time_domain_analysis.F90 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE time_domain_analysis
!
! NAME
!     time_domain_analysis
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine controls the analytic solution for the transient analysis of
!     multi-conductor transmission lines. The solution is obtained using the Inverse 
!     Fourier Transform (IFT) method.
!     The solution is obtained using the full dimension transmission line equations 
!     i.e. we are NOT using the weak form of transfer impedance coupling
!     Note also that frequency dependent quantities are evaluated separately at
!     each frequency of analysis, i.e. the frequency dependence of the solution is rigorous 
!     given only the frequency dependence of the dielectrics is modelled using impedance/ admittance 
!     matrices whose elements are rational frequency dependent filter functions.
!
!     INPUTS:
!       spice_bundle_model structure
!       spice_validation_test structure 
!    
!     OUTPUT
!        analytic time domain termination voltage for the specified validation test case written to file
!
!    Note that the analysis assumes that the excitation (and hence the response) are periodic
!    with period equal to the maximimum time of the simulation. If the response of the circuit 
!    is longer than this then aliasing will occur and the comparison between Spice model results
!    and analytic results will be in error so please ensure that all transients have reduced
!    to insignificant levels within the simulation time.
!     
! COMMENTS
!     STAGE_1: frequency independent parameter solution
!     STAGE_2: multi-conductor solution
!     STAGE_3: shielded cable solution
!     STAGE_4: frequency dependent model 
!     STAGE_5: transfer impedance model 
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     24/03/2016 CJS: STAGE_3 developments -shielded cables
!     22/04/2016 CJS: STAGE_4 developments -frequency dependent model
!     04/05/2016 CJS: Only write time domain output over the time period requested,not the full FFT time period.
!    Include general conductor impedance model 12/05/2016 CJS
!     Fix bug with conductor impedance contributions 12/05/2016 CJS
!     8/09/2016 CJS Correct the common mode/ differential mode loss terms for twisted pairs
!     13/10/2016 CJS Correct transfer impedance for multiple modes in external domain
!     7/3/2017         CJS: Add resistance and voltage source onto the reference coonductor 
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE time_domain_analysis(spice_bundle_model,spice_validation_test)

USE type_specifications
USE general_module
USE constants
USE cable_module
USE cable_bundle_module
USE spice_cable_bundle_module
USE maths
USE frequency_spec

IMPLICIT NONE

! variables passed to subroutine

TYPE(spice_model_specification_type),intent(IN):: spice_bundle_model    ! Spice cable bundle model structure

TYPE(spice_validation_test_type),intent(IN)    :: spice_validation_test ! Spice validation circuit structure

! local variables

! variables for time domain analytic solution using IFT

integer            :: n_timesteps             ! number of timesteps requested
integer            :: n_FFT                   ! nummber of samples in the FFT
complex(dp),allocatable    :: Vs_time(:)      ! Source voltage as a function of time
complex(dp),allocatable    :: Vs_freq(:)      ! Source voltage as a function of frequency
complex(dp),allocatable    :: VTL_time(:)     ! Output voltage as a function of time
complex(dp),allocatable    :: VTL_freq(:)     ! Output voltage as a function of frequency
real(dp),allocatable       :: time(:)         ! time values
real(dp),allocatable       :: freq(:)         ! frequency values

! variables for the frequency domain MTL solution

real(dp)    :: f,w            ! frequency and angular frequency
integer     :: frequency_loop ! frequency loop variable

integer        :: dim         ! dimension of matrix system to solve

! domain based impedance and admittance matrices
complex(dp),allocatable     :: Z_domain(:,:)
complex(dp),allocatable     :: Y_domain(:,:)

! domain based conductor impedance terms
complex(dp),allocatable     ::Z_domain_conductor_impedance_correction(:,:)

! Vectors and matrices used in the frequency domain solution of the transmission line equations with termination conditions 
complex(dp),allocatable     :: Vs1(:)
complex(dp),allocatable     :: Z1(:,:)
complex(dp),allocatable     :: Vs2(:)
complex(dp),allocatable     :: Z2(:,:)

complex(dp)    :: Vout ! complex output voltage value

! domain transformation matrices
complex(dp),allocatable     :: MI(:,:)
complex(dp),allocatable     :: MII(:,:)
complex(dp),allocatable     :: MV(:,:)
complex(dp),allocatable     :: MVI(:,:)

! temporary working matrices
complex(dp),allocatable     :: TM1(:,:)

integer    :: conductor,inner_domain,outer_domain

integer    :: domain1,inner_domain1,outer_domain1
integer    :: conductor1,reference_conductor1
integer    :: domain_conductor1,domain_reference_conductor1
logical    :: is_shield1

integer    :: domain2,inner_domain2,outer_domain2
integer    :: conductor2,reference_conductor2
integer    :: domain_conductor2,domain_reference_conductor2
logical    :: is_shield2

! conductor based impedance (loss) and transfer impedance model data
complex(dp) :: Zint_c          ! conductor surface impedance
complex(dp) :: Zint_c_ref      ! reference conductor surface impedance
real(dp)    :: Rdc_c           ! d.c. resistance of conductor
real(dp)    :: Rdc_c_ref       ! d.c. resistance of reference conductor
complex(dp) :: Zint_t          ! conductor transfer impedance
complex(dp) :: Zint_t_ref      ! reference conductor transfer impedance
real(dp)    :: Rdc_t           ! d.c. resistance of conductor (from transfer impedance)
real(dp)    :: Rdc_t_ref       ! d.c. resistance of reference conductor (from transfer impedance)

! complex amplitude of incident field
complex(dp) :: Einc

logical,allocatable  :: is_shielded_flag(:)            ! flags conductors which are not exposed to the incident field
integer              :: shield_conductor               ! temporary variable, shield conductor number for shielded conductors
real(dp),allocatable :: local_conductor_x_offset(:)    ! x coordinate in bundle cross section of conductors
real(dp),allocatable :: local_conductor_y_offset(:)    ! y coordinate in bundle cross section of conductors

integer             :: n_conductors_outer_domain ! for shield conductors, the number of conductors in the domain outside the shield
integer             :: shield_conductor_number_in_outer_domain ! for shield conductors, the conductor number in the domain outside the shield

! loop variables
integer    :: i
integer    :: row,col

integer :: ierr

! START

! initialise FFT stuff

! set the number of frequencies to be equal to the next power of 2 above the number of timesteps requested
! Theory_Manual_Section 2.3.3

  n_timesteps=NINT(spice_validation_test%runtime/spice_validation_test%timestep)+1
  
  if(verbose) write(*,*)'Number of timesteps in transient analysis:',n_timesteps
  
  i=1
10  CONTINUE
    i=i*2
    if (i.ge.n_timesteps) then
      n_FFT=i
    else
      GOTO 10
    end if
    
  if(verbose) write(*,*)'Number of frequency in transient analysis:',n_FFT

! allocate the arrays used in the FFT
  ALLOCATE( time(n_FFT) ) 
  ALLOCATE( Vs_time(n_FFT) ) 
  ALLOCATE( VTL_time(n_FFT) ) 
  ALLOCATE( freq(n_FFT) ) 
  ALLOCATE( Vs_freq(n_FFT) ) 
  ALLOCATE( VTL_freq(n_FFT) )   

! Generate the time domain voltage source function array
! The time domain waveform is the Exponential Pulse, the same as that used in Spice
! See Ngspice manual, section 4.1.3

  do i=1,n_FFT
  
    time(i)=(i-1)*spice_validation_test%timestep
        
    if (time(i).LT.spice_validation_test%width) then
      Vs_time(i)=(1d0-exp(-time(i)/spice_validation_test%risetime))
    else if (time(i).GE.spice_validation_test%width) then
      Vs_time(i)=(exp(-(time(i)-spice_validation_test%width)/spice_validation_test%risetime))
    end if
      
  end do

! FFT the time domain voltage source array to give the frequency domain excitation function
! Theory_Manual_Equation 2.48

  CALL FFT_TIME_TO_FREQ(n_FFT,time,Vs_time,freq,Vs_freq)
  
! allocate memory

  dim=spice_bundle_model%bundle%system_dimension
  ALLOCATE( Z_domain(dim,dim) )
  ALLOCATE( Y_domain(dim,dim) )
  
  ALLOCATE( Z_domain_conductor_impedance_correction(dim,dim) )
  
  ALLOCATE( Vs1(dim) )
  ALLOCATE( Z1(dim,dim) )
  ALLOCATE( Vs2(dim) )
  ALLOCATE( Z2(dim,dim) )
  
! domain transformation matrices
  ALLOCATE( MI(dim,dim) )
  ALLOCATE( MII(dim,dim) )
  ALLOCATE( MV(dim,dim) )
  ALLOCATE( MVI(dim,dim) )
  
! temporary working matrices
  ALLOCATE( TM1(dim,dim) )
   
   
  ALLOCATE( is_shielded_flag(1:dim+1) )
  ALLOCATE( local_conductor_x_offset(1:dim+1) )
  ALLOCATE( local_conductor_y_offset(1:dim+1) )
  
! loop over conductors to work out which are in shielded domains and which are in the external domain
! also get the position of the conductor in the bundle cross section for incident field excitation

  do i=1,dim+1
    if (spice_bundle_model%bundle%terminal_conductor_to_outer_domain(i).EQ.spice_bundle_model%bundle%tot_n_domains) then
      is_shielded_flag(i)=.FALSE.
      local_conductor_x_offset(i)=spice_bundle_model%bundle%conductor_x_offset(i)
      local_conductor_y_offset(i)=spice_bundle_model%bundle%conductor_y_offset(i)
    else
      is_shielded_flag(i)=.TRUE.
! work out the conductor number of the shield
      shield_conductor=spice_bundle_model%bundle%terminal_conductor_to_reference_terminal_conductor(i)
! shielded conductors pick up the coordinate of the shield for the purposes on incident field excitation
      local_conductor_x_offset(i)=spice_bundle_model%bundle%conductor_x_offset(shield_conductor)
      local_conductor_y_offset(i)=spice_bundle_model%bundle%conductor_y_offset(shield_conductor)
    end if
  end do
  
! build the termination specifications and convert to complex
  Vs1(1:dim)=cmplx( spice_validation_test%Vs_end1(1:dim)-spice_validation_test%Vs_end1(dim+1) )
  Vs2(1:dim)=cmplx( spice_validation_test%Vs_end2(1:dim)-spice_validation_test%Vs_end2(dim+1) )
  
  Z1(:,:) =cmplx( spice_validation_test%R_end1(dim+1)  )
  Z2(:,:) =cmplx( spice_validation_test%R_end2(dim+1)  )
  do i=1,dim
    Z1(i,i) =Z1(i,i)+cmplx( spice_validation_test%R_end1(i)  )
    Z2(i,i) =Z2(i,i)+cmplx( spice_validation_test%R_end2(i)  )
  end do

! Copy the domain transformation matrices and calculate the inverses
  MI(:,:)=spice_bundle_model%bundle%global_MI%mat(:,:)
  MV(:,:)=spice_bundle_model%bundle%global_MV%mat(:,:)
  
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(MI,dim,MII,dim,ierr)
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL cinvert_Gauss_Jordan(MV,dim,MVI,dim,ierr)

! loop over frequency to calculate the frequency domain transmission line transfer function

  write(6,8100,advance='no')'Frequency ',0,' of ',n_FFT/2+1
  flush(6)
  
  do frequency_loop=1,n_FFT/2+1
  
    write(6,'(A)',advance='no')char(13)
    write(6,8100,advance='no')'Frequency ',frequency_loop,' of ',n_FFT/2+1
    flush(6)
    
8100 format(A10,I10,A4,I10)    

    f=freq(frequency_loop)

! shift frequency from d.c. as solution fails for lossless systems at f=0 Hz
    if (f.eq.0d0) then
      f=1d0
    end if 

    w=2d0*pi*f

! Use the global domain based L and C matrices and the domain voltage and current 
! domain transformation matrices to calculate the impedance [Z] and admittance [Y] matrices
    do row=1,dim
      do col=1,dim
      
! Evaluate the cable impedance filter function
        Z_domain(row,col)=evaluate_Sfilter_frequency_response(spice_bundle_model%bundle%global_Z%sfilter_mat(row,col),f)

! Evaluate the cable admittance filter function        
        Y_domain(row,col)=evaluate_Sfilter_frequency_response(spice_bundle_model%bundle%global_Y%sfilter_mat(row,col),f)

      end do  ! next col
       
    end do ! next row

! calculate the contribution to the matrices from the conductor based impedance models. 
! See Theory_Manual_Section 2.2.3 

!Initailly set to zero

    Z_domain_conductor_impedance_correction(1:dim,1:dim)=(0d0,0d0)

!   new domain based model

    do conductor1=1,dim
   
      domain1=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(conductor1)
      reference_conductor1=spice_bundle_model%bundle%terminal_conductor_to_reference_terminal_conductor(conductor1)
      domain_conductor1=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(conductor1)
      domain_reference_conductor1=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(reference_conductor1)
      is_shield1=spice_bundle_model%bundle%terminal_conductor_is_shield_flag(conductor1)
      
! evaluate the surface impedance for this conductor conductor 
      CALL evaluate_conductor_impedance_model(spice_bundle_model%bundle%conductor_impedance(conductor1),    &
                                              f,Zint_c,Rdc_c,Zint_t,Rdc_t)
                                              
! Apply multiplication factor to the conductor impedance to correct for common mode/ differential modes in twisted pairs
! See note at the end of Theory_Manual_Section 3.5.4

      Zint_c=Zint_c*spice_bundle_model%bundle%conductor_impedance(conductor1)%Resistance_multiplication_factor
                                              
! evaluate the surface impedance for the reference conductor 
      CALL evaluate_conductor_impedance_model(spice_bundle_model%bundle%conductor_impedance(reference_conductor1),  &
                                              f,Zint_c_ref,Rdc_c_ref,Zint_t_ref,Rdc_t_ref)

! Apply multiplication factor to the conductor impedance to correct for common mode/ differential modes in twisted pairs
      Zint_c_ref=Zint_c_ref*spice_bundle_model%bundle%conductor_impedance(reference_conductor1)%Resistance_multiplication_factor
              
! The surface impedance of the conductor and the reference conductor contribute to the diagonal element
      Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor1)=Zint_c+Zint_c_ref
      
      if (verbose) then
        write(*,*)'conductor:',conductor1,' reference conductor',reference_conductor1
        write(*,*)'conductor loss model type',spice_bundle_model%bundle%conductor_impedance(conductor1)%impedance_model_type
        write(*,*)'refconductor loss model type',  &
                  spice_bundle_model%bundle%conductor_impedance(reference_conductor1)%impedance_model_type
        write(*,*)'radius',  &
                  spice_bundle_model%bundle%conductor_impedance(reference_conductor1)%radius
        write(*,*)'conductivity',  &
                  spice_bundle_model%bundle%conductor_impedance(reference_conductor1)%conductivity
        write(*,*)'Resistance_multiplication_factor',  &
                  spice_bundle_model%bundle%conductor_impedance(reference_conductor1)%Resistance_multiplication_factor
        write(*,*)'thickness',  &
                  spice_bundle_model%bundle%conductor_impedance(reference_conductor1)%thickness

        write(*,*)'domain conductor:',domain_conductor1,' domain reference conductor',domain_reference_conductor1
        write(*,*)'Contribution to Zc(',domain_conductor1,domain_conductor1,')'
        write(*,*)'Zc conductor:',Zint_c
        write(*,*)'Zc reference:',Zint_c_ref
      end if ! verbose
      
! conductor always gets the contribution from its own surface impedance
    
      do conductor2=conductor1+1,dim
   
        domain2=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(conductor2)
        reference_conductor2=spice_bundle_model%bundle%terminal_conductor_to_reference_terminal_conductor(conductor2)
        domain_conductor2=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(conductor2)
        domain_reference_conductor2=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(reference_conductor2)
        is_shield2=spice_bundle_model%bundle%terminal_conductor_is_shield_flag(conductor2)

! if the two conductors belong to the same domain then add the reference conductor impedance
        if (domain1.EQ.domain2) then
          Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2)=Zint_c_ref
          Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1)=Zint_c_ref
          
          if (verbose) then
            write(*,*)'Contribution to Zc(',domain_conductor1,domain_conductor2,')'
            write(*,*)'Contribution to Zc(',domain_conductor2,domain_conductor1,')'
            write(*,*)'Zc conductor:',Zint_c_ref
          end if ! verbose
          
       end if
      
      end do ! next conductor2
      
    end do ! next conductor1
    
    if (verbose) write(*,*)'Add transfer impedance contributions'
! add transfer impedance contributions

! loop over conductors looking for shields. Note include all conductors including the reference here
    do conductor=1,dim+1
   
      is_shield1=spice_bundle_model%bundle%terminal_conductor_is_shield_flag(conductor)
      
      if (is_shield1) then
! add transfer impedance contributions to inner and outer domain conductors
 
        inner_domain=spice_bundle_model%bundle%terminal_conductor_to_inner_domain(conductor)
        outer_domain=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(conductor)
        
        CALL evaluate_conductor_impedance_model(spice_bundle_model%bundle%conductor_impedance(conductor),  &
                                                f,Zint_c,Rdc_c,Zint_t,Rdc_t)
                                                
! Check whether the shield is the reference conductor in the outer domain - the contributions
! are different if this is the case.

        n_conductors_outer_domain=spice_bundle_model%bundle%n_conductors(outer_domain)
        shield_conductor_number_in_outer_domain=spice_bundle_model%bundle%terminal_conductor_to_local_domain_conductor(conductor)
         
! number of conductors in a domain is spice_bundle_model%bundle%n_conductors(domain)
        if (shield_conductor_number_in_outer_domain.NE.n_conductors_outer_domain) then
               
! loop over all conductors
          do row=1,dim
         
! get the domain of row conductor
            domain1=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(row)

            if (domain1.EQ.inner_domain) then
! The row conductor is in the inner shield domain and so gets a transfer impedance contribution from the shield conductor
                 
! the shield couples these two domains so add the transfer impedance term - also include term to make the matrix symmetric
              domain_conductor1=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(row)
                 
              domain_conductor2=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(conductor)
              Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2)=        &
              Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2) -Zint_t
              Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1)=        &
              Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1) -Zint_t
                 
              if (verbose) then
                write(*,*)'Shield conductor',conductor,' inner domain',inner_domain,' outer domain',outer_domain
                write(*,*)'row',row,' col',col,' row domain',domain1,' col domain',domain2
                write(*,*)'Contribution to Zt(',domain_conductor1,domain_conductor2,')'
                write(*,*)'Contribution to Zt(',domain_conductor2,domain_conductor1,')'
                write(*,*)'Zt conductor:',-Zint_t
              end if ! verbose
                                                 
            end if  ! transfer impedance term required
            
          end do ! next row conductor
          
        else ! shield IS reference conductor in outer domain
               
! loop over all conductors
          do row=1,dim
         
! get the domain of row conductor
            domain1=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(row)

            if (domain1.EQ.inner_domain) then
! The row conductor is in the inner shield domain and so gets a transfer impedance contribution from the shield conductor
                 
! the shield couples these two domains so add the transfer impedance term - also include term to make the matrix symmetric
              domain_conductor1=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(row)
                 
! As the shield conductor is the reference we need to find all the conductors contributing to the shield current
! note that the contribution is then -ve of the normal transfer impedance contribution as the currents are in the
! opposite direction

              do col=1,dim
              
                domain2=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(col)
! Check the domain of the col conductor. If it is an outer domain conductor of the shield then it contributes

                if (domain2.EQ.outer_domain) then

                  domain_conductor2=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(col)
                  
                  Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2)=        &
                  Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2) +Zint_t
                  Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1)=        &
                  Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1) +Zint_t
                 
                  if (verbose) then
                    write(*,*)'Shield conductor',conductor,' inner domain',inner_domain,' outer domain',outer_domain
                    write(*,*)'row',row,' col',col,' row domain',domain1,' col domain',domain2
                    write(*,*)'Contribution to Zt(',domain_conductor1,domain_conductor2,')'
                    write(*,*)'Contribution to Zt(',domain_conductor2,domain_conductor1,')'
                    write(*,*)'Zt conductor:',-Zint_t
                  end if ! verbose
                  
                end if  ! transfer impedance term required for this col conductor
                 
              end do ! next condutor to check
                                                
            end if  ! transfer impedance term required for this row conductor
            
          end do ! next row conductor
         
        end if ! shield is/ is not reference conductor in outer domain
      
      end if ! conductor is a shield

    end do ! next conductor
    
! Add the conductor impedance contributions to the domain based impedance matrix
    Z_domain(:,:)=Z_domain(:,:)+Z_domain_conductor_impedance_correction(:,:)
    
    Einc=cmplx(spice_bundle_model%Eamplitude)
    
! Solve the frequency domain multi-conductor transmission line equations with the specified termination circuit and 
! return the required conductor voltage in Vout.   
! For the purposes of the frequency domain solution, the excitations are assumed to be constant in frequency
! The frequency response of the excitation is included afterwards         
    if (.NOT.run_validation_test_Vbased) then
                                          
      CALL frequency_domain_MTL_solution(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                                       Einc,spice_bundle_model%Ex,spice_bundle_model%Ey,spice_bundle_model%Ez,    &
                                       spice_bundle_model%Hx,spice_bundle_model%Hy,spice_bundle_model%Hz,         &
                                       spice_bundle_model%kx,spice_bundle_model%ky,spice_bundle_model%kz,         &
                                       local_conductor_x_offset,                                                  &
                                       local_conductor_y_offset,                                                  &
                                       spice_bundle_model%bundle%ground_plane_present,                            &
                                       spice_bundle_model%bundle%ground_plane_x,                                  &
                                       spice_bundle_model%bundle%ground_plane_y,                                  &
                                       spice_bundle_model%bundle%ground_plane_theta,                              &
                                       spice_bundle_model%length,Vs1,Z1,Vs2,Z2,                                   &
                                       is_shielded_flag,                                                          &
                                       f,spice_validation_test%output_end,spice_validation_test%output_conductor, &
                                       spice_validation_test%output_conductor_ref,Vout)
    else
                                        
      CALL frequency_domain_MTL_solution_V(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                                       Einc,spice_bundle_model%Ex,spice_bundle_model%Ey,spice_bundle_model%Ez,    &
                                       spice_bundle_model%Hx,spice_bundle_model%Hy,spice_bundle_model%Hz,         &
                                       spice_bundle_model%kx,spice_bundle_model%ky,spice_bundle_model%kz,         &
                                       local_conductor_x_offset,                                                  &
                                       local_conductor_y_offset,                                                  &
                                       spice_bundle_model%bundle%ground_plane_present,                            &
                                       spice_bundle_model%bundle%ground_plane_x,                                  &
                                       spice_bundle_model%bundle%ground_plane_y,                                  &
                                       spice_bundle_model%bundle%ground_plane_theta,                              &
                                       spice_bundle_model%length,Vs1,Z1,Vs2,Z2,                                   &
                                       is_shielded_flag,                                                          &
                                       f,spice_validation_test%output_end,spice_validation_test%output_conductor, &
                                       spice_validation_test%output_conductor_ref,Vout)
    end if
    
! multiply the Frequency domain source and transmission line transfer function 
! Save transfer function multiplied by frequency domain source voltage function i.e. include the time response of
! the excitation here. Theory_Manual_Section 2.3.3

    VTL_freq(frequency_loop)=Vout*Vs_freq(frequency_loop)
    
    if ( (frequency_loop.NE.1).AND.(frequency_loop.NE.N_FFT/2+1) ) then
      VTL_freq(N_FFT-frequency_loop+2)=conjg(VTL_freq(frequency_loop))
    end if
    
  end do ! next frequency in frequency loop

! Inverse FFT to give the time domain transmission line response
! Theory_Manual_Equation 2.50

  CALL FFT_FREQ_TO_TIME(n_FFT,time,VTL_time,freq,VTL_freq)

! write the time domain response to file

! Open output file 
  open(unit=analytic_soln_file_unit,file=trim(analytic_soln_filename))
  
! write the file header line
  write(analytic_soln_file_unit,'(A)')time_header

  do i=1,n_timesteps                                              ! changed from n_FFT 04/5/2016 CJS
    write(analytic_soln_file_unit,*)time(i),real(VTL_time(i))
  end do
  
! Close output file 
  Close(unit=analytic_soln_file_unit) 

! deallocate memory
  DEALLOCATE( Z_domain )
  DEALLOCATE( Y_domain )
  
  DEALLOCATE( Z_domain_conductor_impedance_correction )
  
  DEALLOCATE( Vs_time ) 
  DEALLOCATE( Vs_freq ) 
  DEALLOCATE( VTL_time ) 
  DEALLOCATE( VTL_freq ) 
  DEALLOCATE( time ) 
  DEALLOCATE( freq ) 
  
! domain transformation matrices
  DEALLOCATE( MI )
  DEALLOCATE( MII )
  DEALLOCATE( MV )
  DEALLOCATE( MVI )
    
  DEALLOCATE( is_shielded_flag )
  DEALLOCATE( local_conductor_x_offset )
  DEALLOCATE( local_conductor_y_offset )

! temporary working matrices
  DEALLOCATE( TM1 )
  
  write(6,*)

  RETURN

END SUBROUTINE time_domain_analysis