write_FH_input_file.F90
40.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2023 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! PROGRAM write_FH_input_file
!
! NAME
! write_FH_input_file
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! This program creates an input file for FastHenry2 for the calculation
! of the per-unit-length impedance matrix over a specified range of
! frequencies.
!
!
! COMMENTS
! This software is still at the experimental stage. There are a number of
! issues related the most efficient manner in which to run fasthenry to
! obtain accurate results over the specified frequency range. These issues
! are mostly related to the manner in which ciruclar conductors are represented
! as a set of rectangles and subsequently decomposed into filaments to
! represent the current distribution.
!
! HISTORY
!
! started October 2023 CJS in proximity_effects branch
!
PROGRAM write_FH_input_file
USE type_specifications
IMPLICIT NONE
integer :: n_conductors
logical :: ground_plane
integer :: mesh_type
! Ground plane data
real(dp) :: gp_x(3),gp_y(3),gp_z(3)
real(dp) :: gp_t,gp_sigma,gp_rh,gp_ex1,gp_ey1,gp_ez1,gp_ex2,gp_ey2,gp_ez2
real(dp) :: gp_skin_depth
integer :: gp_nhinc,gp_seg1,gp_seg2
real(dp) :: gp_xmin,gp_xmax
real(dp) :: gp_xc,gp_yc,gp_w,gp_h
character(len=80),allocatable :: gp_node1
character(len=80),allocatable :: gp_node2
character(len=80),allocatable :: gp_node1_external
character(len=80),allocatable :: gp_node2_external
! Conductor data
TYPE::conductor_type
integer :: type ! conductor shape
integer :: mesh_type ! way to decompose circular conductors into rectangles
integer :: mesh_to_layer_type
real(dp) :: rc ! circular conductor radius
real(dp) :: rci ! inner conductor radius (for annular conductor)
real(dp) :: rco ! outer conductor radius (for annular conductor)
real(dp) :: xc ! x position of conductor centre
real(dp) :: yc ! y position of conductor centre
real(dp) :: width ! rectangular conductor width
real(dp) :: height ! rectangular conductor height
real(dp) :: rss ! seven strand conductor radius
real(dp) :: rss_outer ! seven strand conductor radius
real(dp) :: xcss(7) ! x centre coordinate of the seven conductors
real(dp) :: ycss(7) ! y centre coordinate of the seven conductors
real(dp) :: rot_angle
integer :: n_layers2ss
integer :: n_layers2 ! number of rectangular layers in a circular conductor radius
integer :: tot_n_layers ! total number of layers in this conductor
real(dp),allocatable :: x(:)
real(dp),allocatable :: y(:)
real(dp),allocatable :: w(:)
real(dp),allocatable :: h(:)
real(dp),allocatable :: d(:)
integer,allocatable :: anwinc(:)
integer,allocatable :: anhinc(:)
real(dp),allocatable :: wx(:)
real(dp),allocatable :: wy(:)
real(dp),allocatable :: wz(:)
real(dp) :: sigma ! electrical conductivity (Siemens/metre)
real(dp) :: dl
integer :: nwinc ! fastherny parameter nwinc: number of filaments in rectangle width
integer :: nhinc ! fastherny parameter nhinc: number of filaments in rectangle height
real(dp) :: rw ! fastherny parameter rw: filament size ratio in width
real(dp) :: rh ! fastherny parameter rh: filament size ratio in height
character(len=80),allocatable :: node1_list(:)
character(len=80),allocatable :: node2_list(:)
real(dp) :: grid_dim
integer :: nxmin,nxmax,nymin,nymax
integer,allocatable :: grid(:,:)
real(dp),allocatable :: depth(:,:)
real(dp) :: skin_depth
logical :: auto_grid_density
END TYPE conductor_type
integer,parameter :: type_cyl=1
integer,parameter :: type_rect=2
integer,parameter :: type_annulus=3
integer,parameter :: type_gnd=4
integer,parameter :: type_seven_strand=5
integer,parameter :: mesh_type_layer=1 ! divide circles into uniform thickness layers
integer,parameter :: mesh_type_grid=2 ! divide circles into a uniform grid of squares
integer,parameter :: mesh_type_shell=3
type(conductor_type),allocatable :: conductor_data(:)
real(dp) :: fmin,fmax
real(dp) :: ndec
real(dp) :: rh,rw
integer :: nhinc,nwinc
real(dp) :: x,y,ymin,ymax,w,h,wx,hy
integer :: conductor,layer,layer_number,nc
real(dp) :: angle
real(dp) :: lrc,lxc,lyc,lw,lh
real(dp) :: vx,vy
real(dp) :: dout,din
integer :: nxmin,nxmax,nymin,nymax,ix,iy
real(dp) :: dpt,apx,apy
integer :: cx1,cx2
real(dp) :: cw,ch
logical :: in_conductor
real(dp) :: required_dl,nsd
integer :: nfilaments
character(LEN=6) :: conductor_string
character(LEN=6) :: layer_string
character(LEN=80) :: node_string
character(LEN=80) :: segment_string
character(LEN=80) :: loop_string
character(LEN=80) :: line_string
character(LEN=12) :: x_string,y_string,z_string
integer :: line
character(LEN=80) :: FH2_filename
character :: type_ch
integer :: tot_n_segments,tot_n_filaments
integer :: gp_n_segments,gp_n_filaments
integer :: i
integer :: nsegments_recommended
integer :: nh_auto,nw_auto
logical :: found_square
real(dp) :: xpt,ypt
real(dp),parameter :: pi=3.1415926535
! START
! READ THE PROBLEM SPECIFICATION
line=1
write(*,*)'Enter the name of the FastHenry2 input file to write:'
read(*,'(A80)',ERR=9000)FH2_filename
write(*,*)"Enter the number of conductors or 'ground_plane'"
line=line+1
read(*,'(A80)',ERR=9000)line_string
type_ch=line_string(1:1)
if ( (type_ch.EQ.'g').OR.(type_ch.EQ.'G') ) then
write(*,*)'Reading ground plane specification...'
ground_plane=.TRUE.
write(*,*)'Enter the ground plane point 1 coordinates, x y z in metres'
line=line+1
read(*,*,ERR=9000)gp_x(1),gp_y(1),gp_z(1)
write(*,*)'Enter the ground plane point 2 coordinates, x y z in metres'
line=line+1
read(*,*,ERR=9000)gp_x(2),gp_y(2),gp_z(2)
write(*,*)'Enter the ground plane point 3 coordinates, x y z in metres'
line=line+1
read(*,*,ERR=9000)gp_x(3),gp_y(3),gp_z(3)
write(*,*)'Enter the ground plane thickness in metres'
line=line+1
read(*,*,ERR=9000)gp_t
write(*,*)'Enter the ground plane discretisation in p1-p2 and p2=p3 directions'
line=line+1
read(*,*,ERR=9000)gp_seg1,gp_seg2
write(*,*)'Enter the ground conductivity in Siemens/metre'
line=line+1
read(*,*,ERR=9000)gp_sigma
write(*,*)'Enter the ground plane discretisation in thickness, nhinc'
line=line+1
read(*,*,ERR=9000)gp_nhinc
write(*,*)'Enter the ground plane discretisation in thickness ratio, rh'
line=line+1
read(*,*,ERR=9000)gp_rh
write(*,*)'Enter the ground plane end 1 node coordinates, x y z in metres'
line=line+1
read(*,*,ERR=9000)gp_ex1,gp_ey1,gp_ez1
write(*,*)'Enter the ground plane end 2 node coordinates, x y z in metres'
line=line+1
read(*,*,ERR=9000)gp_ex2,gp_ey2,gp_ez2
gp_node1='Ngp_e1'
gp_node2='Ngp_e2'
gp_node1_external='Ngp_e1_ext'
gp_node2_external='Ngp_e2_ext'
write(*,*)"Enter the number of conductors"
line=line+1
read(*,*,ERR=9000)n_conductors
else
write(*,*)'No ground plane'
ground_plane=.FALSE.
read(line_string,*,ERR=9000)n_conductors
end if
write(*,*)'Number of conductors (excluding ground plane)=',n_conductors
ALLOCATE( conductor_data(n_conductors) )
do conductor=1,n_conductors
write(*,*)'Enter the conductor number'
line=line+1
read(*,*,ERR=9000)nc
if (nc.NE.conductor) GOTO 9010
write(*,*)'Enter the conductor type (cylindrical rectangular or annulus)'
line=line+1
read(*,'(A80)',ERR=9000)line_string
type_ch=line_string(1:1)
conductor_data(conductor)%auto_grid_density=.FALSE.
if ( (type_ch.EQ.'c').OR.(type_ch.EQ.'C') ) then
conductor_data(conductor)%type=type_cyl
! work out the grid type
INCLUDE "WRITE_FH2_IPFILE/get_grid_type.F90"
write(*,*)Conductor,conductor,' mesh type=',conductor_data(conductor)%mesh_type
write(*,*)'Enter the cylindrical conductor centre coordinates, xc yc in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%xc,conductor_data(conductor)%yc
write(*,*)'Enter the cylindrical conductor radius, rc in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%rc
write(*,*)'Enter the cylindrical conductor discretisation, dl in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%dl
else if ( (type_ch.EQ.'s').OR.(type_ch.EQ.'S') ) then
conductor_data(conductor)%type=type_seven_strand
! work out the grid type
INCLUDE "WRITE_FH2_IPFILE/get_grid_type.F90"
write(*,*)Conductor,conductor,' mesh type=',conductor_data(conductor)%mesh_type
write(*,*)'Enter the seven strand conductor centre coordinates, xc yc in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%xc,conductor_data(conductor)%yc
write(*,*)'Enter the seven strand conductor equivalent radius, rc in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%rc
write(*,*)'Enter the seven strand conductor rotation angle in degrees'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%rot_angle
conductor_data(conductor)%rot_angle=conductor_data(conductor)%rot_angle*pi/180d0
write(*,*)'Enter the seven strand conductor discretisation, dl in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%dl
else if ( (type_ch.EQ.'r').OR.(type_ch.EQ.'R') ) then
conductor_data(conductor)%type=type_rect
write(*,*)'Enter the rectangular conductor centre coordinates, xc yc in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%xc,conductor_data(conductor)%yc
write(*,*)'Enter the rectangular conductor width (x dimension) height (y dimension) in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%width,conductor_data(conductor)%height
conductor_data(conductor)%n_layers2=1
conductor_data(conductor)%tot_n_layers=1
else if ( (type_ch.EQ.'a').OR.(type_ch.EQ.'A') ) then
conductor_data(conductor)%type=type_annulus
INCLUDE "WRITE_FH2_IPFILE/get_grid_type.F90"
write(*,*)Conductor,conductor,' mesh type=',conductor_data(conductor)%mesh_type
write(*,*)'Enter the cylindrical conductor centre coordinates, xc yc in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%xc,conductor_data(conductor)%yc
write(*,*)'Enter the cylindrical inner conductor radius, rci in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%rci
write(*,*)'Enter the cylindrical outer conductor radius, rco in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%rco
write(*,*)'Enter the cylindrical conductor discretisation, dl in metres'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%dl
else
GOTO 9020
end if ! Conductor type
write(*,*)'Enter the conductor conductivity, sigma in Siemens/metre'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%sigma
write(*,*)'Enter the conductor discretisations, nwinc nhinc'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%nwinc,conductor_data(conductor)%nhinc
write(*,*)'Enter the conductor discretisation ratios, rw rh'
line=line+1
read(*,*,ERR=9000)conductor_data(conductor)%rw,conductor_data(conductor)%rh
end do ! read next conductor
! Read the frequency range data
write(*,*)'Enter the minimum frequency, fmin (Hz)'
line=line+1
read(*,*,ERR=9000)fmin
write(*,*)'Enter the maximum frequency, fmax (Hz)'
line=line+1
read(*,*,ERR=9000)fmax
write(*,*)'Enter the number of frequency samples per decade, ndec'
line=line+1
read(*,*,ERR=9000)ndec
! END OF PROBLEM SPECIFICATION
! FastHenry input file
open(unit=20,file=trim(FH2_filename))
! files for plotting the fasthenry 2 input geometry and decomposition into filaments
open(unit=10,file='cross_section.dat')
open(unit=12,file='grid.dat')
! write header
write(20,'(A)')'* conductors in free space'
write(20,'(A)')'*'
write(20,'(A)')'.units m'
write(20,'(A)')'*'
! WORK OUT THE SKIN DEPTH IN EACH CONDUCTOR
if (ground_plane) then
gp_skin_depth=sqrt(1.0/(pi*fmax*4.0*pi*1e-7*gp_sigma))
write(*,*)'Minimum ground plane skin depth =',gp_skin_depth
CALL calc_nmin(gp_skin_depth,gp_t,gp_rh,nsegments_recommended)
end if
do conductor=1,n_conductors
conductor_data(conductor)%skin_depth=sqrt(1.0/(pi*fmax*4.0*pi*1e-7*conductor_data(conductor)%sigma))
write(*,*)'Conductor',conductor,' Minimum skin depth =',conductor_data(conductor)%skin_depth
end do ! next conductor
! DECOMPOSE CIRCULAR CONDUCTORS INTO RECTANGULAR LAYERS
! ALLOCATE GRIDS IN CONDUCTORS IF REQUIRED...
do conductor=1,n_conductors
if (conductor_data(conductor)%type.EQ.type_cyl) then
if (conductor_data(conductor)%mesh_type.EQ.mesh_type_layer) then
conductor_data(conductor)%n_layers2=NINT(conductor_data(conductor)%rc/conductor_data(conductor)%dl)
conductor_data(conductor)%tot_n_layers=2*conductor_data(conductor)%n_layers2
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_grid) then
! allocate grid for the circular geometry
conductor_data(conductor)%grid_dim=conductor_data(conductor)%rc
INCLUDE "WRITE_FH2_IPFILE/create_grid.F90"
! Loop over the grid and set segments within the conductor
conductor_data(conductor)%tot_n_layers=0
do ix=nxmin,nxmax
do iy=nymin,nymax
dpt=conductor_data(conductor)%dl*sqrt(real(ix)**2+real(iy)**2)
if ( dpt.LE.conductor_data(conductor)%rc ) then
conductor_data(conductor)%grid(ix,iy)=1
conductor_data(conductor)%depth(ix,iy)=conductor_data(conductor)%rc-dpt
conductor_data(conductor)%tot_n_layers=conductor_data(conductor)%tot_n_layers+1
end if
end do
end do
write(*,*)'Set cylindrical grid, ncells=',conductor_data(conductor)%tot_n_layers
conductor_data(conductor)%n_layers2=0
else
write(*,*)'Unknown grid type'
STOP 1
end if
else if (conductor_data(conductor)%type.EQ.type_seven_strand) then
! radius of each strand for the same conductor area
conductor_data(conductor)%rss=conductor_data(conductor)%rc/sqrt(7.0)
! maximum radius of the combined conductors
conductor_data(conductor)%rss_outer=conductor_data(conductor)%rss*3.0
! seven conductor centre coordinates
! central conductor
conductor_data(conductor)%xcss(1)=conductor_data(conductor)%xc
conductor_data(conductor)%ycss(1)=conductor_data(conductor)%yc
do i=1,6
angle=real(i-1)*2.0*pi/6.0+conductor_data(conductor)%rot_angle
conductor_data(conductor)%xcss(i+1)=conductor_data(conductor)%xc+2d0*conductor_data(conductor)%rss*cos(angle)
conductor_data(conductor)%ycss(i+1)=conductor_data(conductor)%yc+2d0*conductor_data(conductor)%rss*sin(angle)
end do
if (conductor_data(conductor)%mesh_type.EQ.mesh_type_layer) then
conductor_data(conductor)%n_layers2ss=NINT(conductor_data(conductor)%rss/conductor_data(conductor)%dl)
conductor_data(conductor)%tot_n_layers=7*2*conductor_data(conductor)%n_layers2ss
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_grid) then
! allocate grid for the circular geometry
conductor_data(conductor)%grid_dim=conductor_data(conductor)%rss_outer
INCLUDE "WRITE_FH2_IPFILE/create_grid.F90"
! Loop over the grid and set segments within the conductor
conductor_data(conductor)%tot_n_layers=0
! loop over 7 strands
do i=1,7
! loop over grid
do ix=nxmin,nxmax
do iy=nymin,nymax
! calculate dpt, the distance to the centre of strand i
xpt=conductor_data(conductor)%dl*real(ix)- &
(conductor_data(conductor)%xcss(i)-conductor_data(conductor)%xcss(1))
ypt=conductor_data(conductor)%dl*real(iy)- &
(conductor_data(conductor)%ycss(i)-conductor_data(conductor)%ycss(1))
dpt=sqrt(xpt**2+ypt*2)
if ( dpt.LE.conductor_data(conductor)%rss ) then
conductor_data(conductor)%grid(ix,iy)=1
conductor_data(conductor)%depth(ix,iy)=conductor_data(conductor)%rss-dpt
conductor_data(conductor)%tot_n_layers=conductor_data(conductor)%tot_n_layers+1
end if
end do
end do
conductor_data(conductor)%n_layers2=0
end do ! next strand
else
write(*,*)'Unknown grid type'
STOP 1
end if
else if (conductor_data(conductor)%type.EQ.type_annulus) then
if (conductor_data(conductor)%mesh_type.EQ.mesh_type_layer) then
conductor_data(conductor)%n_layers2=0
conductor_data(conductor)%tot_n_layers=20 ! number of segments in the loop
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_grid) then
! allocate grid for the annular geometry
conductor_data(conductor)%grid_dim=conductor_data(conductor)%rco
INCLUDE "WRITE_FH2_IPFILE/create_grid.F90"
! Loop over the grid and set segments within the annular conductor
conductor_data(conductor)%tot_n_layers=0
do ix=nxmin,nxmax
do iy=nymin,nymax
dpt=conductor_data(conductor)%dl*sqrt(real(ix)**2+real(iy)**2)
if ( (dpt.GE.conductor_data(conductor)%rci).AND.(dpt.LE.conductor_data(conductor)%rco) ) then
conductor_data(conductor)%grid(ix,iy)=1
dout=conductor_data(conductor)%rco-dpt
din=dpt-conductor_data(conductor)%rci
conductor_data(conductor)%depth(ix,iy)=min(dout,din)
conductor_data(conductor)%tot_n_layers=conductor_data(conductor)%tot_n_layers+1
end if
end do
end do
conductor_data(conductor)%n_layers2=0
else
write(*,*)'We can only use the grid mesh type for an annulus'
STOP 1
end if ! mesh type grid
end if ! annular
end do ! next conductor
! WRITE GROUND PLANE INFORMATION IF REQUIRED
gp_n_segments=0
gp_n_filaments=0
if (ground_plane) then
write(20,'(A)')'*'
write(20,'(A)')'* Ground plane'
write(20,'(A,ES12.4,A,ES12.4,A,ES12.4)')'ground_plane x1=',gp_x(1),' y1=',gp_y(1),' z1=',gp_z(1)
write(20,'(A,ES12.4,A,ES12.4,A,ES12.4)')'+ x2=',gp_x(2),' y2=',gp_y(2),' z2=',gp_z(2)
write(20,'(A,ES12.4,A,ES12.4,A,ES12.4)')'+ x3=',gp_x(3),' y3=',gp_y(3),' z3=',gp_z(3)
write(20,'(A,ES12.4)')'+ thick=',gp_t
write(20,'(A,ES12.4)')'+ sigma=',gp_sigma
write(20,'(A,I4)')'+ nhinc=',gp_nhinc
write(20,'(A,ES12.4)')'+ rh=',gp_rh
write(20,'(A,I4,A,I4)')'+ seg1=',gp_seg1,' seg2=',gp_seg2
gp_n_segments =(gp_seg1+1)*gp_seg2+(gp_seg2+1)*gp_seg1
gp_n_filaments=gp_nhinc*gp_n_segments
write(x_string,'(ES12.4)')gp_ex1
write(y_string,'(ES12.4)')gp_ey1
write(z_string,'(ES12.4)')gp_ez1
write(20,'(9A)')'+ ',trim(gp_node1),' (',trim(adjustl(x_string)), &
',',trim(adjustl(y_string)), &
',',trim(adjustl(z_string)),')'
write(x_string,'(ES12.4)')gp_ex2
write(y_string,'(ES12.4)')gp_ey2
write(z_string,'(ES12.4)')gp_ez2
write(20,'(9A)')'+ ',trim(gp_node2),' (',trim(adjustl(x_string)), &
',',trim(adjustl(y_string)), &
',',trim(adjustl(z_string)),')'
gp_xmin=min(gp_x(1),gp_x(2),gp_x(3))
gp_xmax=max(gp_x(1),gp_x(2),gp_x(3))
gp_xc=(gp_xmin+gp_xmax)/2d0
gp_yc=gp_y(1)
gp_w=(gp_xmax-gp_xmin)
gp_h=gp_t
CALL plot_layer(gp_xc,gp_yc,gp_w,gp_h,1d0,0d0,10)
CALL plot_grid(gp_xc,gp_yc,gp_w,gp_h,1d0,0d0,1d0,gp_rh,gp_seg1,gp_nhinc,12)
end if
! LOOP OVER THE CONDUCTORS AND DEFINE THEN WRITE THE NODES FOR EACH LAYER ON THE CONDUCTOR
write(20,'(A)')'*'
write(20,'(A)')'* Specify the conductor nodes'
do conductor=1,n_conductors
write(20,'(A)')'*'
write(20,'(A,I4)')'* Conductor',conductor
write(conductor_string,'(I4)')conductor
ALLOCATE( conductor_data(conductor)%x(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%y(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%w(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%h(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%d(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%anwinc(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%anhinc(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%wx(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%wy(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%wz(1:conductor_data(conductor)%tot_n_layers) )
conductor_data(conductor)%wx(1:conductor_data(conductor)%tot_n_layers)=1.0
conductor_data(conductor)%wy(1:conductor_data(conductor)%tot_n_layers)=0.0
conductor_data(conductor)%wz(1:conductor_data(conductor)%tot_n_layers)=0.0
ALLOCATE( conductor_data(conductor)%node1_list(1:conductor_data(conductor)%tot_n_layers) )
ALLOCATE( conductor_data(conductor)%node2_list(1:conductor_data(conductor)%tot_n_layers) )
if (conductor_data(conductor)%type.EQ.type_cyl) then
if (conductor_data(conductor)%mesh_type.EQ.mesh_type_layer) then
do layer=-conductor_data(conductor)%n_layers2+1,conductor_data(conductor)%n_layers2
layer_number=conductor_data(conductor)%n_layers2+layer
ymin=conductor_data(conductor)%dl*real(layer)
ymax=conductor_data(conductor)%dl*real(layer-1)
y=(ymin+ymax)/2.0
x=sqrt(conductor_data(conductor)%rc**2-y**2)
conductor_data(conductor)%x(layer_number)=conductor_data(conductor)%xc
conductor_data(conductor)%y(layer_number)=conductor_data(conductor)%yc+y
conductor_data(conductor)%w(layer_number)=2.0*x
conductor_data(conductor)%h(layer_number)=conductor_data(conductor)%dl
conductor_data(conductor)%d(layer_number)=0.0
conductor_data(conductor)%anwinc(layer_number)=conductor_data(conductor)%nwinc
conductor_data(conductor)%anhinc(layer_number)=conductor_data(conductor)%nwinc
end do ! next layer
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_grid) then
! Loop over the grid and set segments within the circular conductor
INCLUDE "WRITE_FH2_IPFILE/set_segments_from_grid.F90"
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_shell) then
write(*,*)'SET SHELL DATA FOR CYLINDER'
STOP 1
end if ! mesh_type_grid
else if (conductor_data(conductor)%type.EQ.type_seven_strand) then
if (conductor_data(conductor)%mesh_type.EQ.mesh_type_layer) then
layer_number=0
! loop over 7 strands
do i=1,7
do layer=-conductor_data(conductor)%n_layers2ss+1,conductor_data(conductor)%n_layers2ss
layer_number=layer_number+1
ymin=conductor_data(conductor)%dl*real(layer)
ymax=conductor_data(conductor)%dl*real(layer-1)
y=(ymin+ymax)/2.0
x=sqrt(conductor_data(conductor)%rss**2-y**2)
conductor_data(conductor)%x(layer_number)=conductor_data(conductor)%xcss(i)
conductor_data(conductor)%y(layer_number)=conductor_data(conductor)%ycss(i)+y
conductor_data(conductor)%w(layer_number)=2.0*x
conductor_data(conductor)%h(layer_number)=conductor_data(conductor)%dl
conductor_data(conductor)%d(layer_number)=0.0
conductor_data(conductor)%anwinc(layer_number)=conductor_data(conductor)%nwinc
conductor_data(conductor)%anhinc(layer_number)=conductor_data(conductor)%nwinc
end do ! next layer
end do ! next strand
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_grid) then
! Loop over the grid and set segments within the circular conductor
INCLUDE "WRITE_FH2_IPFILE/set_segments_from_grid.F90"
end if ! mesh_type_grid
else if (conductor_data(conductor)%type.EQ.type_rect) then
layer_number=1
conductor_data(conductor)%x(layer_number)=conductor_data(conductor)%xc
conductor_data(conductor)%y(layer_number)=conductor_data(conductor)%yc
conductor_data(conductor)%w(layer_number)=conductor_data(conductor)%width
conductor_data(conductor)%h(layer_number)=conductor_data(conductor)%height
conductor_data(conductor)%d(layer_number)=0.0
conductor_data(conductor)%anwinc(layer_number)=conductor_data(conductor)%nwinc
conductor_data(conductor)%anhinc(layer_number)=conductor_data(conductor)%nwinc
else if (conductor_data(conductor)%type.EQ.type_annulus) then
if (conductor_data(conductor)%mesh_type.EQ.mesh_type_layer) then
do layer_number=1,conductor_data(conductor)%tot_n_layers
angle=real(layer_number)*2.0*pi/real(conductor_data(conductor)%tot_n_layers)
conductor_data(conductor)%wx(layer_number)=-sin(angle)
conductor_data(conductor)%wy(layer_number)=cos(angle)
conductor_data(conductor)%wz(layer_number)=0.0
lrc=(conductor_data(conductor)%rco+conductor_data(conductor)%rci)/2.0
lh=(conductor_data(conductor)%rco-conductor_data(conductor)%rci)
lw=lrc*2.0*pi/real(conductor_data(conductor)%tot_n_layers)
lxc=lrc*cos(angle)
lyc=lrc*sin(angle)
conductor_data(conductor)%x(layer_number)=conductor_data(conductor)%xc+lxc
conductor_data(conductor)%y(layer_number)=conductor_data(conductor)%yc+lyc
conductor_data(conductor)%w(layer_number)=lw
conductor_data(conductor)%h(layer_number)=lh
conductor_data(conductor)%d(layer_number)=0.0
conductor_data(conductor)%anwinc(layer_number)=conductor_data(conductor)%nwinc
conductor_data(conductor)%anhinc(layer_number)=conductor_data(conductor)%nwinc
end do ! next layer
else if (conductor_data(conductor)%mesh_type.EQ.mesh_type_grid) then
! Loop over the grid and set segments within the circular conductor
INCLUDE "WRITE_FH2_IPFILE/set_segments_from_grid.F90"
end if ! mesh_type_grid
else
write(*,*)'Cant deal with this conductor type yet:',conductor_data(conductor)%type
STOP 1
end if
! WRITE_THE NODES TO THE INPUT FILE AND SAVE IN THE NODE LIST FOR THIS CONDUCTOR
do layer_number=1,conductor_data(conductor)%tot_n_layers
write(layer_string,'(I4)')layer_number
node_string='n_c'//trim(adjustl(conductor_string))//'_e1_l'//trim(adjustl(layer_string))
write(20,'(A,A,ES12.4,A,ES12.4,A)')trim(node_string), &
' x=',conductor_data(conductor)%x(layer_number), &
' y=',conductor_data(conductor)%y(layer_number),' z=0.0'
conductor_data(conductor)%node1_list(layer_number)=node_string
node_string='n_c'//trim(adjustl(conductor_string))//'_e2_l'//trim(adjustl(layer_string))
write(20,'(A,A,ES12.4,A,ES12.4,A)')trim(node_string), &
' x=',conductor_data(conductor)%x(layer_number), &
' y=',conductor_data(conductor)%y(layer_number),' z=1.0'
conductor_data(conductor)%node2_list(layer_number)=node_string
wx=conductor_data(conductor)%w(layer_number)/2.0
hy=conductor_data(conductor)%h(layer_number)/2.0
rw=conductor_data(conductor)%rw
rh=conductor_data(conductor)%rh
nwinc=conductor_data(conductor)%anwinc(layer_number)
nhinc=conductor_data(conductor)%anhinc(layer_number)
vx=conductor_data(conductor)%wx(layer_number)
vy=conductor_data(conductor)%wy(layer_number)
CALL plot_layer(conductor_data(conductor)%x(layer_number),conductor_data(conductor)%y(layer_number), &
wx,hy,vx,vy,10)
CALL plot_grid(conductor_data(conductor)%x(layer_number),conductor_data(conductor)%y(layer_number), &
wx,hy,vx,vy,rw,rh,nwinc,nhinc,12)
end do ! next layer
end do ! next conductor
! LOOP OVER THE CONDUCTORS AND WRITE THE WIRE SEGMENTS FOR EACH LAYER ON THE CONDUCTOR
tot_n_segments=0
tot_n_filaments=0
write(20,'(A)')'*'
write(20,'(A)')'* conductor segments'
do conductor=1,n_conductors
write(20,'(A)')'*'
write(20,'(A,I4)')'* Conductor',conductor
write(conductor_string,'(I4)')conductor
do layer_number=1,conductor_data(conductor)%tot_n_layers
write(layer_string,'(I4)')layer_number
segment_string='E_c'//trim(adjustl(conductor_string))//'_l'//trim(adjustl(layer_string))
write(20,'(A,A,A,A,A,A,ES12.4,A,ES12.4,A,ES12.4,A,ES12.4,A,ES12.4,A,ES12.4,A,I4,A,I4,A,ES12.4,A,ES12.4)') &
trim(segment_string),' ', &
trim(conductor_data(conductor)%node1_list(layer_number)),' ', &
trim(conductor_data(conductor)%node2_list(layer_number)), &
' h=',conductor_data(conductor)%h(layer_number), &
' w=',conductor_data(conductor)%w(layer_number), &
' sigma=',conductor_data(conductor)%sigma, &
' wx=',conductor_data(conductor)%wx(layer_number), &
' wy=',conductor_data(conductor)%wy(layer_number), &
' wz=',conductor_data(conductor)%wz(layer_number), &
' nhinc=',conductor_data(conductor)%anhinc(layer_number), &
' nwinc=',conductor_data(conductor)%anwinc(layer_number), &
' rh=',conductor_data(conductor)%rh, &
' rw=',conductor_data(conductor)%rw
tot_n_segments=tot_n_segments+1
tot_n_filaments=tot_n_filaments+conductor_data(conductor)%anhinc(layer_number) &
*conductor_data(conductor)%anwinc(layer_number)
end do
end do
! EQUIVALENCE CONDUCTOR NODES AT NEAR END
write(20,'(A)')'*'
write(20,'(A)')'* Near end equivalent nodes on conductors'
do conductor=1,n_conductors
if (conductor_data(conductor)%tot_n_layers.GT.1) then
write(20,'(A)')'*'
write(20,'(A,I4)')'* Conductor',conductor
write(20,'(A)')'.equiv'
do layer_number=1,conductor_data(conductor)%tot_n_layers
write(20,'(A,A)')'+ ',trim(conductor_data(conductor)%node1_list(layer_number))
end do
end if
end do
! EQUIVALENCE CONDUCTOR NODES AT FAR END
write(20,'(A)')'*'
write(20,'(A)')'* Far end equivalent nodes on conductors'
do conductor=1,n_conductors
if (conductor_data(conductor)%tot_n_layers.GT.1) then
write(20,'(A)')'*'
write(20,'(A,I4)')'* Conductor',conductor
write(20,'(A)')'.equiv'
do layer_number=1,conductor_data(conductor)%tot_n_layers
write(20,'(A,A)')'+ ',trim(conductor_data(conductor)%node2_list(layer_number))
end do
end if
end do
! DEFINE LOOPS
if (ground_plane) then
write(20,'(A)')'*'
write(20,'(A)')'* Make loops from ground plane to all other conductors in turn'
do conductor=1,n_conductors
write(20,'(A)')'*'
write(20,'(A,I4)')'* Ground plane to conductor',conductor
write(conductor_string,'(I4)')conductor
loop_string='loop_'//trim(adjustl(conductor_string))
write(20,'(A,A,A,A,A,A)')'.external ',trim(gp_node1), &
' ',trim(conductor_data(conductor)%node1_list(1)), &
' ',trim(loop_string)
end do
! JOIN ALL FAR END CONDUCTORS
write(20,'(A)')'*'
write(20,'(A)')'* Join all Far end conductors'
write(20,'(A)',ADVANCE='NO')'.equiv'
write(20,'(A,A)',ADVANCE='NO')' ',trim(gp_node2)
do conductor=1,n_conductors
layer_number=1
write(20,'(A,A)',ADVANCE='NO')' ',trim(conductor_data(conductor)%node2_list(layer_number))
end do
write(20,*)
else
! No ground plane
write(20,'(A)')'*'
write(20,'(A)')'* Make loops from the last conductor to all other conductors in turn'
do conductor=1,n_conductors-1
write(20,'(A)')'*'
write(20,'(A,I4)')'* last Conductor to conductor',conductor
write(conductor_string,'(I4)')conductor
loop_string='loop_'//trim(adjustl(conductor_string))
write(20,'(A,A,A,A,A,A)')'.external ',trim(conductor_data(n_conductors)%node1_list(1)), &
' ',trim(conductor_data(conductor)%node1_list(1)), &
' ',trim(loop_string)
end do
! JOIN ALL FAR END CONDUCTORS
write(20,'(A)')'*'
write(20,'(A)')'* Join all Far end conductors'
write(20,'(A)',ADVANCE='NO')'.equiv'
do conductor=1,n_conductors
layer_number=1
write(20,'(A,A)',ADVANCE='NO')' ',trim(conductor_data(conductor)%node2_list(layer_number))
end do
write(20,*)
end if ! ground plane
! WRITE THE FREQUENCY RANGE AND END
write(20,'(A)')'*'
write(20,'(A,ES12.4,A,ES12.4,A,ES12.4)')'.freq fmin=',fmin,' fmax=',fmax,' ndec=',ndec
write(20,'(A)')'*'
write(20,'(A)')'.end'
! CLOSE FILES
close(unit=10)
close(unit=12)
close(unit=20)
! DEALLOCATE MEMORY
do conductor=1,n_conductors
if (ALLOCATED( conductor_data(conductor)%x )) DEALLOCATE( conductor_data(conductor)%x )
if (ALLOCATED( conductor_data(conductor)%y )) DEALLOCATE( conductor_data(conductor)%y )
if (ALLOCATED( conductor_data(conductor)%w )) DEALLOCATE( conductor_data(conductor)%w )
if (ALLOCATED( conductor_data(conductor)%h )) DEALLOCATE( conductor_data(conductor)%h )
if (ALLOCATED( conductor_data(conductor)%wx )) DEALLOCATE( conductor_data(conductor)%wx )
if (ALLOCATED( conductor_data(conductor)%wy )) DEALLOCATE( conductor_data(conductor)%wy )
if (ALLOCATED( conductor_data(conductor)%wz )) DEALLOCATE( conductor_data(conductor)%wz )
if (ALLOCATED( conductor_data(conductor)%d )) DEALLOCATE( conductor_data(conductor)%d )
if (ALLOCATED( conductor_data(conductor)%anwinc )) DEALLOCATE( conductor_data(conductor)%anwinc )
if (ALLOCATED( conductor_data(conductor)%anhinc )) DEALLOCATE( conductor_data(conductor)%anhinc )
if (ALLOCATED( conductor_data(conductor)%node1_list )) DEALLOCATE( conductor_data(conductor)%node1_list )
if (ALLOCATED( conductor_data(conductor)%node2_list )) DEALLOCATE( conductor_data(conductor)%node2_list )
if (ALLOCATED( conductor_data(conductor)%grid )) DEALLOCATE( conductor_data(conductor)%grid )
if (ALLOCATED( conductor_data(conductor)%depth )) DEALLOCATE( conductor_data(conductor)%depth )
end do
if ( ALLOCATED(conductor_data) ) DEALLOCATE( conductor_data )
write(*,*)
write(*,*)'Total number of conductor segments =',tot_n_segments
write(*,*)'Total number of conductor filaments=',tot_n_filaments
write(*,*)
if (ground_plane) then
write(*,*)'Total number of ground plane segments =',gp_n_segments
write(*,*)'Total number of ground plane filaments=',gp_n_filaments
write(*,*)
end if
write(*,*)'Total number of segments =',gp_n_segments+tot_n_segments
write(*,*)'Total number of filaments=',gp_n_filaments+tot_n_filaments
write(*,*)
STOP 0
9000 write(*,*)'ERROR reading the Cross Section Specification data, line',line
STOP 1
9010 write(*,*)'ERROR conductors should be numbered in order, line',line
STOP 1
9020 write(*,*)'ERROR Unknown conductor type:',type_ch,', line',line
STOP 1
END PROGRAM write_FH_input_file
!
! ___________________________________________________
!
!
SUBROUTINE plot_layer(xc,yc,wx,wy,vxx,vxy,file_unit)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
real(dp) :: xc,yc,wx,wy,vxx,vxy
integer :: file_unit
! local variables
real(dp) :: rotx,roty
! START
CALL rotate(-wx,+wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(+wx,+wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(+wx,-wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(-wx,-wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(-wx,+wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
RETURN
END SUBROUTINE plot_layer
!
! _______________________________________________________
!
!
SUBROUTINE plot_grid(xc,yc,wx,wy,vxx,vxy,rx,ry,nx,ny,file_unit)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
real(dp) :: xc,yc,wx,wy,vxx,vxy,rx,ry
integer :: nx,ny,file_unit
! local variables
real(dp) :: dx,dy,den,ox,oy
integer :: nl2
integer :: i
logical :: odd
real(dp) :: rotx,roty
! START
! lines in the x direction
if ( mod(nx,2).EQ.0 ) then
odd=.FALSE.
else
odd=.TRUE.
end if
if (odd) then
nl2=(nx-1)/2
else
nl2=nx/2
end if
den=0.0
do i=1,nl2
den=den+2.0*rx**(i-1)
end do
if (odd) den=den+rx**(nl2)
dx=wx*2.0/den
!write(*,*)'xc=',xc
!write(*,*)'nx=',nx
!write(*,*)'odd=',odd
!write(*,*)'nl2=',nl2
!write(*,*)'wx=',wx
!write(*,*)'den=',den
!write(*,*)'dx=',dx
ox=wx
do i=1,nl2
ox=ox-dx*(rx**(i-1))
! write(*,*)'i=',i,' ox=',ox
CALL rotate(-ox,+wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(-ox,-wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
CALL rotate(+ox,+wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(+ox,-wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
end do
if (.NOT.odd) then ! write centre line
CALL rotate(0d0,+wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(0d0,-wy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
end if
! lines in the y direction
if ( mod(ny,2).EQ.0 ) then
odd=.FALSE.
else
odd=.TRUE.
end if
if (odd) then
nl2=(ny-1)/2
else
nl2=ny/2
end if
den=0.0
do i=1,nl2
den=den+2.0*ry**(i-1)
end do
if (odd) den=den+ry**(nl2)
dy=wy*2.0/den
oy=wy
do i=1,nl2
oy=oy-dy*(ry**(i-1))
CALL rotate(+wx,-oy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(-wx,-oy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
CALL rotate(+wx,+oy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(-wx,+oy,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
! write(file_unit,*)xc+wx,yc-oy
! write(file_unit,*)xc-wx,yc-oy
! write(file_unit,*)
! write(file_unit,*)xc+wx,yc+oy
! write(file_unit,*)xc-wx,yc+oy
! write(file_unit,*)
end do
if (.NOT.odd) then ! write centre line
CALL rotate(+wx,0d0,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
CALL rotate(-wx,0d0,vxx,vxy,rotx,roty)
write(file_unit,*)xc+rotx,yc+roty
write(file_unit,*)
! write(file_unit,*)xc+wx,yc
! write(file_unit,*)xc-wx,yc
! write(file_unit,*)
end if
RETURN
END SUBROUTINE plot_grid
!
! _______________________________________________________
!
!
SUBROUTINE rotate(x,y,vxx,vxy,rx,ry)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
real(dp) :: x,y,vxx,vxy,rx,ry
! local variables
real(dp) :: vyx,vyy
! START
vyx=-vxy
vyy=vxx
rx=x*vxx+y*vyx
ry=x*vxy+y*vyy
RETURN
END SUBROUTINE rotate
!
! _______________________________________________________
!
!
SUBROUTINE calc_nmin(delta,t,r,n)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
real(dp) :: delta,t,r
integer :: n
! local variables
integer,parameter :: imax=21
integer :: i
real(dp) :: ndelta
real(dp) :: nequiv,nadd
! START
write(*,*)'CALLED: calc_nmin'
write(*,*)'delta=',delta
write(*,*)'t=',t
write(*,*)'r=',r
ndelta=NINT(t/delta)
write(*,*)'Number of skin depths in thickness=',ndelta
nadd=1d0/r
nequiv=0d0
do i=1,imax
if(mod(i,2).GT.0) then
! i is odd
nadd=nadd*r
nequiv=nequiv+nadd
else
! i is even
nequiv=nequiv+nadd
end if
write(*,*)'i=',i,' nadd=',nadd,' nequiv=',nequiv
if (nequiv.GT.ndelta) then
n=i
write(*,*)'Number of layers required=',n
RETURN
end if
end do
n=i
RETURN
RETURN
END SUBROUTINE calc_nmin