbose) then
      write(*,*)'root',rroots(root),'w=',w,' R=',R_w
    end if
   
    if (R_w.EQ.min_R) then
! if we have roots at + and - p, choose the one with positive frequency
      min_R=R_w
      min_w0=max(w,min_w0)
    else if (R_w.LT.min_R) then
      min_R=R_w
      min_w0=w
    end if
    
  end do
  
  R=min_R
  w0=min_w0

  if (local_verbose) then
    write(*,*)'FINISHED calculate_min_resistance_value'
    write(*,*)
    write(*,*)'R0=',R
    write(*,*)'w0=',w0
    write(*,*)
  end if
  
! finish up
  
  DEALLOCATE( roots )
  DEALLOCATE( rroots )
  DEALLOCATE( croots )

  RETURN
  END SUBROUTINE calculate_min_resistance_value
!
! NAME
!     calculate_min_resistance_function
!
! DESCRIPTION
!     This subroutine calculates the minimum resistance value of a PR function
!     and then subtracts it from the input function to give a function
!     whose minimum resistance is zero. This is required in the Brune Synthesis. 
!
! SEE ALSO
!
!
! HISTORY
!
!     started 04/03/09 CJS
!
  SUBROUTINE calculate_min_resistance_function(H,R,w0)

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

! variables passed to subroutine  
  type(Sfilter),intent(INOUT)    :: H            ! Input/ Output Rational transfer function 
  real(dp),intent(OUT)           :: R            ! Output Minimum resistance (real part of the transfer function)
  real(dp),intent(OUT)           :: w0           ! Output Angular frequency at which the minimum occurs
  
! local variables

  type(Sfilter)    :: Hnew
  type(polynomial) :: t1,t2
  real(dp) :: min_R,min_w0,w,f,R_w
  
  logical ::local_verbose

    
!START

  local_verbose=.TRUE.

  if (local_verbose) then
    write(*,*)'CALLED calculate_min_resistance_function'
    write(*,*)'Input filter function:'
    CALL write_Sfilter(H,0)
  end if
  
  CALL calculate_min_resistance_value(H,min_R,min_w0)

! Deal with the numerics around small values of min_R
  if (min_R.LT.-zero_test_small) then
    write(*,*)'calculate_min_resistance_function called with non positive real function'
    STOP
  else if (abs(min_R).LT.zero_test_small) then
    min_R=0d0
  end if
  
  if (local_verbose) then
    write(*,*)'Minimum R=',min_R,' at w=',min_w0 
  end if
  
! now subtract R_min from the input function H(jw)

  Hnew=H
  
  t1=H%a
  t2=H%b
  t2%coeff(:)=t2%coeff(:)*min_R
  
  Hnew%a=t1-t2
  CALL get_min_order_poly(Hnew%a)
  
  H=Hnew
  
  R=min_R
  w0=min_w0

  if (local_verbose) then
    write(*,*)'FINISHED calculate_min_resistance_function'
    write(*,*)'Output filter function:'
    CALL write_Sfilter(H,0)
    write(*,*)
  end if

  RETURN
  END SUBROUTINE calculate_min_resistance_function