shield_conductor_and_transfer_impedance_model_builder.F90
28.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! PROGRAM shield_conductor_and_transfer_impedance_model_builder
!
! NAME
! shield_conductor_and_transfer_impedance_model_builder
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Calculate the transfer impedance and conductor impedance of a shield
! based on the geometrical and electrical properties of the braid forming
! the shield. The calculations are based on the NLR theory presented in the Theory Manual
!
! Example input file:
!0.002 ! braid diameter, D (m)
!8 ! Number of carriers, C
!10 ! Number of wires in a carrier, N
!0.000025 ! diameter of a single wire, d (m)
!5E7 ! conductivity of wires (S/m)
!50.0 ! pitch angle of the braid (degrees)
!4 ! order of transfer impedance model
!log ! frequency range type
!1E5 1E9 1000 ! fmin, fmax, number of frequencies
!
! COMMENTS
! The braid equivalent thickness is calculated from the d.c. resistance of the braid and the braid conductivity
! See appendix 1 of the user guide for the theory
!
! HISTORY
!
! started 22/08/2016 CJS
! started 29/09/2017 CJS Include more rigorous hole inductance calculation
! using elliptic integrals
! 11/10/2017 CJS special case for 0 order models to ensure that the d.c. resistance is correct
!
PROGRAM shield_conductor_and_transfer_impedance_model_builder
USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module
IMPLICIT NONE
! local variables
character(len=filename_length) :: braid_name ! name of the braid model
character(len=filename_length) :: filename ! filename for the braid model specification
logical :: file_exists
real(dp) :: D ! braid diameter, D (m)
integer :: C ! Number of carriers, C
integer :: N ! Number of wires in a carrier, N
real(dp) :: dw ! diameter of a single wire, d (m)
real(dp) :: sigma ! conductivity of wires (S/m)
real(dp) :: alpha ! pitch angle of the braid (degrees)
integer :: order ! order of transfer impedance and conductor impedance model
type(frequency_specification) :: frequency_data ! frequency range data for transfer impedance and conductor impedance model
complex(dp),allocatable :: Zd(:) ! Frequency dependent diffusion impedance data
complex(dp),allocatable :: Zt(:) ! Frequency dependent transfer impedance data
complex(dp),allocatable :: Zc(:) ! Frequency dependent shield conductor impedance data
complex(dp) :: Zt_fit ! Vector fit model Frequency dependent transfer impedance data
complex(dp) :: Zc_fit ! Vector fit model Frequency dependent shield conductor impedance data
type(Sfilter) :: Zd_filter ! Frequency dependent diffusion impedance rational function model
type(Sfilter) :: Zt_filter ! Frequency dependent transfer impedance rational function model
type(Sfilter) :: Zc_filter ! Frequency dependent shield conductor impedance rational function model
complex(dp) :: M ! Total contribution originating from braid magnetic field leakage
complex(dp) :: M12 ! per-unit-length hole inductance
complex(dp) :: Mb ! braid inductance
complex(dp) :: Ms ! skin inductance
real(dp) :: w ! angular frequency
real(dp) :: R0 ! d.c. resistance of shield
complex(dp) :: gamma ! complex propagation constant in shield
real(dp) :: delta ! skin depth in shield
real(dp) :: T ! shield conductor thickness
real(dp) :: lh ! hole length
real(dp) :: wh ! hole width
real(dp) :: S ! hole area
real(dp) :: req ! equivalent hole radius
real(dp) :: b ! width between holes
real(dp) :: hh ! average height for braid inductance calculation
real(dp) :: Dm ! Mean diameter of braid for braid inductance calculation
real(dp) :: v ! Number of holes per unit length
real(dp) :: gc ! constant used in hole inductance calculation
real(dp) :: F ! Fill factor of braid
real(dp) :: K ! Optical coverage of braid
real(dp) :: Ck ! constant used in hole inductance calculation
real(dp) :: RT ! transfer resistance in ZT=R+jwL model
real(dp) :: LT ! transfer inductance in ZT=R+jwL model
! variables for intermediate quantities used in the calculations
real(dp) :: P
real(dp) :: kappa
complex(dp) :: sinh_gT
complex(dp) :: cosh_gT
complex(dp) :: u
complex(dp) :: nu
real(dp) :: k1 ! factor used in Kley's model for braid inductance
real(dp) :: mum ! hole polarizability factor
real(dp) :: a ! braid radius
real(dp) :: e
real(dp) :: Th,CkT ! attenuation factor
integer :: floop ! frequency loop variable
integer :: Zt_aorder,Zt_border ! order of transfer impedance model
integer :: i
integer :: ierr ! integer to return error codes from file reads
integer :: model_type
integer,parameter :: NLR=1
integer,parameter :: Kley=2
! function types
real(dp) :: Em
real(dp) :: Km
! START
! Open the input file describing the braid parameters
! This file could be created by the associated GUI or otherwise generated
verbose=.TRUE.
! model_type=NLR
model_type=Kley
program_name="shield_conductor_and_transfer_impedance_model_builder"
run_status='Started'
CALL write_program_status()
CALL read_version()
CALL write_license()
write(*,*)'Enter the name of the shield braid specification data (without .braid_spec extension)'
read(*,'(A)')braid_name
filename=trim(braid_name)//braid_spec_file_extn
inquire(file=trim(filename),exist=file_exists)
if (.NOT.file_exists) then
run_status='ERROR in shield_conductor_and_transfer_impedance_model_builder, Cannot find the file:'//trim(filename)
CALL write_program_status()
STOP 1
end if
! open and read the file
OPEN(unit=braid_spec_file_unit,file=filename)
if(verbose) write(*,*)'Opened file:',trim(filename)
read(braid_spec_file_unit,*,IOSTAT=ierr)D
if (ierr.NE.0) then
run_status='ERROR reading shield diameter'
CALL write_program_status()
STOP 1
end if
read(braid_spec_file_unit,*,IOSTAT=ierr)C
if (ierr.NE.0) then
run_status='ERROR reading number of carriers'
CALL write_program_status()
STOP 1
end if
read(braid_spec_file_unit,*,IOSTAT=ierr)N
if (ierr.NE.0) then
run_status='ERROR reading number of number of wires in a carrier'
CALL write_program_status()
STOP 1
end if
read(braid_spec_file_unit,*,IOSTAT=ierr)dw
if (ierr.NE.0) then
run_status='ERROR reading wire diameter'
CALL write_program_status()
STOP 1
end if
read(braid_spec_file_unit,*,IOSTAT=ierr)sigma
if (ierr.NE.0) then
run_status='ERROR reading wire conductivity'
CALL write_program_status()
STOP 1
end if
read(braid_spec_file_unit,*,IOSTAT=ierr)alpha
if (ierr.NE.0) then
run_status='ERROR reading pitch angle of the braid'
CALL write_program_status()
STOP 1
end if
! convert alpha to radians
alpha=alpha*pi/180d0
read(braid_spec_file_unit,*,IOSTAT=ierr)order
if (ierr.NE.0) then
run_status='ERROR reading the model order for the transfer impedance and conductor impedance models'
CALL write_program_status()
STOP 1
end if
CALL read_and_set_up_frequency_specification(frequency_data,braid_spec_file_unit)
! close the file with the cable data
CLOSE(unit=braid_spec_file_unit)
! Evaluate the shield transfer impedance and conductor impedance over the specified frequency range
ALLOCATE(Zd(1:frequency_data%n_frequencies))
ALLOCATE(Zt(1:frequency_data%n_frequencies))
ALLOCATE(Zc(1:frequency_data%n_frequencies))
! Calculate the solution parameters which are frequency independent
gc=(2d0/pi)**(3d0/2d0)
P=C*tan(alpha)/(2d0*pi*D)
v=P*C
F=N*C*dw/(2d0*pi*D*cos(alpha)) ! fill factor
K=2d0*F-F*F ! optical coverage
lh=(1d0-F)*N*dw/(F*sin(alpha))
wh=(1d0-F)*N*dw/(F*cos(alpha))
S=pi*wh*lh/4d0 ! hole area
if (lh.GT.wh) then
e=sqrt(1d0-(wh/lh)**2)
else
e=sqrt(1d0-(lh/wh)**2)
end if
write(*,*)lh,wh,e
Dm=D+2d0*dw
! b=(2d0*pi*Dm/C)*cos(alpha)-N*dw
b=N*dw*(1d0-F)/F
! Calculate an equivalent shield thickness from R0, D and sigma
R0=4d0/(pi*dw*dw*N*C*sigma*cos(alpha)) ! d.c. resistance. equation 5.63 of D1
T=1d0/(2d0*pi*sigma*(D/2d0)*R0)
if (model_type.EQ.NLR) then
! Chimney effect stuff
req=sqrt(S/pi)
kappa=1.84d0/req
Ck=0.875d0*exp(-kappa*T)
if (b.GT.dw) then
hh=2d0*dw/(1d0+b/dw)
else
hh=dw
end if
! Hole inductance term ! equation 5.82 of D1
M12=1.08D0*gc*(pi*mu0/(6d0*C))*((1d0-K)**(3d0/2d0))*(2d0-cos(alpha))*Ck
! Braid inductance term
Mb=-mu0*(hh/(4d0*pi*Dm))*(1d0-(tan(alpha))**2)
! Skin inductance term. Assumed to be zero here.
Ms=0d0
else if (model_type.EQ.Kley) then
! Chimney effect stuff
! Tesche eqn 9.51
a=D/2d0+dw
Th=9.6d0*F* ((K*K*dw/(2d0*a))**0.33333)
Ck=0.875*exp(-Th)
! Hole inductance term !
M12=(pi*4.0*pi*1E-7/(6.0*C))*((1.0-K)**(1.5))*e*e/(Em(e)-(1.0-e*e)*Km(e))*Ck
! Braid inductance term
hh=dw
k1=(pi/4d0)/(0.6667D0*F*cos(alpha)+pi/10d0)
Mb=-mu0*(hh/(4d0*pi*Dm))*(0.22d0/(F*cos(alpha)))*cos(2d0*k1*alpha) ! OK NLR and Tesche(9.54)
! Skin inductance term. Assumed to be zero here.
Ms=0d0
end if
! Total field leakage contributions
M=M12+Mb+Ms
if (verbose) then
write(*,*)'braid circummference, cb=',pi*D
write(*,*)'C=',C,' Number of carriers'
write(*,*)'N=',N,' Number of conductors in each carrier'
write(*,*)'W=',N*dw,' Width of each carrier'
write(*,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
write(*,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
write(*,*)'P=',P
write(*,*)'v=',v,' Number of holes per unit length in braid'
write(*,*)'F=',F,' Fill factor'
write(*,*)'K=',K,' Optical coverage'
write(*,*)'l=',lh,' hole length'
write(*,*)'w=',wh,' hole width'
write(*,*)'S=',S, ' hole area'
if (model_type.EQ.NLR) then
write(*,*)'req=',req,' hole equivalent radius'
write(*,*)'k=',kappa,' hole cutoff k value'
else if (model_type.EQ.Kley) then
write(*,*)'Th=',Th,' hole attenuation factor'
end if
write(*,*)'Ck=',Ck,' hole inductance factor'
write(*,*)'Ro',R0,' braid d.c. resistance'
write(*,*)'T ',T,' braid equivalent thickness'
write(*,*)'mean braid diameter, Dm=',Dm
write(*,*)'Width between holes, b=',b
write(*,*)'Average height for braid inductance, hh=',hh
write(*,*)'M12=',M12,' Hole inductance'
write(*,*)'Mb =',Mb,' Braid inductance'
write(*,*)'Ms=',Ms,' Skin inductance'
write(*,*)'M=',M,' Total transfer inductance'
end if ! verbose
CALL plot_braid_figure(C,N,dw,alpha,D,braid_name)
open(unit=83,file='Zt_Zc.dat')
do floop=1,frequency_data%n_frequencies
w=2d0*pi*frequency_data%freq_list(floop)
! Diffusion impedance term
delta=sqrt(2d0/(w*mu0*sigma)) ! skin depth in conductor
gamma=cmplx(1d0,1d0)/cmplx(delta) ! complex propagation constant in shield
sinh_gT=(exp(gamma*T)-exp(-gamma*T))/(2d0,0d0)
cosh_gT=(exp(gamma*T)+exp(-gamma*T))/(2d0,0d0)
Zd(floop)=R0*gamma*T/sinh_gT ! equation 5.62 of D1
! Terms for calculation in Schelkunoff's notation
nu=j*w*mu0/gamma
u=t*sqrt(2d0*sigma*w*mu0)
! Transfer impedance is the sum of the diffusion impedance and the transfer inductance
Zt(floop)=Zd(floop)+j*w*M
! Conductor impedance term
Zc(floop)=R0*gamma*T*cosh_gT/sinh_gT
write(83,8000)frequency_data%freq_list(floop),real(Zt(floop)),aimag(Zt(floop)),real(Zc(floop)),aimag(Zc(floop))
8000 format(5ES16.6)
if (floop.EQ.frequency_data%n_frequencies) then
! work out the R+jwL model
RT=R0
LT=aimag(Zt(floop))/w
end if
end do ! next frequency
close(unit=83)
write(*,*)'________________________________________________________________'
write(*,*)''
write(*,*)'ZT=RT+jwLT model:'
write(*,*)'RT=',RT,' ohms/m'
write(*,*)'LT=',LT,' H/m'
write(*,*)'________________________________________________________________'
write(*,*)''
! Create a rational function model of the transfer impedance data in two stages
! First, create a rational function model of the frequency dependent diffusion impedance
! Then add the transfer inductance term jwM
! calculate_Sfilter with border=aorder+1 and with fit_type=0 i.e. Zd->0 as f-> infinity
if (verbose) write(*,*)'Calculate_Sfilter for diffusion impedance, Zd'
if (order.NE.0) then
CALL Calculate_Sfilter(Zd,frequency_data%freq_list,frequency_data%n_frequencies, &
Zd_filter,order,1,0) ! call with fit_type=0
else
! for a zero order model, return the d.c. resistance of the sheild
Zd_filter=allocate_Sfilter(0,0)
Zd_filter%wnorm=1d0
Zd_filter%a%coeff(0)=R0
Zd_filter%b%coeff(0)=1d0
end if
! Add the transfer inductance term to the diffusion impedance filter i.e. Zt=Zd+j*w*M
Zt_aorder=max(Zd_filter%a%order,Zd_filter%b%order+1)
Zt_border=Zd_filter%b%order
Zt_filter=allocate_Sfilter(Zt_aorder,Zt_border)
Zt_filter%wnorm=Zd_filter%wnorm
if (verbose) write(*,*)'Zt_filter%wnorm=',Zt_filter%wnorm
! copy a coefficients from Zd_filter to Zt_filter
do i=0,Zd_filter%a%order
Zt_filter%a%coeff(i)=Zd_filter%a%coeff(i)
end do
! copy b coefficients from Zd_filter to Zt_filter
do i=0,Zd_filter%b%order
Zt_filter%b%coeff(i)=Zd_filter%b%coeff(i)
end do
! add the jwM term
do i=0,Zd_filter%b%order
Zt_filter%a%coeff(i+1)=Zt_filter%a%coeff(i+1)+(M*Zt_filter%wnorm)*Zd_filter%b%coeff(i)
end do
! Create a rational function model of the shield conductor impedance data
! call calculate_Sfilter with border=aorder and with fit_type=0
if (verbose) write(*,*)'Calculate_Sfilter for surface impedance, Zc'
if (order.NE.0) then
CALL Calculate_Sfilter(Zc,frequency_data%freq_list,frequency_data%n_frequencies, &
Zc_filter,order,0,0) ! call with fit_type=0
else
! for a zero order model, return the d.c. resistance of the sheild
Zc_filter=allocate_Sfilter(0,0)
Zc_filter%wnorm=1d0
Zc_filter%a%coeff(0)=R0
Zc_filter%b%coeff(0)=1d0
end if
! Write vector fit models to file
open(unit=84,file='Zt_fit.fout')
open(unit=85,file='Zc_fit.fout')
do floop=1,frequency_data%n_frequencies
Zt_fit=evaluate_Sfilter_frequency_response(Zt_filter,frequency_data%freq_list(floop))
Zc_fit=evaluate_Sfilter_frequency_response(Zc_filter,frequency_data%freq_list(floop))
write(84,8000)frequency_data%freq_list(floop),real(Zt_fit),aimag(Zt_fit)
write(85,8000)frequency_data%freq_list(floop),real(Zc_fit),aimag(Zc_fit)
end do
close(unit=84)
close(unit=85)
! Open a file for the shield model
filename=trim(braid_name)//shield_model_file_extn
open(unit=shield_model_file_unit,file=filename)
! Write the shield equivalent thickness and conductivity
write(shield_model_file_unit,*)D/2d0,' # Parameter Shield radius (m)'
write(shield_model_file_unit,*)T, ' # Parameter Equivalent shield thickness (m)'
write(shield_model_file_unit,*)sigma,' # Parameter Shield conductivity (S/m)'
! Write the transfer impedance model to the shield model file
write(shield_model_file_unit,*)' '
write(shield_model_file_unit,*)'# Transfer impedance model'
write(shield_model_file_unit,*)' '
CALL Write_Sfilter(Zt_filter,shield_model_file_unit)
! Write the shield conductor model to the shield model file
write(shield_model_file_unit,*)' '
write(shield_model_file_unit,*)'# Conductor surface impedance model'
write(shield_model_file_unit,*)' '
CALL Write_Sfilter(Zc_filter,shield_model_file_unit)
write(shield_model_file_unit,*)' '
! Write the solution parameters to the shield model file
write(shield_model_file_unit,*)'# Shield parameters used in the shield model calculation'
write(shield_model_file_unit,*)'braid circummference, cb=',pi*D
write(shield_model_file_unit,*)'C=',C,' Number of carriers'
write(shield_model_file_unit,*)'N=',N,' Number of conductors in each carrier'
write(shield_model_file_unit,*)'W=',N*dw,' Width of each carrier'
write(shield_model_file_unit,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
write(shield_model_file_unit,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
write(shield_model_file_unit,*)'P=',P
write(shield_model_file_unit,*)'v=',v,' Number of holes per unit length in braid'
write(shield_model_file_unit,*)'F=',F,' Fill factor'
write(shield_model_file_unit,*)'K=',K,' Optical coverage'
write(shield_model_file_unit,*)'l=',lh,' hole length'
write(shield_model_file_unit,*)'w=',wh,' hole width'
write(shield_model_file_unit,*)'S=',S, ' hole area'
if (model_type.EQ.NLR) then
write(shield_model_file_unit,*)'req=',req,' hole equivalent radius'
write(shield_model_file_unit,*)'k=',kappa,' hole cutoff k value'
else if (model_type.EQ.Kley) then
write(shield_model_file_unit,*)'Th=',Th,' hole attenuation factor'
end if
write(shield_model_file_unit,*)'Ck=',Ck,' hole inductance factor'
write(shield_model_file_unit,*)'Ro',R0,' braid d.c. resistance'
write(shield_model_file_unit,*)'T ',T,' braid equivalent thickness'
write(shield_model_file_unit,*)'mean braid diameter, Dm=',Dm
write(shield_model_file_unit,*)'Width between holes, b=',b
write(shield_model_file_unit,*)'Average height for braid inductance, hh=',hh
write(shield_model_file_unit,*)'M12=',M12,' Hole inductance'
write(shield_model_file_unit,*)'Mb =',Mb,' Braid inductance'
write(shield_model_file_unit,*)'Ms=',Ms,' Skin inductance'
write(shield_model_file_unit,*)'M=',M,' Total transfer inductance'
! Close the shield model file
close(unit=shield_model_file_unit)
! deallocate memory and finish up
DEALLOCATE(Zd)
DEALLOCATE(Zt)
DEALLOCATE(Zc)
run_status='Finished_Correctly'
CALL write_program_status()
END PROGRAM shield_conductor_and_transfer_impedance_model_builder
real(dp) FUNCTION Em(m)
USE type_specifications
IMPLICIT NONE
! Elliptic integral approximation, see Abramowitz and Stegun 17.3.35
real(dp) m
real(dp),parameter :: a1=0.4630151
real(dp),parameter :: a2=0.1077812
real(dp),parameter :: b1=0.2452727
real(dp),parameter :: b2=0.0412496
real(dp) m1
! START
if ((m.LT.0.0).OR.(m.GT.1.0)) then
write(*,*)'Error: m out of range 0<m<1 in Em(m)'
write(*,*)'m=',m
STOP
end if
m1=1.0-m
Em=1.0+a1*m1+a2*m1*m1+(b1*m1+b2*m1*m1)*log(1.0/m1)
END
real(dp) FUNCTION Km(m)
USE type_specifications
IMPLICIT NONE
! Elliptic integral approximation, see Abramowitz and Stegun 17.3.33
real(dp) m
real(dp),parameter :: a0=1.3862944
real(dp),parameter :: a1=0.1119723
real(dp),parameter :: a2=0.0725296
real(dp),parameter :: b0=0.5
real(dp),parameter :: b1=0.1213478
real(dp),parameter :: b2=0.0288729
real(dp) m1
! START
if ((m.LT.0.0).OR.(m.GT.1.0)) then
write(*,*)'Error: m out of range 0<m<1 in Km(m)'
write(*,*)'m=',m
STOP
end if
m1=1.0-m
Km=a0+a1*m1+a2*m1*m1+(b0+b1*m1+b2*m1*m1)*log(1.0/m1)
END
!
! ____________________________________________________________
!
!
SUBROUTINE plot_braid_figure(C,N,dw,alpha,D,braid_name)
USE type_specifications
USE general_module
USE constants
IMPLICIT NONE
! variables passed to subroutine
integer :: N ! Number of wires in a carrier, N
integer :: C ! Number of carriers, C
real(dp) :: dw ! diameter of a single wire, d (m)
real(dp) :: alpha ! pitch angle of the braid (degrees)
real(dp) :: D ! braid diameter, D (m)
character(len=filename_length) :: braid_name ! name of the braid model
! local variables
real(dp) :: lx,ly
real(dp) :: dwx,dwy,dydx
real(dp) :: dyc
real(dp) :: x,y
real(dp) :: x1,y1
real(dp) :: x2,y2
real(dp) :: dy,dx
real(dp) :: wC,tC,tH,yH,tW
real(dp) :: l1,l2,l3,l4
real(dp) :: ax,ay,ox,l,ox_C
integer :: i,ii
! START
ly=pi*D ! extent of the circumferential direction
if (alpha.NE.0d0) then
lx=ly/tan(alpha)
lx=max(lx,1.62d0*ly)
else
lx=1.62d0*ly
end if
dwy=dw/cos(alpha)
dwx=dw/sin(alpha)
dydx=tan(alpha)
dyc=ly/(C/2d0)
wC=N*dw ! width of a carrier
tC=wC/sin(2d0*alpha)
tW=dw/sin(2d0*alpha)! width of a conductor
yH=dyc-wC/cos(alpha)
tH=yH/(2d0*sin(alpha))
l1=3d0*tH+2d0*tC
l2=tC
l3=tH
l4=tC
ax=-cos(alpha) ! gradient of start point line
ay=sin(alpha)
ox=dyc/tan(alpha) ! offset along x
write(*,*)'ly=',ly
write(*,*)'space for each carrier in circumferential direction (dyc)',dyc
write(*,*)'carrier overlap length ',tC
write(*,*)'conductor overlap length ',tW
write(*,*)'hole width ',yH
write(*,*)'hole edge length ',tH
write(*,*)'offset along x ',ox
open(unit=local_file_unit,file='braid_figure.dat')
!GOTO 1234
! WIRES GOING IN FIRST DIRECTION (UP IN FIGURE)
! loop over carriers
do ii=0,C/2-1
! plot a single carrier
do i=0,N ! the number of lines to plot is N+1
! calculate the first end point of the line
l=i*tW
x1=0d0+ax*l-ii*ox
y1=0d0+ay*l
CALL write_braid_line(x1,y1,dydx,lx,ly,l1,l2,l3,l4,local_file_unit)
end do ! next line (wire in carrier)
end do ! next carrier
! WIRES GOING IN SECOND DIRECTION (DOWN IN FIGURE)
1234 CONTINUE
dydx=-tan(alpha)
ax=-cos(alpha) ! gradient of start point line
ay=-sin(alpha)
! loop over carriers
do ii=0,C/2-1
ox_C=-3d0*ox
if (mod(ii,4).EQ.1) then
ox_C=-2d0*ox
else if (mod(ii,4).EQ.2) then
ox_C=-1d0*ox
else if (mod(ii,4).EQ.3) then
ox_C=-0d0*ox
end if
! plot a single carrier
do i=0,N ! the number of lines to plot is N+1
! calculate the first end point of the line
l=i*tW
x1=0d0+ax*l-ii*ox-ox/2d0
y1=ly+ay*l+dyc/2d0
CALL write_braid_line(x1,y1,dydx,lx,ly,l1,l2,l3,l4,local_file_unit)
end do ! next line (wire in carrier)
end do ! next carrier
close(unit=local_file_unit)
! write a file to plot the braid figure
open(unit=local_file_unit,file='plot_braid.plt')
write(local_file_unit,'(A,A,A)')'set title "',trim(braid_name),'"'
write(local_file_unit,'(A)')'set xlabel "Longitudinal direction"'
write(local_file_unit,'(A)')'set ylabel "Circumferential"'
write(local_file_unit,'(A)')'plot "braid_figure.dat" u 1:2 w l'
write(local_file_unit,'(A)')'pause -1'
close(unit=local_file_unit)
END SUBROUTINE plot_braid_figure
!
! ____________________________________________________________
!
!
SUBROUTINE write_braid_line(x,y,m,lx,ly,l1,l2,l3,l4,unit)
USE type_specifications
IMPLICIT NONE
real(dp),intent(IN) :: x,y ! point on the line
real(dp),intent(IN) :: m ! gradient
real(dp),intent(IN) :: lx ! xlimit
real(dp),intent(IN) :: ly ! ylimit
real(dp),intent(IN) :: l1 ! length1
real(dp),intent(IN) :: l2 ! length2
real(dp),intent(IN) :: l3 ! length3
real(dp),intent(IN) :: l4 ! length4
integer,intent(IN) :: unit
! local variables
real(dp) :: d1
real(dp) :: d2
logical :: line_end
! START
d1=0d0 ! start of line
10 CONTINUE
d2=d1+l1
! write(*,*)'Write braid line'
! write(*,*)x,y
! write(*,*)d1,d2
CALL write_braid_line_l(x,y,m,lx,ly,d1,d2,line_end,unit)
if (line_end) RETURN
d1=d2+l2 ! allow blank space l1 to l2
d2=d1+l3
! write(*,*)'Write braid line'
! write(*,*)x,y
! write(*,*)d1,d2
CALL write_braid_line_l(x,y,m,lx,ly,d1,d2,line_end,unit)
if (line_end) RETURN
d1=d2+l4 ! allow blank space l3 to l4
GOTO 10
RETURN
END SUBROUTINE write_braid_line
!
! ____________________________________________________________
!
!
SUBROUTINE write_braid_line_l(x0,y0,m,lx,ly,l1,l2,line_end,unit)
USE type_specifications
IMPLICIT NONE
real(dp),intent(IN) :: x0,y0 ! intial point on the line
real(dp),intent(IN) :: m ! gradient
real(dp),intent(IN) :: lx ! xlimit
real(dp),intent(IN) :: ly ! ylimit
real(dp),intent(IN) :: l1 ! length1
real(dp),intent(IN) :: l2 ! length2
integer,intent(IN) :: unit
logical,intent(OUT) :: line_end ! flag the end of the line
! local variables
real(dp) :: c ! constant for line equation1
real(dp) :: ax,ay ! constants for parametric line equation
real(dp) :: x1,y1 ! first point on the line segment
real(dp) :: x2,y2 ! second point on the line segment
real(dp) :: l_line ! length of line segment
real(dp) :: l_segment ! length of split line segment
integer :: i
! START
line_end=.FALSE.
! get the equation of the line in the form y=mx+c
c=y0-m*x0
! get the parametric equation of the line in the form x=x+ax*l, y=y+ay*l
ax=sqrt(1d0/(1d0+m*m))
ay=m*ax
! calculate the first end point of the line
x1=x0+ax*l1
y1=y0+ay*l1
! return if both ends of the line are outsude the range[0:lx]
if (x1.GT.lx) then
line_end=.TRUE.
RETURN
end if
x2=x0+ax*l2
if (x2.LT.0d0) then
RETURN
end if
! the first point x value may be less than zero so move along the line to x1=0
if (x1.LT.0d0) then
c=y1-m*x1
x1=0d0
y1=m*x1+c
end if
! the first point may be out of the y plotting range so move it back in
! by adding (subtracting) an integer times the period ly
if (y1.GT.0d0) then
i=INT(y1/ly)
else
i=INT(y1/ly)-1
end if
y1=y1-i*ly
! we now have an initial point inside the plotting region
! calculate the second end point relative to the first end point
x2=x0+ax*l2
y2=y0+ay*l2
y2=y2-i*ly ! subtract the same number of periods in y as the first point
! limit the line to lx
if (x2.GT.lx) then
c=y2-m*x2
x2=lx
y2=m*x2+c
line_end=.TRUE.
end if
l_line=sqrt( (x2-x1)**2+(y2-y1)**2 ) ! length of the line to be plotted
! write the first point
write(unit,'(2ES16.4)')x1,y1
if ( (y2.LE.ly).AND.(y2.GE.0d0) ) then
! write second point of line
write(unit,'(2ES16.4)')x2,y2
write(unit,*)
else if (y2.GT.ly) then
y2=ly
c=y1-m*x1
x2=(y2-c)/m
l_segment=sqrt( (x2-x1)**2+(y2-y1)**2 )
! write second point of split line
write(unit,*)'# split line, point 1, l_segment=',l_segment
write(unit,'(2ES16.4)')x2,y2
write(unit,*)
x1=x2
y1=y2-ly
! calculate the second end point relative to the new starting point
x2=x1+ax*(l_line-l_segment)
y2=y1+ay*(l_line-l_segment)
write(unit,*)'# split line, point 2,3'
write(unit,'(2ES16.4)')x1,y1
write(unit,'(2ES16.4)')x2,y2
write(unit,*)
else if (y2.LT.0d0) then
y2=0d0
c=y1-m*x1
x2=(y2-c)/m
l_segment=sqrt( (x2-x1)**2+(y2-y1)**2 )
! write second point of split line
write(unit,*)'# -split line, point 1, l_segment=',l_segment
write(unit,'(2ES16.4)')x2,y2
write(unit,*)
x1=x2
y1=y2+ly
! calculate the second end point relative to the first end point
x2=x1+ax*(l_line-l_segment)
y2=y1+ay*(l_line-l_segment)
write(unit,*)'# -split line, point 2,3'
write(unit,'(2ES16.4)')x1,y1
write(unit,'(2ES16.4)')x2,y2
write(unit,*)
end if
RETURN
END SUBROUTINE write_braid_line_l