create_spice_subcircuit_model.F90
53.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! SUBROUTINE create_spice_subcircuit_model
!
! NAME
! create_spice_subcircuit_model
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! This subroutine creates the Spice subcircuit model for the cable bundle
! including transfer impedance coupling terms when requested
! and incident field excitation model when requested
! The input to the subroutine is the spice_bundle_model structure which contains
! all the information required to build the spice model.
!
! The processs is split into the following stages:
!
! STAGE 1: Initialisation: open the file for the spice subcircuit model
! STAGE 2: Allocate memory for node lists, propagation correction filter lists etc
! STAGE 3: Work out where the transfer impedance models and incident field sources need to go
! STAGE 4: Evaluate and write the d.c. resistance on each conductor
! STAGE_5: Implement the Domain decomposition in the Spice model
! For each domain:
! STAGE_6, Within the current domain work out the modal transformation matrices,
! mode impedances and mode delays to implement the modal decomposition in spice
! STAGE_7, Within the current domain work out the modal propagation correction filter functions
! STAGE_8, Write the modal decomposition spice model and modal propagation spice model
!
! STAGE_9, generate the information required for and then write the transfer impedance coupling model(s) as required
! STAGE_10, generate the information required for and then write the incident field excitation model as required
! STAGE 11: Deallocate the domain based information
!
! COMMENTS
! 1. The notation needs to be organised a bit better.
! 2. We will need to split the node numbering, component naming and file writing processes into subroutines
! otherwise it will become a complete mess... STARTED: writing processes have been separated out now.
! 3. There is locally allocated (domain based) memory for modal decomposition etc which is now saved globally
! for the transfer impedance model. The local data arrays should be removed.
! 4. Following the substitution of the revised modal decomposition process we need the check for unused variables and remove them
!
! HISTORY
!
! started 9/12/2015 CJS: STAGE_1 developments
! STAGE 2 developments started 2/02/2016 CJS
! STAGE_3 developments started 24/03/2016 CJS
! STAGE_4 developments started 22/04/2016 CJS
! STAGE_5 developments started 16/05/2016 CJS
! STAGE_6 developments started 13/06/2016 CJS
! 20/06/2016 CJS: Implement a new, robust method for modal decomposition for lossless propagation in an inhomogeneous medium
! i.e. what is required for the modal decomposition and method of characteristics model in Spice.
! 27/9/2016 CJS: Implement Xie's model for incident field excitaiton of shielded cables
! 15/12/2016 CJS: use the frequency_spec module for all frequency dependent processes
! 17/5/2017 CJS : fix problem with incident field excitation with impedance on the reference conductor for the revised termination model.
! 12/6/2017 CJS : fix problem which occurs if a domain is the victim domain for more than one transfer impedance model
! 16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!
SUBROUTINE create_spice_subcircuit_model(spice_bundle_model)
USE type_specifications
USE general_module
USE constants
USE cable_module
USE cable_bundle_module
USE spice_cable_bundle_module
USE MTL_analytic_solution
USE maths
USE filter_module
USE frequency_spec
IMPLICIT NONE
! variables passed to the subroutine
TYPE(spice_model_specification_type),INTENT(IN) :: spice_bundle_model
! local variables
! structure for modal decomposition information
TYPE::mode_decomp_list_type
integer :: n_modes
real(dp),allocatable :: TVI(:,:)
real(dp),allocatable :: TI(:,:)
real(dp),allocatable :: delay(:)
real(dp),allocatable :: impedance(:)
END TYPE mode_decomp_list_type
! structure to hold a list of filter functions
TYPE::Sfilter_list_type
integer :: n_modes
Type(Sfilter),allocatable :: Hp(:)
END TYPE Sfilter_list_type
! structure to hold a list of nodes
TYPE::node_list_type
integer :: n_nodes
integer,allocatable :: node(:)
END TYPE node_list_type
character(len=filename_length) :: filename
integer :: tot_n_conductors
integer :: n_domains
integer :: n_conductors
integer :: n_modes
integer :: domain
integer :: mode
integer :: end
integer :: global_domain_conductor ! conductor number in the global domain nunbering
integer :: local_domain_conductor ! conductor number in the local domain
integer :: terminal_conductor ! conductor number at the sub-circuit terminals
integer :: shield_conductor ! terminal conductor number for a shield for transfer impedance model
integer :: conductor ! conductor loop variable
! node numbering and component name stuff
integer :: next_free_node ! this is the number of the next spice node to be used
integer :: vref_node ! this is the reference node used within the transmission line sub-circuit
! node numbers for external connection of subcircuit at both ends of the transmission line
integer,allocatable :: external_end1_nodes(:)
integer,allocatable :: external_end2_nodes(:)
! node numbers for d.c. resistance at both ends of the transmission line
integer,allocatable :: rdc_end1_nodes(:)
integer,allocatable :: rdc_end2_nodes(:)
! node numbers for domain based transmission lines for all domains together
integer,allocatable :: all_domain_end1_nodes(:)
integer,allocatable :: all_domain_end2_nodes(:)
! node numbers for domain based transmission lines within a single domain
integer,allocatable :: domain_end1_nodes(:)
integer,allocatable :: domain_end2_nodes(:)
! node numbers for modal transmission lines
integer,allocatable :: modal_end1_nodes(:)
integer,allocatable :: modal_end2_nodes(:)
integer :: dim ! matrix dimension
! modal decomposition matrices
real(dp),allocatable :: real_MI(:,:)
real(dp),allocatable :: real_MV(:,:)
real(dp),allocatable :: real_MVI(:,:)
! domain decomposition matrices
real(dp),allocatable :: real_TII(:,:)
real(dp),allocatable :: real_TV(:,:)
real(dp),allocatable :: real_TI(:,:)
real(dp),allocatable :: real_TVI(:,:)
! mode velocity and impedance within a domain.
real(dp),allocatable :: mode_velocity(:)
real(dp),allocatable :: mode_impedance(:)
! Filter list used in the calculation of propagation correction filter functions
Type(Sfilter_list_type),allocatable :: domain_Hp_list(:)
real(dp),allocatable :: Rdc(:) ! d.c. resistance of a conductor
complex(dp) :: Zint_c ! complex surface impedance of a conductor
real(dp) :: Rdc_t ! d.c. resistance of a shield evaluated from the transfer impedance model
complex(dp) :: Zint_t ! complex transfer impedance of a shield conductor
! domain based list of conductor impedance models, used for propagation correction calcuulation
type(conductor_impedance_model),allocatable :: conductor_impedance_domain(:)
type(node_list_type),allocatable :: domain_MOC_reference_end1_nodes(:) ! list of reference nodes for method of characteristics
type(node_list_type),allocatable :: domain_MOC_reference_end2_nodes(:) ! list of reference nodes for method of characteristics
integer :: impedance_model_type ! local type for a conductor impedance model
! Transfer impedance model stuff...
integer :: Zt_model ! loop variable for the transfer impedance model number to be included
! transfer impedance model source domain information
integer :: source_domain
integer :: n_source_domain_modes
! transfer impedance model victim domain information
integer :: victim_domain
integer :: n_victim_domain_modes
integer,allocatable :: ZT_source_domain(:)
integer,allocatable :: ZT_victim_domain(:)
type(node_list_type),allocatable :: domain_MOC_ZT_reference_end1_nodes(:) ! list of reference nodes for ZT models: method of characteristics
type(node_list_type),allocatable :: domain_MOC_ZT_reference_end2_nodes(:) ! list of reference nodes for ZT models: method of characteristics
type(node_list_type),allocatable :: domain_ZT_internal_end1_nodes(:) ! list of internal victim domain nodes for ZT models
type(node_list_type),allocatable :: domain_ZT_internal_end2_nodes(:) ! list of internal victim domain nodes for ZT models
type(node_list_type),allocatable :: domain_MOC_V_plus_nodes(:) ! list of nodes for the +z travelling characteristic mode voltage in each domain
type(node_list_type),allocatable :: domain_MOC_V_minus_nodes(:) ! list of nodes for the +z travelling characteristic mode voltage in each domain
type(mode_decomp_list_type),allocatable :: domain_mode_decomp(:) ! domain base modal decompositiion data
logical,allocatable :: domain_is_ZT_victim(:) ! list of flags to indicate transfer impedance victim domains
integer,allocatable :: n_ZT_victim_in_domain(:) ! number of transfer impedance models with this victim domain
integer,allocatable :: count_ZT_victim_in_domain(:) ! counter for transfer impedance models within a domain
logical,allocatable :: domain_is_Einc_ZT_victim(:) ! list of flags to indicate victim domains for incident field excitation and transfer impedance coupling (Xie model)
type(node_list_type) :: ZT_node1_end1,ZT_node1_end2 ! nodes used for the transfer impedance source terms in the victim domain
type(node_list_type) :: ZT_node2_end1,ZT_node2_end2
integer :: source_domain_shield_conductor ! conductor number for shield in source domain
integer :: victim_domain_shield_conductor ! conductor number for shield in victim domain
integer :: terminal_shield_conductor ! shield conductor number according to the terminal conductor numbering system
integer :: domain_shield_conductor ! shield conductor number according to the domain conductor numbering system
! Information for incident field excitation coupling via transfer impedance
type(node_list_type),allocatable :: domain_MOC_EINC_ZT_reference_end1_nodes(:) ! list of reference nodes for Einc_ZT models: method of characteristics
type(node_list_type),allocatable :: domain_MOC_EINC_ZT_reference_end2_nodes(:) ! list of reference nodes for Einc_ZT models: method of characteristics
! Information for incident field excitation
logical,allocatable :: domain_is_Einc_victim(:)
integer :: n_einc_domain_modes
integer :: Einc_node1,Einc_node2 ! subcircuit nodes for connecting the external incident field source
real(dp) :: Tz ! incident field excitation delay time
! coordinates and constants required for the incident field excitation model. These variables follow the notation of #EQN_REFERENCE_REQUIRED
real(dp),allocatable :: xcoord(:)
real(dp),allocatable :: ycoord(:)
real(dp),allocatable :: alpha0(:)
real(dp),allocatable :: alphaL(:)
real(dp),allocatable :: c1(:)
real(dp),allocatable :: c2(:)
real(dp),allocatable :: c1b(:)
! Additional general variables
integer :: i
integer,parameter :: write_matrices=0 ! used for debugging only
! string used to generate comments
character(len=max_spice_line_length) :: comment
! error integer used in matrix inverse calculation
integer :: ierr
! START
! STAGE 1: Initialisation: open the file for the spice subcircuit model
filename=trim(MOD_spice_bundle_lib_dir)// &
trim(spice_bundle_model%spice_model_name)//trim(spice_model_file_extn)
OPEN(unit=spice_model_file_unit,file=filename)
if (verbose) write(*,*)'Opened file:',trim(filename)
! Copy some of the bundle information into local variables for clarity
n_domains=spice_bundle_model%bundle%tot_n_domains
tot_n_conductors=spice_bundle_model%bundle%tot_n_conductors
! STAGE 2: Allocate memory for node lists, propagation correction filter lists,
! Allocate the node number lists for both ends of the transmission line
ALLOCATE( external_end1_nodes(1:tot_n_conductors) )
ALLOCATE( external_end2_nodes(1:tot_n_conductors) )
ALLOCATE( rdc_end1_nodes(1:tot_n_conductors) )
ALLOCATE( rdc_end2_nodes(1:tot_n_conductors) )
ALLOCATE( all_domain_end1_nodes(1:tot_n_conductors) )
ALLOCATE( all_domain_end2_nodes(1:tot_n_conductors) )
! set the reference node for the transmission line subcircuit
next_free_node=first_subcircuit_node_number
CALL create_new_node(vref_node,next_free_node)
! allocate the domain based information
ALLOCATE( domain_HP_list(1:n_domains) )
! domain based information for transfer impedance models, including those with incident field excitation (Xie's model)
ALLOCATE( domain_mode_decomp(1:n_domains) )
ALLOCATE( domain_MOC_V_plus_nodes(1:n_domains) )
ALLOCATE( domain_MOC_V_minus_nodes(1:n_domains) )
ALLOCATE( domain_MOC_reference_end1_nodes(1:n_domains) )
ALLOCATE( domain_MOC_reference_end2_nodes(1:n_domains) )
ALLOCATE( domain_MOC_ZT_reference_end1_nodes(1:n_domains) )
ALLOCATE( domain_MOC_ZT_reference_end2_nodes(1:n_domains) )
ALLOCATE( domain_ZT_internal_end1_nodes(1:n_domains) )
ALLOCATE( domain_ZT_internal_end2_nodes(1:n_domains) )
ALLOCATE( domain_MOC_EINC_ZT_reference_end1_nodes(1:n_domains) )
ALLOCATE( domain_MOC_EINC_ZT_reference_end2_nodes(1:n_domains) )
ALLOCATE( domain_is_ZT_victim(1:n_domains) )
ALLOCATE( domain_is_Einc_victim(1:n_domains) )
ALLOCATE( domain_is_Einc_ZT_victim(1:n_domains) )
ALLOCATE( n_ZT_victim_in_domain(1:n_domains) )
ALLOCATE( count_ZT_victim_in_domain(1:n_domains) )
domain_is_ZT_victim(1:n_domains)=.FALSE.
domain_is_Einc_victim(1:n_domains)=.FALSE.
domain_is_Einc_ZT_victim(1:n_domains)=.FALSE.
n_ZT_victim_in_domain(1:n_domains)=0
Einc_node1=0
Einc_node2=0
if (spice_bundle_model%include_incident_field) then
domain_is_Einc_victim(n_domains)=.TRUE.
! create nodes for the sub-circuit header which will be used as the incident field excitation source
CALL create_new_node(Einc_node1,next_free_node)
! create new node for Einc_node2
CALL create_new_node(Einc_node2,next_free_node)
! OLD - caused problems if there were impedanced on reference conductor
! Einc_node2=vref_node
end if
! STAGE 3: Work out where the transfer impedance models and incident field sources need to go
if (verbose) then
write(*,*)''
write(*,*)'Number of transfer impedance models:',spice_bundle_model%n_transfer_impedances
end if
ALLOCATE( ZT_source_domain(1:spice_bundle_model%n_transfer_impedances) )
ALLOCATE( ZT_victim_domain(1:spice_bundle_model%n_transfer_impedances) )
do ZT_model=1,spice_bundle_model%n_transfer_impedances
conductor=spice_bundle_model%Zt_conductor(ZT_model)
! check that we have identified a shield conductor
if (.NOT.spice_bundle_model%bundle%terminal_conductor_is_shield_flag(conductor)) then
write(run_status,*)'ERROR in create_spice_subcircuit_model.Conductor number',conductor,' is not a shield '
CALL write_program_status()
STOP 1
end if
! check that we have a viable transfer impedance model for this shield
impedance_model_type=spice_bundle_model%bundle%conductor_impedance(conductor)%impedance_model_type
if ( (impedance_model_type.NE.impedance_model_type_cylindrical_shield) &
.AND.(impedance_model_type.NE.impedance_model_type_filter) ) then
if (verbose) then
write(*,*)'Error building transfer impedance models'
write(*,*)'Conductor number',conductor,' does not have a transfer impedance model specified'
write(*,*)'Condutor impedance model type:',impedance_model_type
end if
write(run_status,*)'ERROR in create_spice_subcircuit_model.Conductor number',conductor,&
' does not have a transfer impedance model specified '
CALL write_program_status()
STOP 1
end if
! get the source and victim domain for the transfer impedance model
if (spice_bundle_model%Zt_direction(ZT_model).EQ.1) then
source_domain=spice_bundle_model%bundle%terminal_conductor_to_inner_domain(conductor)
victim_domain=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(conductor)
elseif (spice_bundle_model%Zt_direction(ZT_model).EQ.-1) then
source_domain=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(conductor)
victim_domain=spice_bundle_model%bundle%terminal_conductor_to_inner_domain(conductor)
else
run_status='Error building transfer impedance models. Transfer impedance coupling direction should be +1 or -1'
CALL write_program_status()
STOP 1
end if
ZT_source_domain(ZT_model)=source_domain
ZT_victim_domain(ZT_model)=victim_domain
domain_is_ZT_victim(victim_domain)=.TRUE.
n_ZT_victim_in_domain(victim_domain)=n_ZT_victim_in_domain(victim_domain)+1
if (verbose) then
write(*,*)'Transfer impedance model:',ZT_model,' source domain:',source_domain,' victim domain:',victim_domain
end if
! check whether the source domain has an incident field excitation. If it does then the victim domain needs
! will have additional terms due to incident field excitation via transfer impedance (Xie's model)
if (domain_is_Einc_victim(source_domain)) then
if (use_xie) then
domain_is_Einc_ZT_victim(victim_domain)=.TRUE.
if (verbose) then
write(*,*)'Transfer impedance model with incident field: source domain:',source_domain,' victim domain:',victim_domain
end if
end if ! use the Xie model for incident field excitation of shielded cables
end if ! source domain has an incident field excitation
end do ! next transfer impedance model
! Write the subcircuit header, this also creates the node numbers
! for the external connections to the transmission line model
CALL write_spice_subcircuit_header( spice_bundle_model, &
next_free_node,tot_n_conductors,external_end1_nodes,external_end2_nodes, &
spice_bundle_model%include_incident_field,Einc_node1,Einc_node2 )
! STAGE 4: Evaluate and write the d.c. resistance on each conductor. The extraction of the d.c. resistance
! to the conductor terminations makes the modal decomposition a weak function of frequency. See Theory_Manual_Section 3.6
ALLOCATE( Rdc(1:tot_n_conductors) )
do conductor=1,tot_n_conductors
! evaluate conductor impedance. Note that only the conductor d.c. resistance is required at the moment
CALL evaluate_conductor_impedance_model(spice_bundle_model%bundle%conductor_impedance(conductor), &
0d0,Zint_c,Rdc(conductor),Zint_t,Rdc_t)
if (high_freq_Zt_model) then ! if this is a shield then don't lump the d.c. resistance
if (spice_bundle_model%bundle%terminal_conductor_is_shield_flag(conductor)) then
Rdc(conductor)=Rsmall
end if
end if
! don't include zero impedances in the Spice model. Replace with something very small instead.
if (Rdc(conductor).LT.Rsmall) Rdc(conductor)=Rsmall
end do
CALL write_spice_comment('D.C. RESISTANCE END 1')
end=1
CALL write_spice_dc_resistances( vref_node,next_free_node,Rdc,tot_n_conductors,end, &
external_end1_nodes,rdc_end1_nodes,spice_bundle_model%length )
CALL write_spice_comment('D.C. RESISTANCE END 2')
end=2
CALL write_spice_dc_resistances( vref_node,next_free_node,Rdc,tot_n_conductors,end, &
external_end2_nodes,rdc_end2_nodes,spice_bundle_model%length )
! End of d.c. resistances
! STAGE_5 Implement the Domain decomposition in the Spice model
! call with the external node numbering and return with the domain decomposition node numbering
! See Theory_Manual_Section 3.2
! Allocate variables for the domain decomposition
dim=spice_bundle_model%bundle%system_dimension
ALLOCATE( real_MI(1:dim,1:dim) )
ALLOCATE( real_MV(1:dim,1:dim) )
ALLOCATE( real_MVI(1:dim,1:dim) )
! Copy the domain transformation matrices and calculate the inverse of MV
real_MI(:,:)=spice_bundle_model%bundle%global_MI%mat(:,:)
real_MV(:,:)=spice_bundle_model%bundle%global_MV%mat(:,:)
ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
CALL dinvert_Gauss_Jordan(real_MV,dim,real_MVI,dim,ierr)
CALL write_spice_comment('DOMAIN TRANSFORMATION END 1')
end=1
CALL write_spice_domain_decomposition_equivalent_circuit(vref_node,next_free_node,end,tot_n_conductors,dim, &
rdc_end1_nodes,real_MVI,real_MI,all_domain_end1_nodes)
CALL write_spice_comment('DOMAIN TRANSFORMATION END 2')
end=2
CALL write_spice_domain_decomposition_equivalent_circuit(vref_node,next_free_node,end,tot_n_conductors,dim, &
rdc_end2_nodes,real_MVI,real_MI,all_domain_end2_nodes)
DEALLOCATE( real_MI )
DEALLOCATE( real_MV )
DEALLOCATE( real_MVI )
! End of domain decomposition
! reset the counter for domain conductor numbers
global_domain_conductor=0
! Begin the main loop over domains
do domain=1,n_domains
write(comment,'(A,I6)')'DOMAIN ',domain
CALL write_spice_comment(comment)
! STAGE_6, Within the current domain work out the modal transformation matrices,
! mode impedances and mode delays to implement the modal decomposition in spice
! See Theory_Manual_Section 3.4
! Allocate variables for the modal decomposition
n_conductors=spice_bundle_model%bundle%n_conductors(domain)
dim=spice_bundle_model%bundle%L(domain)%dim
n_modes=dim
ALLOCATE( real_TII(1:dim,1:dim) )
ALLOCATE( real_TV(1:dim,1:dim) )
ALLOCATE( real_TI(1:dim,1:dim) )
ALLOCATE( real_TVI(1:dim,1:dim) )
ALLOCATE( mode_velocity(1:dim) )
ALLOCATE( mode_impedance(1:dim) )
CALL write_spice_comment('Modal Decomposition')
! Use the 'high frequency' L and C matrices to derive the modal decomposition for the spice model
CALL modal_decomposition_LC(dim,spice_bundle_model%bundle%L(domain)%mat, &
spice_bundle_model%bundle%C(domain)%mat, &
real_TI,real_TII,real_TV,real_TVI,mode_velocity,mode_impedance)
! save the mode information on the idealised transmission line
domain_mode_decomp(domain)%n_modes=dim
ALLOCATE( domain_mode_decomp(domain)%TVI(1:dim,1:dim) )
ALLOCATE( domain_mode_decomp(domain)%TI(1:dim,1:dim) )
ALLOCATE( domain_mode_decomp(domain)%delay(1:dim) )
ALLOCATE( domain_mode_decomp(domain)%impedance(1:dim) )
domain_mode_decomp(domain)%TVI(1:dim,1:dim)=real_TVI(1:dim,1:dim)
domain_mode_decomp(domain)%TI(1:dim,1:dim)=real_TI(1:dim,1:dim)
do mode=1,n_modes
domain_mode_decomp(domain)%delay(mode)=spice_bundle_model%length/mode_velocity(mode)
domain_mode_decomp(domain)%impedance(mode)=mode_impedance(mode)
end do
! STAGE7: work out the propagation correction filters for this domain
! See Theory_Manual_Section 3.6
! Allocate the conductor based loss model data
dim=spice_bundle_model%bundle%n_conductors(domain)
ALLOCATE( conductor_impedance_domain(1:dim+1) )
! Allocate the propagation correction filter
dim=n_modes
domain_HP_list(domain)%n_modes=n_modes
ALLOCATE( domain_HP_list(domain)%Hp(1:n_modes) )
! Retreive the conductor based impedance model data
do conductor=1,spice_bundle_model%bundle%n_conductors(domain)
terminal_conductor=spice_bundle_model%bundle%terminal_conductor_list(domain)%element(conductor)
! copy the conductor impedance model for this cable conductor to the bundle structure
conductor_impedance_domain(conductor)%impedance_model_type= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%impedance_model_type
conductor_impedance_domain(conductor)%radius= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%radius
conductor_impedance_domain(conductor)%thickness= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%thickness
conductor_impedance_domain(conductor)%width= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%width
conductor_impedance_domain(conductor)%height= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%height
conductor_impedance_domain(conductor)%conductivity= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%conductivity
conductor_impedance_domain(conductor)%Resistance_multiplication_factor= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%Resistance_multiplication_factor
if ( (conductor_impedance_domain(conductor)%impedance_model_type.EQ.impedance_model_type_filter).OR. &
(conductor_impedance_domain(conductor)%impedance_model_type.EQ.impedance_model_type_cylindrical_shield) ) then
conductor_impedance_domain(conductor)%ZT_filter= &
spice_bundle_model%bundle%conductor_impedance(terminal_conductor)%ZT_filter
end if
end do
if (spice_bundle_model%Fit_model_order.NE.0) then
CALL calculate_propagation_correction_filters(domain,dim,spice_bundle_model%FIT_model_order, &
spice_bundle_model%bundle%Z(domain)%Sfilter_mat,spice_bundle_model%bundle%Y(domain)%Sfilter_mat, &
spice_bundle_model%bundle%L(domain)%mat,spice_bundle_model%bundle%C(domain)%mat, &
domain_mode_decomp(domain)%TI(1:dim,1:dim), &
conductor_impedance_domain,domain_HP_list(domain)%Hp,spice_bundle_model%length, &
domain_mode_decomp(domain)%delay, &
spice_bundle_model%prop_corr_fit_freq_spec)
else
! the filter order is 0 and then therefore the propagation correction filter is equal to 1
do mode=1,n_modes
domain_HP_list(domain)%Hp(mode)=1d0
end do
end if
! STAGE 8: write the modal decomposition circuit elements at both ends of the transmission line
! The conductor based node numbers are known and the mode based node numbers are created
! Allocate the node number lists for both ends of the transmission line within this domain
ALLOCATE( domain_end1_nodes(1:n_conductors) )
ALLOCATE( domain_end2_nodes(1:n_conductors) )
! The domain based node list within a single domain comes from a subset of the
! domain based transmission lines for all domains together
do local_domain_conductor=1,n_conductors-1
global_domain_conductor=global_domain_conductor+1
domain_end1_nodes(local_domain_conductor)=all_domain_end1_nodes(global_domain_conductor)
domain_end2_nodes(local_domain_conductor)=all_domain_end2_nodes(global_domain_conductor)
end do
domain_end1_nodes(n_conductors)=vref_node
domain_end2_nodes(n_conductors)=vref_node
! Allocate the modal node number lists for both ends of the transmission line for this domain
ALLOCATE( modal_end1_nodes(1:n_conductors) )
ALLOCATE( modal_end2_nodes(1:n_conductors) )
end=1
CALL write_spice_modal_decomposition_equivalent_circuit(vref_node,next_free_node,domain,end,n_conductors,dim, &
domain_end1_nodes,real_TV,real_TII,modal_end1_nodes)
end=2
CALL write_spice_modal_decomposition_equivalent_circuit(vref_node,next_free_node,domain,end,n_conductors,dim, &
domain_end2_nodes,real_TV,real_TII,modal_end2_nodes)
! allocate the method of characteristics reference node lists
ALLOCATE( domain_MOC_V_plus_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_V_minus_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_reference_end1_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_reference_end2_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_ZT_reference_end1_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_ZT_reference_end2_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_ZT_internal_end1_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_ZT_internal_end2_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_EINC_ZT_reference_end1_nodes(domain)%node(1:n_modes) )
ALLOCATE( domain_MOC_EINC_ZT_reference_end2_nodes(domain)%node(1:n_modes) )
! Allow for the presence of additional voltage sources related to incident field coupling
! and transfer impedance coupling sources as seen in Theory_Manual_Figure 3.2
! Set nodes to the overall reference node initially i.e. assume no transfer impedance or incident field models
domain_MOC_reference_end1_nodes(domain)%node(1:n_modes)=vref_node
domain_MOC_reference_end2_nodes(domain)%node(1:n_modes)=vref_node
domain_MOC_ZT_reference_end1_nodes(domain)%node(1:n_modes)=vref_node
domain_MOC_ZT_reference_end2_nodes(domain)%node(1:n_modes)=vref_node
domain_MOC_EINC_ZT_reference_end1_nodes(domain)%node(1:n_modes)=vref_node
domain_MOC_EINC_ZT_reference_end2_nodes(domain)%node(1:n_modes)=vref_node
! The order of sources is: MOC sources, ZT sources, Einc_ZT sources, Einc sources
! create nodes for the incident field excitation coupled via transfer impedance equivalent voltage sources
! in the method of characteristics sub-circuit for the external domain if required
! create nodes for the incident field excitation equivalent voltage sources in the method of characteristics
! sub-circuit for the external domain if required
if (domain_is_Einc_victim(domain)) then
do mode=1,n_modes
domain_MOC_EINC_ZT_reference_end1_nodes(domain)%node(mode)=next_free_node ! set to the next free node but don't increase next_free_node
domain_MOC_ZT_reference_end1_nodes(domain)%node(mode)=next_free_node ! set to the next free node but don't increase next_free_node
CALL create_new_node(domain_MOC_reference_end1_nodes(domain)%node(mode),next_free_node)
domain_MOC_EINC_ZT_reference_end2_nodes(domain)%node(mode)=next_free_node ! set to the next free node but don't increase next_free_node
domain_MOC_ZT_reference_end2_nodes(domain)%node(mode)=next_free_node ! set to the next free node but don't increase next_free_node
CALL create_new_node(domain_MOC_reference_end2_nodes(domain)%node(mode),next_free_node)
end do
end if ! this is the external domain and there is an incident field excitation
! create nodes for the incident field excitation coupling via ZT equivalent voltage sources
! in the method of characteristics sub-circuit for the external domain if required
if (domain_is_Einc_ZT_victim(domain)) then
do mode=1,n_modes
domain_MOC_ZT_reference_end1_nodes(domain)%node(mode)=next_free_node ! set to the next free node but don't increase next_free_node
CALL create_new_node(domain_MOC_reference_end1_nodes(domain)%node(mode),next_free_node)
domain_MOC_ZT_reference_end2_nodes(domain)%node(mode)=next_free_node ! set to the next free node but don't increase next_free_node
CALL create_new_node(domain_MOC_reference_end2_nodes(domain)%node(mode),next_free_node)
end do
end if ! this domain is the victim of the incident field excitation via transfer impedance coupling (Xie's model)
! create nodes for the transfer impedance equivalent voltage sources in the method of characteristics
! sub-circuit for the victim domain if required
if ( domain_is_ZT_victim(domain) ) then
do mode=1,n_modes
CALL create_new_node(domain_MOC_reference_end1_nodes(domain)%node(mode),next_free_node)
CALL create_new_node(domain_MOC_reference_end2_nodes(domain)%node(mode),next_free_node)
end do
end if ! this is a victim domain for a transfer impedance model
! loop over the modes in this domain and write the spice circuit elements for
! the modal propagation. See Theory_Manual_Section 3.5
do mode=1,n_modes
CALL write_spice_method_of_characteristics_equivalent_circuit(modal_end1_nodes(mode),modal_end2_nodes(mode),vref_node, &
domain_MOC_reference_end1_nodes(domain)%node(mode), &
domain_MOC_reference_end2_nodes(domain)%node(mode), &
domain_MOC_V_plus_nodes(domain)%node(mode), &
domain_MOC_V_minus_nodes(domain)%node(mode), &
next_free_node,domain,mode, &
domain_mode_decomp(domain)%impedance(mode), &
domain_mode_decomp(domain)%delay(mode), &
domain_HP_list(domain)%Hp(mode),spice_bundle_model%length)
end do ! next mode in this domain
! deallocate modal decomposition stuff for this domain
DEALLOCATE( real_TII )
DEALLOCATE( real_TV )
DEALLOCATE( real_TI )
DEALLOCATE( real_TVI )
DEALLOCATE( mode_velocity )
DEALLOCATE( mode_impedance )
do conductor=1,spice_bundle_model%bundle%n_conductors(domain)+1
CALL deallocate_conductor_impedance_model(conductor_impedance_domain(conductor))
end do
DEALLOCATE( conductor_impedance_domain )
DEALLOCATE( modal_end1_nodes )
DEALLOCATE( modal_end2_nodes )
DEALLOCATE( domain_end1_nodes )
DEALLOCATE( domain_end2_nodes )
end do ! next domain
! STAGE 9: Transfer impedance coupling model
! See Theory_Manual_Section 3.7
count_ZT_victim_in_domain(1:n_domains)=0
do ZT_model=1,spice_bundle_model%n_transfer_impedances
source_domain=ZT_source_domain(ZT_model)
victim_domain=ZT_victim_domain(ZT_model)
source_domain=ZT_source_domain(ZT_model)
n_source_domain_modes=spice_bundle_model%bundle%n_conductors(source_domain)-1
victim_domain=ZT_victim_domain(ZT_model)
n_victim_domain_modes=spice_bundle_model%bundle%n_conductors(victim_domain)-1
if (verbose) then
write(*,*)'Source domain:',source_domain
write(*,*)'Number of source domain modes:',n_source_domain_modes
write(*,*)' Mode delay(s) Mode Impedance (ohms)'
do mode=1,n_source_domain_modes
write(*,*)domain_mode_decomp(source_domain)%delay(mode),domain_mode_decomp(source_domain)%impedance(mode)
end do
write(*,*)'Source domain:',Victim_domain
write(*,*)'Number of victim domain modes:',n_victim_domain_modes
write(*,*)' Mode delay(s) Mode Impedance (ohms)'
do mode=1,n_victim_domain_modes
write(*,*)domain_mode_decomp(victim_domain)%delay(mode),domain_mode_decomp(victim_domain)%impedance(mode)
end do
end if
! get the information required to generate the transfer impedance model
shield_conductor=spice_bundle_model%Zt_conductor(ZT_model) ! this is the conductor number for the shield whose transfer impedance is being included
! get the local conductor number (i.e. within the domain) in the source and victim domains
terminal_shield_conductor=spice_bundle_model%Zt_conductor(ZT_model)
domain_shield_conductor=spice_bundle_model%bundle%terminal_conductor_to_local_domain_conductor(terminal_shield_conductor)
if (spice_bundle_model%Zt_direction(ZT_model).EQ.1) then
! coupling from inside the shield to outside
source_domain_shield_conductor=spice_bundle_model%bundle%n_conductors(source_domain)
victim_domain_shield_conductor=domain_shield_conductor
else
! coupling from inside the shield to outside
source_domain_shield_conductor=domain_shield_conductor
victim_domain_shield_conductor=spice_bundle_model%bundle%n_conductors(victim_domain)
end if
! If this is not the final transfer impedance model for this victim domain then we
! must create a new node for the refrence voltage
count_ZT_victim_in_domain(victim_domain)=count_ZT_victim_in_domain(victim_domain)+1
ALLOCATE( ZT_node1_end1%node(1:n_victim_domain_modes) )
ALLOCATE( ZT_node1_end2%node(1:n_victim_domain_modes) )
ALLOCATE( ZT_node2_end1%node(1:n_victim_domain_modes) )
ALLOCATE( ZT_node2_end2%node(1:n_victim_domain_modes) )
if (count_ZT_victim_in_domain(victim_domain).EQ.1) then
! we use the already created reference node for MOC sources
ZT_node1_end1%node(1:n_victim_domain_modes)=domain_MOC_reference_end1_nodes(victim_domain)%node(1:n_victim_domain_modes)
ZT_node1_end2%node(1:n_victim_domain_modes)=domain_MOC_reference_end2_nodes(victim_domain)%node(1:n_victim_domain_modes)
else
! we use the previously created internal node
ZT_node1_end1%node(1:n_victim_domain_modes)=domain_ZT_internal_end1_nodes(victim_domain)%node(1:n_victim_domain_modes)
ZT_node1_end2%node(1:n_victim_domain_modes)=domain_ZT_internal_end2_nodes(victim_domain)%node(1:n_victim_domain_modes)
end if
if (count_ZT_victim_in_domain(victim_domain).NE.n_ZT_victim_in_domain(victim_domain)) then
! we create a new internal node
do mode=1,n_victim_domain_modes
CALL create_new_node(ZT_node2_end1%node(mode),next_free_node)
CALL create_new_node(ZT_node2_end2%node(mode),next_free_node)
end do
! save the internal nodes
domain_ZT_internal_end1_nodes(victim_domain)%node(1:n_victim_domain_modes)=ZT_node2_end1%node(1:n_victim_domain_modes)
domain_ZT_internal_end2_nodes(victim_domain)%node(1:n_victim_domain_modes)=ZT_node2_end2%node(1:n_victim_domain_modes)
else
! we use the already created reference node for transfer impedance sources
ZT_node2_end1%node(1:n_victim_domain_modes)=domain_MOC_ZT_reference_end1_nodes(victim_domain)%node(1:n_victim_domain_modes)
ZT_node2_end2%node(1:n_victim_domain_modes)=domain_MOC_ZT_reference_end2_nodes(victim_domain)%node(1:n_victim_domain_modes)
end if
CALL write_transfer_impedance_circuit(n_source_domain_modes,n_victim_domain_modes, &
ZT_node1_end1%node,ZT_node1_end2%node, &
ZT_node2_end1%node,ZT_node2_end2%node, &
domain_MOC_V_minus_nodes(source_domain)%node, &
domain_MOC_V_plus_nodes(source_domain)%node, &
domain_mode_decomp(source_domain)%delay, &
domain_mode_decomp(source_domain)%impedance, &
domain_mode_decomp(victim_domain)%delay, &
source_domain_shield_conductor, &
victim_domain_shield_conductor, &
spice_bundle_model%length, &
domain_mode_decomp(source_domain)%TVI,domain_mode_decomp(source_domain)%TI, &
domain_mode_decomp(victim_domain)%TVI,domain_mode_decomp(victim_domain)%TI, &
domain_HP_list(victim_domain)%Hp, &
spice_bundle_model%bundle%conductor_impedance(shield_conductor)%ZT_filter, &
next_free_node,vref_node,ZT_model,source_domain,victim_domain )
DEALLOCATE( ZT_node1_end1%node )
DEALLOCATE( ZT_node1_end2%node )
DEALLOCATE( ZT_node2_end1%node )
DEALLOCATE( ZT_node2_end2%node )
end do ! next transfer impedance model
! STAGE 10: generate the information required for and then write the incident field excitation model as required
! See Theory_Manual_Sections 3.8, 3.9
if (spice_bundle_model%include_incident_field) then
domain=n_domains
n_einc_domain_modes=spice_bundle_model%bundle%n_conductors(domain)-1
write(*,*)'n_einc_domain_modes=',n_einc_domain_modes
write(*,*)'Domain',domain
! calculate the coefficients required for the incident field excitation model (Paul, 1st edition equations 7.241a,b)
! assemble the data required for the incident field calculation.
! get the central coordinates of all the conductors in the external domain.
ALLOCATE( xcoord(1:n_einc_domain_modes+1) )
ALLOCATE( ycoord(1:n_einc_domain_modes+1) )
write(*,*)'Incident field excitation, number of modes in external domain=',n_einc_domain_modes
! get the coordinates of the conductors in the external domain
conductor=0
do i=1,tot_n_conductors
write(*,*)i,'outer_domain',spice_bundle_model%bundle%terminal_conductor_to_outer_domain(i),&
'inner_domain',spice_bundle_model%bundle%terminal_conductor_to_inner_domain(i)
if (spice_bundle_model%bundle%terminal_conductor_to_outer_domain(i).EQ.domain) then
! this conductor is in the outer domain so must be included
conductor=conductor+1
xcoord(conductor)=spice_bundle_model%bundle%conductor_x_offset(i)
ycoord(conductor)=spice_bundle_model%bundle%conductor_y_offset(i)
end if
end do ! next conductor
ALLOCATE( alpha0(1:n_einc_domain_modes) )
ALLOCATE( alphaL(1:n_einc_domain_modes) )
ALLOCATE( c1(1:n_einc_domain_modes) )
ALLOCATE( c2(1:n_einc_domain_modes) )
ALLOCATE( c1b(1:n_einc_domain_modes) )
! See Theory_Manual_Section 3.8
CALL calculate_incident_field_sources(xcoord,ycoord,spice_bundle_model%Eamplitude, &
spice_bundle_model%Ex,spice_bundle_model%Ey,spice_bundle_model%Ez, &
spice_bundle_model%Hx,spice_bundle_model%Hy,spice_bundle_model%Hz, &
spice_bundle_model%kx,spice_bundle_model%ky,spice_bundle_model%kz, &
spice_bundle_model%bundle%ground_plane_present, &
spice_bundle_model%bundle%ground_plane_x, &
spice_bundle_model%bundle%ground_plane_y, &
spice_bundle_model%bundle%ground_plane_theta, &
spice_bundle_model%length,n_einc_domain_modes, &
domain_mode_decomp(domain)%TI,domain_mode_decomp(domain)%delay,Tz,alpha0,alphaL)
CALL write_incident_field_circuit(n_einc_domain_modes, &
domain_MOC_EINC_ZT_reference_end1_nodes(domain)%node, &
domain_MOC_EINC_ZT_reference_end2_nodes(domain)%node, &
domain_mode_decomp(domain)%delay, &
spice_bundle_model%length, &
domain_mode_decomp(domain)%TVI,domain_mode_decomp(domain)%TI, &
domain_HP_list(domain)%Hp, &
Tz,alpha0,alphaL, &
next_free_node,Einc_node1,Einc_node2,vref_node,domain )
! look for any victim domains for incident field coupling via transfer impedance
! See Theory_Manual_Section 3.9
do ZT_model=1,spice_bundle_model%n_transfer_impedances
source_domain=ZT_source_domain(ZT_model)
victim_domain=ZT_victim_domain(ZT_model)
! get the information required to generate the transfer impedance model
! Check whether the source domain for this transfer impedance model is the external domain
if ( (source_domain.EQ.n_domains) &
.AND.(domain_is_Einc_ZT_victim(victim_domain)) ) then
! we must include additional terms within shielded cables for this victim domain
shield_conductor=spice_bundle_model%Zt_conductor(ZT_model) ! this is the conductor number for the shield whose transfer impedance is being included
source_domain_shield_conductor=spice_bundle_model%bundle%terminal_conductor_to_local_domain_conductor(shield_conductor)
n_source_domain_modes=spice_bundle_model%bundle%n_conductors(source_domain)-1
n_victim_domain_modes=spice_bundle_model%bundle%n_conductors(victim_domain)-1
victim_domain_shield_conductor=spice_bundle_model%bundle%n_conductors(victim_domain) ! always the reference conductor
if (verbose) then
write(*,*)'******Calculate ZT_incident field sources******'
write(*,*)'Terminal conductor number of shield=',shield_conductor
write(*,*)'Source domain=',source_domain
write(*,*)'n_conductors in source domain',spice_bundle_model%bundle%n_conductors(domain)
write(*,*)'n_source domain modes=',n_source_domain_modes
write(*,*)'Source domain shield conductor=',domain_shield_conductor
write(*,*)'n_einc_domain_modes (source domain modes)=',n_einc_domain_modes
write(*,*)'Victim domain=',victim_domain
write(*,*)'n_victim domain modes=',n_victim_domain_modes
write(*,*)'Victim domain shield conductor=',victim_domain_shield_conductor
end if
! See Theory_Manual_Section 3.9
CALL calculate_ZT_incident_field_sources(xcoord,ycoord,spice_bundle_model%Eamplitude, &
spice_bundle_model%Ex,spice_bundle_model%Ey,spice_bundle_model%Ez, &
spice_bundle_model%Hx,spice_bundle_model%Hy,spice_bundle_model%Hz, &
spice_bundle_model%kx,spice_bundle_model%ky,spice_bundle_model%kz, &
spice_bundle_model%bundle%ground_plane_present, &
spice_bundle_model%bundle%ground_plane_x, &
spice_bundle_model%bundle%ground_plane_y, &
spice_bundle_model%bundle%ground_plane_theta, &
spice_bundle_model%length,n_einc_domain_modes, &
domain_shield_conductor, &
domain_mode_decomp(domain)%TI,domain_mode_decomp(domain)%delay,Tz,C1,C2,C1b)
CALL write_ZT_incident_field_circuit(ZT_model,source_domain,victim_domain,n_source_domain_modes,n_victim_domain_modes, &
domain_MOC_ZT_reference_end1_nodes(victim_domain)%node, &
domain_MOC_ZT_reference_end2_nodes(victim_domain)%node, &
domain_MOC_EINC_ZT_reference_end1_nodes(victim_domain)%node, &
domain_MOC_EINC_ZT_reference_end2_nodes(victim_domain)%node, &
Einc_node1,Einc_node2, &
domain_MOC_V_minus_nodes(source_domain)%node, &
domain_MOC_V_plus_nodes(source_domain)%node, &
domain_mode_decomp(source_domain)%TVI,domain_mode_decomp(source_domain)%TI, &
domain_mode_decomp(source_domain)%delay, &
domain_mode_decomp(source_domain)%impedance, &
domain_mode_decomp(victim_domain)%TVI,domain_mode_decomp(victim_domain)%TI, &
source_domain_shield_conductor, &
victim_domain_shield_conductor, &
domain_mode_decomp(victim_domain)%delay, &
domain_mode_decomp(victim_domain)%impedance, &
spice_bundle_model%bundle%conductor_impedance(shield_conductor)%ZT_filter, &
domain_HP_list(victim_domain)%Hp, &
Tz, &
C1,C2,C1b, &
spice_bundle_model%length, &
next_free_node,vref_node )
end if ! is this a victim domain for incident field coupling via transfer impedance
end do ! next transfer impedance model to check
DEALLOCATE( xcoord )
DEALLOCATE( ycoord )
DEALLOCATE( alpha0 )
DEALLOCATE( alphaL )
DEALLOCATE( c1 )
DEALLOCATE( c2 )
DEALLOCATE( c1b )
end if ! incident field excitation model is to be included
! End subcircuit definition
write(spice_model_file_unit,'(A)')'*'
write(spice_model_file_unit,'(A)')'.ends'
write(spice_model_file_unit,'(A)')'*'
! STAGE 11: Dallocate the domain based information
do domain=1,n_domains
DEALLOCATE( domain_mode_decomp(domain)%TVI )
DEALLOCATE( domain_mode_decomp(domain)%TI )
DEALLOCATE( domain_mode_decomp(domain)%delay )
DEALLOCATE( domain_mode_decomp(domain)%impedance )
end do
DEALLOCATE( domain_mode_decomp )
DEALLOCATE( ZT_source_domain )
DEALLOCATE( ZT_victim_domain )
DEALLOCATE( domain_is_ZT_victim )
DEALLOCATE( domain_is_Einc_victim )
DEALLOCATE( domain_is_Einc_ZT_victim )
DEALLOCATE( n_ZT_victim_in_domain )
DEALLOCATE( count_ZT_victim_in_domain )
do domain=1,n_domains
DEALLOCATE( domain_MOC_V_plus_nodes(domain)%node )
DEALLOCATE( domain_MOC_V_minus_nodes(domain)%node )
DEALLOCATE( domain_MOC_reference_end1_nodes(domain)%node )
DEALLOCATE( domain_MOC_reference_end2_nodes(domain)%node )
DEALLOCATE( domain_MOC_ZT_reference_end1_nodes(domain)%node )
DEALLOCATE( domain_MOC_ZT_reference_end2_nodes(domain)%node )
if ( ALLOCATED(domain_ZT_internal_end1_nodes(domain)%node) ) DEALLOCATE( domain_ZT_internal_end1_nodes(domain)%node )
if ( ALLOCATED(domain_ZT_internal_end2_nodes(domain)%node) ) DEALLOCATE( domain_ZT_internal_end2_nodes(domain)%node )
DEALLOCATE( domain_MOC_EINC_ZT_reference_end1_nodes(domain)%node )
DEALLOCATE( domain_MOC_EINC_ZT_reference_end2_nodes(domain)%node )
do mode=1,domain_HP_list(domain)%n_modes
CALL deallocate_Sfilter(domain_HP_list(domain)%Hp(mode))
end do
DEALLOCATE( domain_HP_list(domain)%Hp )
end do
DEALLOCATE( domain_MOC_V_plus_nodes )
DEALLOCATE( domain_MOC_V_minus_nodes )
DEALLOCATE( domain_MOC_reference_end1_nodes )
DEALLOCATE( domain_MOC_reference_end2_nodes )
DEALLOCATE( domain_MOC_ZT_reference_end1_nodes )
DEALLOCATE( domain_MOC_ZT_reference_end2_nodes )
DEALLOCATE( domain_ZT_internal_end1_nodes )
DEALLOCATE( domain_ZT_internal_end2_nodes )
DEALLOCATE( domain_MOC_EINC_ZT_reference_end1_nodes )
DEALLOCATE( domain_MOC_EINC_ZT_reference_end2_nodes )
DEALLOCATE( domain_HP_list )
! Deallocate the external node number lists for both ends of the transmission line
DEALLOCATE( external_end1_nodes )
DEALLOCATE( external_end2_nodes )
DEALLOCATE( rdc_end1_nodes )
DEALLOCATE( rdc_end2_nodes )
DEALLOCATE( all_domain_end1_nodes )
DEALLOCATE( all_domain_end2_nodes )
DEALLOCATE( Rdc )
CLOSE(unit=spice_model_file_unit)
write(*,*)'Closed file:',trim(filename)
RETURN
END SUBROUTINE create_spice_subcircuit_model