include_test_positive_real.F90 11.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! SUBROUTINE test_filter_positive_real(H,stable,local_verbose)
!
!
! NAME
!     test_filter_positive_real
!
! DESCRIPTION
!     test whether a rational function is positive real. The definition of positive real
!     is described in section 7.2 of the Theory Manual.
!     This implements the Sturm test as described in Kim and Meadows section 9.1.3
!
! SEE ALSO
!
!
! HISTORY
!
!     started 9/2017 CJS
!     24/10/2017 CJS Use the minimum resistance value rather than the Sturm test method.
!
  SUBROUTINE test_filter_positive_real(H,stable,local_verbose)

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

! variables passed to subroutine  
  type(Sfilter),intent(IN)    :: H
  logical,intent(OUT)         :: stable
  logical,intent(IN)          :: local_verbose
  
! local variables

  type(polynomial) :: m1,m2,n1,n2,P,Q,t1,t2,A2,A,Ap,Am,C,R
  integer  :: i,ii,order,m_order,n_order,a_order
  
  real(dp),allocatable :: value_inf(:)
  real(dp),allocatable :: value_0(:)

  integer  :: n_sturm,sturm_coeff
  
  integer :: S_inf,S_0,n_real_zeros
  real(dp) :: last_value_inf,last_value_0
  
  logical :: odd_multiplicity_flag
  
  real(dp) :: Rmin,Wmin
  type(Sfilter)    :: Hlocal
   
!START

  if (local_verbose) then
    write(*,*)'CALLED test_filter_positive_real'
    write(*,*)'Input filter function:'
    CALL write_Sfilter(H,0)
  end if
  
  Hlocal=H
  CALL calculate_min_resistance_value(Hlocal,Rmin,wmin)
  
  if (Rmin.LT.0d0) then
    stable=.FALSE.
  else
    stable=.TRUE.
  end if
  
  CALL deallocate_Sfilter(Hlocal)

RETURN

! assume the filter is stable initially
  stable=.TRUE.

! assemble the odd and even polynomials m1 and n1 from the numerator of H 

  order=H%a%order
  if (mod(order,2).EQ.0) then
    m_order=order
    n_order=max(order-1,0)
  else
    m_order=max(order-1,0)
    n_order=order 
  end if
  
  m1=allocate_polynomial(m_order)
  n1=allocate_polynomial(n_order)
  
  m1%coeff(:)=0d0
  do i=0,m_order,2
    m1%coeff(i)=H%a%coeff(i)
  end do
  
  n1%coeff(:)=0d0
  do i=1,n_order,2
    n1%coeff(i)=H%a%coeff(i)
  end do
  
  if (local_verbose) then
    write(*,*)'Numerator:'
    CALL write_poly_local(H%a)  
    write(*,*)'m1: even order terms'
    CALL write_poly_local(m1)  
    write(*,*)'n1: odd order terms'
    CALL write_poly_local(n1)  
  end if

! assemble the odd and even polynomials m2 and n2 from the denominator of H 

  order=H%b%order
  if (mod(order,2).EQ.0) then
    m_order=order
    n_order=max(order-1,0)
  else
    m_order=max(order-1,0)
    n_order=order 
  end if
  
  m2=allocate_polynomial(m_order)
  n2=allocate_polynomial(n_order)
  
  m2%coeff(:)=0d0
  do i=0,m_order,2
    m2%coeff(i)=H%b%coeff(i)
  end do
  
  n2%coeff(:)=0d0
  do i=1,n_order,2
    n2%coeff(i)=H%b%coeff(i)
  end do
  
  if (local_verbose) then
    write(*,*)'Denominator:'
    CALL write_poly_local(H%b)  
    write(*,*)'m2: even order terms'
    CALL write_poly_local(m2)  
    write(*,*)'n2: odd order terms'
    CALL write_poly_local(n2)  
  end if

! Calculate the polynomial A2(jw)=m1(jw)m2(jw)-n1(jw)n2(jw)
! This is in fact a function of w**2 only (no odd order terms in jw)

  t1=m1*m2
  t2=n1*n2
  A2=t1-t2
  
  CALL get_min_order_poly(A2)
  
  if (local_verbose) then
    write(*,*)'A2(jw)=m1m2-n1n2'
    CALL write_poly_local(A2)  
   end if
   
! Calculate the coefficients of A(w**2)

  order=A2%order
  if (mod(order,2).EQ.0) then
    a_order=order/2
  else
    write(*,*)'Error in test_filter_positive_real. Order of A2(jw) is not an even number'
  end if
  
  A=allocate_polynomial(a_order)
  
  do i=0,a_order
    A%coeff(i)=A2%coeff(2*i)
  end do

! At the moment A is a function of (jw)**2 not w**2.
! We get the function of w**2 by making the odd order coefficients negative
  do i=1,a_order,2
    A%coeff(i)=-A%coeff(i)
  end do
  
  if (local_verbose) then
    write(*,*)'A(w**2)'
    CALL write_poly_local(A)  
    write(*,*)'Full precision coefficients'
    do i=0,A%order
      write(*,*)i,A%coeff(i)
    end do
  end if
    
  CALL get_min_order_poly(A)
  
  if (local_verbose) then
    write(*,*)'minimum order: A(w**2)'
    CALL write_poly_local(A)  
    write(*,*)'Full precision coefficients'
    do i=0,A%order
      write(*,*)i,A%coeff(i)
    end do
  end if

! Get the high frequency value of the function. 
! If it is less than zero the funciton is not positive real so return
  if (A%coeff(A%order).LT.-zero_test_small) then
    stable=.FALSE.
    if (local_verbose) then
      write(*,*)'Real part of function is less than zero at high frequency'
      write(*,*)'test value:',A%coeff(A%order)
      CALL write_poly_local(A)  
    end if
    RETURN
  end if
  
!! **** QUESTION: If we calculate all the roots to remove any even multiple roots then 
!! maybe we should just test for odd multiplicity real roots directly...
!
  CALL remove_even_multiple_zeros(A,odd_multiplicity_flag,local_verbose)
  
  if (local_verbose) then
    write(*,*)'remove even multiple zeros: A(w**2)'
    CALL write_poly_local(A)  
    write(*,*)'Full precision coefficients'
    do i=0,A%order
      write(*,*)i,A%coeff(i)
    end do
  end if
  
! Checks for a valid at this point
  
  if (a%coeff(a%order).EQ.0d0) then
    write(*,*)'Error in test_filter_positive_real. Highest order A coefficient =0d0'
  end if
  
! Start to assemble the terms of the Sturm sequence

  n_sturm=a_order+1

  allocate( value_inf(1:n_sturm) )
  allocate( value_0(1:n_sturm) )

! We already have the first term which is A

  Ap=A
  
  sturm_coeff=1

! Get a function sign for x->infinity
  value_inf(sturm_coeff)=0d0
  do ii=Ap%order,0,-1
    if (abs(Ap%coeff(ii)).GT.zero_test_small) then
      value_inf(sturm_coeff)=Ap%coeff(ii)
      exit
    end if
  end do
  
! Get a function sign for x->0
  value_0(sturm_coeff)=0d0
  do ii=0,Ap%order
    if (abs(Ap%coeff(ii)).GT.zero_test_small) then
      value_0(sturm_coeff)=Ap%coeff(ii)
      exit
    end if
  end do
  
  if (local_verbose) then
    write(*,*)'A0(x)='
    CALL write_poly_local2('A','x',Ap)  
  end if
  
  if (Ap%order.Eq.0) then
! this is a zero order function so exit
    if (local_verbose) then
      write(*,*)'Zero order function, exiting'
    end if
    RETURN
  end if

! second term is the derivative of Ap wrt x

  Am=allocate_polynomial(ap%order-1)

  do i=0,am%order
    am%coeff(i)=ap%coeff(i+1)*dble(i+1)
  end do
  
  sturm_coeff=sturm_coeff+1

! Get a function sign for x->infinity
  value_inf(sturm_coeff)=0d0
  do ii=Am%order,0,-1
    if (abs(Am%coeff(ii)).GT.zero_test_small) then
      value_inf(sturm_coeff)=Am%coeff(ii)
      exit
    end if
  end do
  
! Get a function sign for x->0
  value_0(sturm_coeff)=0d0
  do ii=0,Am%order
    if (abs(Am%coeff(ii)).GT.zero_test_small) then
      value_0(sturm_coeff)=Am%coeff(ii)
      exit
    end if
  end do
  
  if (local_verbose) then
    write(*,*)'A1(x)='
    CALL write_poly_local2('A','x',Am)  
  end if
  
! now iterate to get the remaining Sturm coefficients

  do i=3,n_sturm
  
! we have the two previous terms Ap and Am. 
! The next term is found as the remainder when Ap is divided by Am

!   R(x)=Ap(x)-Am(x)(C(x)) where C(x)=k1x+k2
!   New Ap=Am
!   New Am=-R

    CALL divide_poly(Ap,Am,C,R,.FALSE.)
    
    if (polynomial_is_zero(R)) then
      n_sturm=i-1
      if (local_verbose) then
        write(*,*)'Zero remainder in Sturm sequence calculation'
        write(*,*)'Number of Sturm coefficients=',n_sturm
      end if
      exit
    end if
    
    deallocate( Ap%coeff )
    Ap=Am
    deallocate( Am%coeff )
    Am=R
    do ii=0,Am%order
      Am%coeff(ii)=-Am%coeff(ii)
    end do
    deallocate( R%coeff )
    deallocate( C%coeff )
  
    sturm_coeff=sturm_coeff+1

! Get a function sign for x->infinity
    value_inf(sturm_coeff)=0d0
    do ii=Am%order,0,-1
      if (abs(Am%coeff(ii)).GT.zero_test_small) then
        value_inf(sturm_coeff)=Am%coeff(ii)
        exit
      end if
    end do
    
! Get a function sign for x->0
    value_0(sturm_coeff)=0d0
    do ii=0,Am%order
      if (abs(Am%coeff(ii)).GT.zero_test_small) then
        value_0(sturm_coeff)=Am%coeff(ii)
        exit
      end if
    end do
    
    if (local_verbose) then
      write(*,'(A1,I1,A4)')'A',i-1,'(x)='
      CALL write_poly_local2('A','x',Am)  
    end if
   
  end do
     
! Work out the number of sign changes in value_inf and value_0 in the sequence

  if (local_verbose) then
    write(*,*)'Number of Sturm coefficients=',n_sturm
    write(*,*)'Sturm coefficients'
    write(*,*)'           A(0)            A(infinity)       '
    do i=1,n_sturm
      write(*,*)value_0(i),value_inf(i)
    end do
  end if

  S_inf=0
  S_0=0
  
  last_value_inf=value_inf(1)
  last_value_0=value_0(1)
  
  do i=2,n_sturm
    
    if (value_0(i)*last_value_0.LT.0d0) S_0=S_0+1
    last_value_0=value_0(i)
  
    if (value_inf(i)*last_value_inf.LT.0d0) S_inf=S_inf+1
    last_value_inf=value_inf(i)
    
  end do
  
  n_real_zeros=abs(S_inf-S_0)
  
  if (local_verbose) then
    write(*,8000)'n_sign changes_0=',S_0,'  n_sign_changes_inf=',S_inf
8000 format(A,I3,A,I3)
    write(*,*)'Number of real zeros =',n_real_zeros
    write(*,*)'Odd_multiplicity_flag=',odd_multiplicity_flag
  end if
  
  if (n_real_zeros.GT.0) stable=.FALSE.
  
! check the consistency between the Sturm test and 
! the previously calculated odd_multiplicity_flag

  if ( (n_real_zeros.GT.0).AND.(odd_multiplicity_flag) ) then
! consistent result
    if (local_verbose) write(*,*)'Sturm test and explicit zero analysis agree: stable=.FALSE.'
  else if ( (n_real_zeros.EQ.0).AND.(.NOT.odd_multiplicity_flag) ) then
! consistent result
    if (local_verbose) write(*,*)'Sturm test and explicit zero analysis agree: stable=.TRUE.'
  else
! inconsistent result
    write(*,*)'Sturm test and explicit zero analysis do NOT agree'
    write(*,8000)'n_sign changes_0=',S_0,'  n_sign_changes_inf=',S_inf
    write(*,*)'Number of real zeros =',n_real_zeros
    write(*,*)'Odd_multiplicity_flag=',odd_multiplicity_flag
!    STOP
  end if
  
! Deallocate arrays and polynomials

  deallocate( value_inf )
  deallocate( value_0 )
  
  RETURN
  END SUBROUTINE test_filter_positive_real