PnlGnuCapAC.cpp
11.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
//**************************************************************************************************
// PnlGnuCapAC.cpp *
// ----------------- *
// Started : 2003-08-18 *
// Last Update : 2015-08-10 *
// Copyright : (C) 2003-2016 MSWaters *
//**************************************************************************************************
//**************************************************************************************************
// *
// This program is free software; you can redistribute it and/or modify it under the *
// terms of the GNU General Public License as published by the Free Software Foundation; *
// either version 3 of the License, or (at your option) any later version. *
// *
//**************************************************************************************************
#include "PnlGnuCapAC.hpp"
//**************************************************************************************************
// Implement an event table.
wxBEGIN_EVENT_TABLE( PnlGnuCapAC, PnlAnaBase )
EVT_RADIOBOX( PnlAnaBase::ID_RBX_SCALE , PnlGnuCapAC::OnScale )
EVT_CHOICE ( PnlAnaBase::ID_CHO_SRCNAME, PnlGnuCapAC::OnSrcName )
wxEND_EVENT_TABLE( )
//**************************************************************************************************
// Constructor.
PnlGnuCapAC::PnlGnuCapAC( wxWindow * poWin ) : PnlAnaBase( poWin )
{
bSetAnalysType( eCMD_AC );
Create( ); // Create the analysis panel
bClear( ); // Clear all object attributes
}
//**************************************************************************************************
// Destructor.
PnlGnuCapAC::~PnlGnuCapAC( )
{
}
//**************************************************************************************************
// Create the display objects.
void PnlGnuCapAC::Create( void )
{
PnlAnaBase::CreateBase( ); // Create the base controls
PnlAnaBase::CreateScale( ); // Create the scale controls
PnlAnaBase::CreateCpxPrt( ); // Create the parameter complex part check boxes
PnlAnaBase::CreateSigSrc( ); // Create the input signal source controls
PnlAnaBase::CreateTemp( ); // Create the analysis temperature controls
PnlAnaBase::DoLayout( ); // Layout the panel's GUI objects
// Set the frequency sweep parameter labels
m_oSbxSwpPars.SetLabel( wxT(" AC Sweep ") );
m_oPnlStart .bSetName( wxT("Start Frequency") );
m_oPnlStop .bSetName( wxT("Stop Frequency") );
// Set sweep parameter units
m_oPnlStart.bSetUnitsType( eUNITS_FREQ );
m_oPnlStop .bSetUnitsType( eUNITS_FREQ );
m_oPnlStep .bSetUnitsType( eUNITS_FREQ );
}
//**************************************************************************************************
// Initialize the step scale.
void PnlGnuCapAC::InitScale( void )
{
switch( m_oRbxSweep.GetSelection( ) )
{
case eSCALE_LIN :
m_oPnlStep.bSetName( wxT("Step Increment") );
m_oPnlStep.bSetValueType( eVALUE_FLT );
m_oPnlStep.bShowUnits( PnlValue::eSHOW_CHO );
m_oPnlStep.bSetUnitsType( eUNITS_FREQ );
break;
case eSCALE_LOG :
m_oPnlStep.bSetName( wxT("Step Multiplier") );
m_oPnlStep.bSetValueType( eVALUE_FLT );
m_oPnlStep.bShowUnits( PnlValue::eSHOW_LBL );
m_oPnlStep.bSetUnitsType( eUNITS_EXP );
m_oPnlStep.bSetSpnRange( 0.01, 10000.0 );
m_oPnlStep.bSetSpnIncSz( 0.1 , 1000.0 );
m_oPnlStep.bSetDefValue( 1.1 );
break;
case eSCALE_DEC :
m_oPnlStep.bSetName( wxT("Steps / Decade") );
m_oPnlStep.bSetValueType( eVALUE_INT );
m_oPnlStep.bShowUnits( PnlValue::eSHOW_LBL );
m_oPnlStep.bSetUnitsType( eUNITS_EXP );
m_oPnlStep.bSetSpnRange( 1, 10000 );
m_oPnlStep.bSetSpnIncSz( 1, 1000 );
m_oPnlStep.bSetDefValue( 10 );
break;
case eSCALE_OCT :
m_oPnlStep.bSetName( wxT("Steps / Octave") );
m_oPnlStep.bSetValueType( eVALUE_INT );
m_oPnlStep.bShowUnits( PnlValue::eSHOW_LBL );
m_oPnlStep.bSetUnitsType( eUNITS_EXP );
m_oPnlStep.bSetSpnRange( 1, 10000 );
m_oPnlStep.bSetSpnIncSz( 1, 1000 );
m_oPnlStep.bSetDefValue( 10 );
break;
default :
break;
}
}
//**************************************************************************************************
// Clear the object attributes.
//
// Return Values :
// true - Success
// false - Failure
bool PnlGnuCapAC::bClear( void )
{
// Clear the base class
PnlAnaBase::bClear( );
// Set default step scale type and sweep values
m_oPnlStart.bSetValue( (float) 1.0 );
m_oPnlStop .bSetValue( (float) 100.0 );
m_oPnlStep .bSetValue( (float) 10.0 );
m_oPnlStart.bSetUnits( wxT("kHz") );
m_oPnlStop .bSetUnits( wxT("kHz") );
m_oPnlStep .bSetUnits( wxT("kHz") );
// Set default scale value
bSetScale( eSCALE_DEC );
// Set input source default values
m_oChoSrcName.Clear( );
m_oChoSrcName.Append( wxT("None") );
m_oChoSrcName.SetSelection( 0 );
m_oPnlSrcLvl.bSetValue( (float) 0.0 );
m_oPnlSrcLvl.bSetUnitsType( eUNITS_NONE );
// Set parameters check box default values
m_oCbxVoltage.SetValue( true );
m_oCbxCurrent.SetValue( false );
m_oCbxPower .SetValue( false );
m_oCbxResist .SetValue( false );
// Set the complex part check box default values
m_oCbxMag .SetValue( true );
m_oCbxPhase.SetValue( false );
m_oCbxReal .SetValue( false );
m_oCbxImag .SetValue( false );
m_oCbxMagDb.SetValue( true );
// Set default temperature value
m_oPnlTemp.bSetValue( 27.0 );
return( true );
}
//**************************************************************************************************
// Load information from a simulation object.
//
// Argument List :
// roSimn - A simulation object
//
// Return Values :
// true - Success
// false - Failure
bool PnlGnuCapAC::bLoad( SimnGnuCap & roSimn )
{
bool bRtn=true;
// Load the components into the signal source choice box
PnlAnaBase::LoadSrcNames( roSimn.m_oaCpnts, wxT("VI") );
// Go no further if the AC command isn't valid
if( ! roSimn.m_oCmdAC.bIsValid( ) ) return( false );
// Set the source component
if( ! PnlAnaBase::bSetSrcCpnt( roSimn.m_oCpntSwpSrc ) ) bRtn = false;
// Set the step scale (do this before setting the sweep step)
if( roSimn.m_oCmdAC.m_eScale != eSCALE_NONE )
{
m_oRbxSweep.SetSelection( roSimn.m_oCmdAC.m_eScale );
InitScale( );
}
// Set the sweep values
if( ! m_oPnlStart.bSetValue( roSimn.m_oCmdAC.m_osStart ) ) bRtn = false;
if( ! m_oPnlStop .bSetValue( roSimn.m_oCmdAC.m_osStop ) ) bRtn = false;
if( ! m_oPnlStep .bSetValue( roSimn.m_oCmdAC.m_osStep ) ) bRtn = false;
// Set the parameters to derive
m_oCbxVoltage.SetValue( roSimn.m_oCmdPR.m_bParams[ ePARAM_VLT ] );
m_oCbxCurrent.SetValue( roSimn.m_oCmdPR.m_bParams[ ePARAM_CUR ] );
m_oCbxPower .SetValue( roSimn.m_oCmdPR.m_bParams[ ePARAM_PWR ] );
m_oCbxResist .SetValue( roSimn.m_oCmdPR.m_bParams[ ePARAM_RES ] );
// Set the complex parts to derive
m_oCbxMag .SetValue( roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_MAG ] );
m_oCbxPhase.SetValue( roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_PHASE ] );
m_oCbxReal .SetValue( roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_REAL ] );
m_oCbxImag .SetValue( roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_IMAG ] );
m_oCbxMagDb.SetValue( roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_MAGDB ] );
// Set the analysis temperature
if( ! m_oPnlTemp.bSetValue( roSimn.m_oCmdAC.m_osTempC ) ) bRtn = false;
return( bRtn );
}
//**************************************************************************************************
// Save information to a simulation object.
//
// Argument List :
// roSimn - A simulation object
//
// Return Values :
// true - Success
// false - Failure
bool PnlGnuCapAC::bSave( SimnGnuCap & roSimn )
{
wxString os1;
size_t sz1;
bool b1;
m_osErrMsg.Empty( );
// Set the analysis type
roSimn.m_oCmdPR.bSetAnaType( eCMD_AC );
// Set the sweep values
roSimn.m_oCmdAC.m_osStart = m_oPnlStart.rosGetValue( );
roSimn.m_oCmdAC.m_osStop = m_oPnlStop .rosGetValue( );
roSimn.m_oCmdAC.m_osStep = m_oPnlStep .rosGetValue( );
// Set the step scale
roSimn.m_oCmdAC.m_eScale = (eTypeScale) m_oRbxSweep.GetSelection( );
// Set the component to be used as the sweep source
if( m_oChoSrcName.GetStringSelection( ) == wxT("None") )
SetErrMsg( wxT("No sweep source component has been selected.") );
else if ( m_oPnlSrcLvl.dfGetValue( ) == 0.0 )
SetErrMsg( wxT("Sweep source component value of zero is not permitted.") );
else
{
os1 = m_oChoSrcName.GetStringSelection( );
roSimn.m_oCpntSwpSrc = roSimn.NetList::roGetCpnt( os1 );
roSimn.m_oCpntSwpSrc.bSetValue( wxT("GENERATOR(1) AC ") + m_oPnlSrcLvl.rosGetValue( ) );
}
// Store the parameters to derive
roSimn.m_oCmdPR.m_bParams[ ePARAM_VLT ] = m_oCbxVoltage.GetValue( );
roSimn.m_oCmdPR.m_bParams[ ePARAM_CUR ] = m_oCbxCurrent.GetValue( );
roSimn.m_oCmdPR.m_bParams[ ePARAM_PWR ] = m_oCbxPower .GetValue( );
roSimn.m_oCmdPR.m_bParams[ ePARAM_RES ] = m_oCbxResist .GetValue( );
// Store the complex parts of the parameters to derive
roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_MAG ] = m_oCbxMag .GetValue( );
roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_PHASE ] = m_oCbxPhase.GetValue( );
roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_REAL ] = m_oCbxReal .GetValue( );
roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_IMAG ] = m_oCbxImag .GetValue( );
roSimn.m_oCmdPR.m_bCpxPts[ eCPXPT_MAGDB ] = m_oCbxMagDb.GetValue( );
// Set the analysis temperature
roSimn.m_oCmdAC.m_osTempC = m_oPnlTemp.rosGetValue( );
// Create the command strings
roSimn.m_oCmdAC.bFormat( );
roSimn.m_oCmdPR.bFormat( );
// Check for errors
if( ! roSimn.m_oCmdAC.bIsValid( ) )
SetErrMsg( roSimn.m_oCmdAC.rosGetErrMsg( ) );
if( ! roSimn.m_oCmdPR.bIsValid( ) )
SetErrMsg( roSimn.m_oCmdPR.rosGetErrMsg( ) );
for( sz1=eCPXPT_MAG, b1=false; sz1<=eCPXPT_IMAG; sz1++ )
if( roSimn.m_oCmdPR.m_bCpxPts[ sz1 ] ) b1 = true;
if( ! b1 ) SetErrMsg( wxT("No complex parts have been selected.") );
return( bIsOk( ) );
}
//**************************************************************************************************
// Event Handlers *
//**************************************************************************************************
// Step scale radio box event handler.
//
// Argument List :
// roEvtCmd - An object holding information about the event
void PnlGnuCapAC::OnScale( wxCommandEvent & roEvtCmd )
{
InitScale( );
}
//**************************************************************************************************
// Source component choice box event handler.
//
// Argument List :
// roEvtCmd - An object holding information about the event
void PnlGnuCapAC::OnSrcName( wxCommandEvent & roEvtCmd )
{
wxString os1;
// Execute the base class event handler first
PnlAnaBase::OnSrcName( roEvtCmd );
if( m_oChoSrcName.GetStringSelection( ) != wxT("None") )
{
// Set the units type
os1 = m_oChoSrcName.GetStringSelection( );
m_oPnlSrcLvl.bSetUnitsType( Component::eGetUnitsType( os1 ) );
// Set the source value
if( m_oPnlSrcLvl.dfGetValue( ) == 0.0 )
m_oPnlSrcLvl.bSetValue( (double) 1.0 );
}
else
{
m_oPnlSrcLvl.bSetUnitsType( eUNITS_NONE );
m_oPnlSrcLvl.bSetValue( (double) 0.0 );
}
}
//**************************************************************************************************