CG_solve.F90
7.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! SUBROUTINE solve_real_symm(n, b, x,tol,itmax)
! SUBROUTINE dot ( n, x, y ,res)
! SUBROUTINE solve_complex_symm(n, b, x,tol,itmax)
! SUBROUTINE zdot ( n, x, y ,res)
!
! NAME
! solve_real_symm
!
! DESCRIPTION
!
! Solve the system Ax=b using a conjugate gradient method.
! The iterative solution halts when the norm of the residual is less than tol
!
! HISTORY
!
! started 19/6/2018 CJS
!
! COMMENTS
!
SUBROUTINE solve_real_symm(n, b, x,tol,itmax)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
integer,intent(IN) :: n
real(dp),intent(IN) :: b(n)
real(dp),intent(INOUT) :: x(n) ! x contains the initial guess for x
real(dp),intent(IN) :: tol
integer,intent(IN) :: itmax
! local variables
real(dp) :: ak
real(dp) :: rk(n),rkb(n)
real(dp) :: pk(n),pkb(n)
real(dp) :: bk
real(dp) :: t1(n),t2(n)
real(dp) :: res(n),res_norm
real(dp) :: num,den
integer :: i,ii,itloop
logical :: minres
! START
write(*,*)'CALLED solve_real_symm with n=',n
! choice between normal conjugate gradient and minimum residual forms.
minres=.TRUE.
! set starting values
! calculate the residual res=b-A.xk
CALL Aprod( n, x, t1 )
res(:)=b(:)-t1(:)
! calculate the size of the residual
res_norm=0d0
do i=1,n
res_norm=res_norm+res(i)*res(i)
end do
res_norm=sqrt(res_norm)
write(*,*)'iteration ',0,' norm=',res_norm
! initial r1=b-A.x
CALL Aprod( n, x, t1 )
rk(:)=b(:)-t1(:)
if (minres) then
! For the minimum residual algorithm r1b=A.r1
CALL Aprod( n, rk, rkb )
else
! For the normal algorithm r1b=r1
rkb(:)=rk(:)
end if
! p1=r1
pk=rk
! p1b=r1b
pkb=rkb
! iteration loop
do itloop=1,itmax
! calculate ak=(rkb.rk)/(pkb.A.pk)
CALL dot(n,rkb,rk,num)
CALL Aprod( n, pk, t1 )
CALL dot(n,pkb,t1,den)
ak=num/den
! calculate the next value of the solution vector, xk+1=xk+ak*pk
x(:)=x(:)+ak*pk(:)
! calculate the residual res=b-A.xk
CALL Aprod( n, x, t2 )
res(:)=b(:)-t2(:)
! calculate the size of the residual
res_norm=0d0
do i=1,n
res_norm=res_norm+res(i)*res(i)
end do
res_norm=sqrt(res_norm)
if (res_norm.LT.tol) then
write(*,*)'iteration ',itloop,' norm=',res_norm,' ak=',ak
RETURN
end if
! calculate rk+1=rk-ak*A.pk
rk(:) =rk(:) -ak*t1(:)
! calculate rk+1b=rkb-ak*AT.pkb, note for the symmetric matrices here AT=A
CALL ATprod( n, pkb, t2 )
rkb(:)=rkb(:)-ak*t2(:)
! calculate bk=(rk+1b.rk+1)/(rkb.rk)
den=num
CALL dot(n,rkb,rk,num)
bk=num/den
write(*,*)'iteration ',itloop,' norm=',res_norm,' ak=',ak,' bk=',bk
! calculate pk+1=rk+1-bk*pk
pk(:)=rk(:)+bk*pk(:)
! calculate pk+1b=rk+1b-bk*pkb
pkb(:)=rkb(:)+bk*pkb(:)
end do ! next iteration
! We only get here if the iterative solution has not converged after itmax iterations
run_status='ERROR in solve_real_symm: maximum number of iterations exceeded'
CALL write_program_status()
STOP 1
RETURN
END SUBROUTINE solve_real_symm
!
! _________________________________________________________________________
!
!
SUBROUTINE dot ( n, x, y ,res)
! form the dot product of x and y
USE type_specifications
IMPLICIT NONE
integer n
real(dp) :: x(n), y(n), res
integer :: i
! START
res=0d0
do i=1,n
res=res+x(i)*y(i)
end do
RETURN
END SUBROUTINE dot
!
! NAME
! solve_complex_symm
!
! DESCRIPTION
!
! Solve the system Ax=b using a conjugate gradient method.
! The iterative solution halts when the norm of the residual is less than tol
!
! HISTORY
!
! started 19/6/2018 CJS
!
! COMMENTS
!
SUBROUTINE solve_complex_symm(n, b, x,tol,itmax)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
integer,intent(IN) :: n
complex(dp),intent(IN) :: b(n)
complex(dp),intent(INOUT) :: x(n) ! x contains the initial guess for x
real(dp),intent(IN) :: tol
integer,intent(IN) :: itmax
! local variables
complex(dp) :: ak
complex(dp) :: rk(n),rkb(n)
complex(dp) :: pk(n),pkb(n)
complex(dp) :: bk
complex(dp) :: t1(n),t2(n)
complex(dp) :: res(n)
real(dp) :: res_norm
complex(dp) :: num,den
integer :: i,ii,itloop
logical :: minres
! START
write(*,*)'CALLED solve_real_symm with n=',n
! choice between normal conjugate gradient and minimum residual forms.
minres=.TRUE.
! set starting values
! calculate the residual res=b-A.xk
CALL zAprod( n, x, t1 )
res(:)=b(:)-t1(:)
! calculate the size of the residual
res_norm=0d0
do i=1,n
res_norm=res_norm+res(i)*res(i)
end do
res_norm=sqrt(res_norm)
write(*,*)'iteration ',0,' norm=',res_norm
! initial r1=b-A.x
CALL zAprod( n, x, t1 )
rk(:)=b(:)-t1(:)
if (minres) then
! For the minimum residual algorithm r1b=A.r1
CALL zAprod( n, rk, rkb )
else
! For the normal algorithm r1b=r1
rkb(:)=rk(:)
end if
! p1=r1
pk=rk
! p1b=r1b
pkb=rkb
! iteration loop
do itloop=1,itmax
! calculate ak=(rkb.rk)/(pkb.A.pk)
CALL zdot(n,rkb,rk,num)
CALL zAprod( n, pk, t1 )
CALL zdot(n,pkb,t1,den)
ak=num/den
! calculate the next value of the solution vector, xk+1=xk+ak*pk
x(:)=x(:)+ak*pk(:)
! calculate the residual res=b-A.xk
CALL zAprod( n, x, t2 )
res(:)=b(:)-t2(:)
! calculate the size of the residual
res_norm=0d0
do i=1,n
res_norm=res_norm+abs(res(i))**2
end do
res_norm=sqrt(res_norm)
if (res_norm.LT.tol) then
write(*,*)'iteration ',itloop,' norm=',res_norm,' ak=',ak
RETURN
end if
! calculate rk+1=rk-ak*A.pk
rk(:) =rk(:) -ak*t1(:)
! calculate rk+1b=rkb-ak*AT.pkb, note for the symmetric matrices here AT=A
CALL zATprod( n, pkb, t2 )
rkb(:)=rkb(:)-ak*t2(:)
! calculate bk=(rk+1b.rk+1)/(rkb.rk)
den=num
CALL zdot(n,rkb,rk,num)
bk=num/den
write(*,*)'iteration ',itloop,' norm=',res_norm,' ak=',ak,' bk=',bk
! calculate pk+1=rk+1-bk*pk
pk(:)=rk(:)+bk*pk(:)
! calculate pk+1b=rk+1b-bk*pkb
pkb(:)=rkb(:)+bk*pkb(:)
end do ! next iteration
! We only get here if the iterative solution has not converged after itmax iterations
run_status='ERROR in solve_complex_symm: maximum number of iterations exceeded'
CALL write_program_status()
STOP 1
RETURN
END SUBROUTINE solve_complex_symm
!
! _________________________________________________________________________
!
!
SUBROUTINE zdot ( n, x, y ,res)
! form the dot product of x and y
USE type_specifications
IMPLICIT NONE
integer n
complex(dp) :: x(n), y(n), res
integer :: i
! START
res=0d0
do i=1,n
res=res+x(i)*y(i) ! note no complex conjugate in the inner product here. This gives the biconjugate gradient method.
end do
RETURN
END SUBROUTINE zdot