include_RLC_test.F90
8.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
!
! SUBROUTINE RLC_test(H_PR,type,CFtype,R,L,C,found,HR,remainder_OK,remainder_zero)
!
!
! NAME
! RLC_test
!
! DESCRIPTION
! look for a viable RLC branch in a given impedance/admittance function
! See sections 7.2.2 and 7.2.3 of the Theory manual
!
! SEE ALSO
!
!
! HISTORY
!
! started 14/09/17 CJS
!
SUBROUTINE RLC_test(H_PR,type,CFtype,R,L,C,found,HR,remainder_OK,remainder_zero)
USE type_specifications
USE general_module
USE constants
USE filter_module
IMPLICIT NONE
type(Sfilter_PR),INTENT(IN) :: H_PR
integer :: type
integer :: CFtype
real(dp):: R,L,C
logical :: found
type(Sfilter),INTENT(INOUT) :: HR
logical :: remainder_OK,remainder_zero
! local variables
integer :: first_complex_pole,pole1,pole2,pole
type(Sfilter_PR) :: HR_PR_local
logical :: stable
integer :: i,ii
real(dp) :: const_term,norm
logical :: complex_poles,positive_residues,zero_const_term
!START
if (verbose) write(*,*)'CALLED: RLC_test'
found=.FALSE.
first_complex_pole=H_PR%n_real_poles+1
! loop over complex pole pairs
do i=1,H_PR%n_complex_pole_pairs
pole1=first_complex_pole+(i-1)*2
pole2=pole1+1
! check that we have a conjugate pole pair
if ( .NOT.conjugate_pair(H_PR%poles(pole1),H_PR%poles(pole2)) ) then
write(*,*)'ERROR in RLC_test: poles are not a conjugate pair'
write(*,*)'pole 1:',H_PR%poles(pole1)
write(*,*)'pole 2:',H_PR%poles(pole2)
STOP
end if
! check that we have a conjugate residue pair
if ( .NOT.conjugate_pair(H_PR%residues(pole1),H_PR%residues(pole2)) ) then
write(*,*)'ERROR in RLC_test: residues are not a conjugate pair'
write(*,*)'residues 1:',H_PR%residues(pole1)
write(*,*)'residues 2:',H_PR%residues(pole2)
STOP
end if
! test for whether we have a RLC branch here...
complex_poles = complex_pair(H_PR%poles(pole1),H_PR%poles(pole2))
positive_residues= (dble(H_PR%residues(pole1)).GT.0d0)
const_term=dble(H_PR%residues(pole1))*dble(H_PR%poles(pole1))+ &
aimag(H_PR%poles(pole1))*aimag(H_PR%residues(pole1))
zero_const_term=(abs(const_term).LT.zero_test_small)
if (verbose) then
write(*,*)'Testing pole pair',i
write(*,*)'Tests:'
write(*,*)'complex pole test : ',complex_poles,' ',H_PR%poles(pole1)
write(*,*)'positive residue test : ',positive_residues,' ',H_PR%residues(pole1)
write(*,*)'zero constant term test: ',zero_const_term,' ', const_term
end if
write(*,*)'CJSTEST'
write(*,*)'Testing pole pair',i
write(*,*)'Tests:'
write(*,*)'complex pole test : ',complex_poles,' ',H_PR%poles(pole1)
write(*,*)'positive residue test : ',positive_residues,' ',H_PR%residues(pole1)
write(*,*)'zero constant term test: ',zero_const_term,' ', const_term
! check for stable poles which are not on the imaginary s=jw axis AND positive residues
if (complex_poles.AND.positive_residues.AND.zero_const_term) then
if (verbose) write(*,*)'Found possible RLC branch'
! this could be a viable RLC branch - calculate the remainder when this pole pair is removed
CALL deallocate_Sfilter(HR)
! Test whether the remainder is zero
! build a local pole-residue filter without the test pole pair.
! allocate the structure for the local pole-residue form function and copy the
! required information across
HR_PR_local%wnorm=H_PR%wnorm
HR_PR_local%order=H_PR%order-2
HR_PR_local%n_real_poles=H_PR%n_real_poles
HR_PR_local%n_complex_poles=H_PR%n_complex_poles-2
HR_PR_local%n_complex_pole_pairs=H_PR%n_complex_pole_pairs-1
HR_PR_local%n_real_poles=H_PR%n_real_poles
! constant term and sL term
HR_PR_local%R=H_PR%R
HR_PR_local%L=H_PR%L
! Test whether the remainder is zero
if ( (HR_PR_local%order.EQ.0).AND. &
(abs(HR_PR_local%R).LT.zero_test_R).AND. &
(abs(HR_PR_local%L).LT.zero_test_L) ) then
remainder_zero=.TRUE.
GOTO 8000
end if
! copy any poles/ residues in the remainder
ALLOCATE( HR_PR_local%complex_pole(HR_PR_local%order) )
ALLOCATE( HR_PR_local%poles(HR_PR_local%order) )
ALLOCATE( HR_PR_local%residues(HR_PR_local%order) )
! copy real poles
pole1=0
pole2=0
do ii=1,HR_PR_local%n_real_poles
pole1=pole1+1
pole2=pole2+1
HR_PR_local%complex_pole(pole1)=.FALSE.
HR_PR_local%poles(pole1) =H_PR%poles(pole2)
HR_PR_local%residues(pole1)=H_PR%residues(pole2)
end do ! next real pole
! copy complex poles in pairs
do ii=1,H_PR%n_complex_pole_pairs
if (ii.NE.i) then
! this is not the pole pair we are trying to remove so copy them over
pole1=pole1+1
pole2=pole2+1
HR_PR_local%complex_pole(pole1)=.TRUE.
HR_PR_local%poles(pole1)=H_PR%poles(pole2)
HR_PR_local%residues(pole1)=H_PR%residues(pole2)
pole1=pole1+1
pole2=pole2+1
HR_PR_local%complex_pole(pole1)=.TRUE.
HR_PR_local%poles(pole1)=H_PR%poles(pole2)
HR_PR_local%residues(pole1)=H_PR%residues(pole2)
else
! this is the pair of poles we wish to remove so just increase the pole2 counter by 2.
pole2=pole2+2
end if
end do ! next real pole
! convert to a rational function form
HR=Convert_filter_S_PR_to_S(HR_PR_local)
! Check the transfer funcion for stability and for whether it is positive real
CALL check_transfer_function(HR,stable)
CALL deallocate_Sfilter_PR(HR_PR_local)
if (verbose) then
if (stable) then
write(*,*)'Remainder is stable'
else
write(*,*)'Remainder is unstable'
end if
end if
if (stable) then
remainder_zero=.FALSE.
GOTO 8000
end if
! Test whether the remainder is positive real
end if ! positive residues for this complex pole pair
end do ! next complex pole pair
! we only get here if we have not found a viable RLC branch
remainder_OK=.FALSE.
found=.FALSE.
remainder_zero=.FALSE.
RETURN
8000 CONTINUE
! jump here if we have found a viable RLC branch
remainder_OK=.TRUE.
found=.TRUE.
CALL deallocate_Sfilter_PR(HR_PR_local)
pole1=first_complex_pole+(i-1)*2
pole2=pole1+1
if (type.EQ.type_impedance) then
CFtype=series_RLC
C=1d0/dble(H_PR%residues(pole1)+H_PR%residues(pole2))
C=C/H_PR%wnorm
L=dble( (H_PR%residues(pole1)+H_PR%residues(pole2))/(H_PR%poles(pole1)*H_PR%poles(pole2)) )
L=L/H_PR%wnorm
R=-dble( (H_PR%residues(pole1)+H_PR%residues(pole2))/(H_PR%poles(pole1)+H_PR%poles(pole2)) )
else
CFtype=shunt_RLC
L=1d0/dble(H_PR%residues(pole1)+H_PR%residues(pole2))
L=L/H_PR%wnorm
C= dble( (H_PR%residues(pole1)+H_PR%residues(pole2))/(H_PR%poles(pole1)*H_PR%poles(pole2)) )
C=C/H_PR%wnorm
R=-dble( (H_PR%poles(pole1)+H_PR%poles(pole2))/(H_PR%residues(pole1)+H_PR%residues(pole2)) )
end if
if (verbose) then
write(*,*)'FOUND VIABLE RLC BRANCH'
write(*,*)'R=',R
write(*,*)'L=',L
write(*,*)'C=',C
write(*,*)'remainder_OK :',remainder_OK
write(*,*)'remainder_zero :',remainder_zero
end if
write(*,*)'FOUND VIABLE RLC BRANCH'
write(*,*)'R=',R
write(*,*)'L=',L
write(*,*)'C=',C
write(*,*)'remainder_OK :',remainder_OK
write(*,*)'remainder_zero :',remainder_zero
RETURN
END SUBROUTINE RLC_test