Blame view

Wigner Function/FP_approximation_Propagate_to_10cm.m 7.24 KB
95343a46   Steve Greedy   Update repository
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
%% Wigner Function Transformation
clc
clear

ds = 0.005; %sampling rate at every 5mm
fs = 1/ds; % sampling frequency
L=60;  %sets the number of sample points 
D=0.295;    %sets the physical distance range

c=3e8;
f=3e9; %freq
lambda=c/f;
k=2*pi/lambda;

load('Hy_R1(x1,y1,x2,y2)_36pos_1cm.mat'); % load source CF=R(x1,y1,x2,y2)
CF = permute(Hy_R1,[1,3,2,4]); % CF(x1,x2,y1,y2)

clear Hy_R1
%% 1. Variable change Part 1
for k=1:L 
    for n=1:L
        
        R = CF(:,:,k,n); %R(x1,x2)
        
% variable rotation for each inner matrix

        % variable change on the correlation matrix R(X2,X1) -> R(x,sx)

        for X1 = [1:L]; % nx matrix
            for X2 = [1:L]; % ny matrix
            x = (X1+X2)/2;  % change of variable X1/X2 to x
            sx = (X1-X2);    % change 
            Q(sx+L,2*x-1)=(R(X1,X2)); %Q(sx,x) value
    
            end
        end

        % averaging in between the values already calculated after variable change
        for h = 2:2:2*L-2
            Q(h,L) = (Q(h-1,L)+Q(h,L-1)+Q(h,L+1)+Q(h+1,L))/4; 
        end

        for t=1:L-1
            for m = 1:L-1
    
            Q(m+t,L-m+t) = (Q(m+t-1,L-m+t)+Q(m+t,L-m+t-1)+Q(m+t,L-m+t+1)+Q(m+t+1,L-m+t))/4; 
        
            end
        end
      
% after averaging, arrange the rotated inner matrix into AA(sx,x,x2,y2)

        AA(:,:,k,n) = Q; % AA(sx,x,y2,y1)
        
    end
   
end

clear CF
clear R
clear Q
%% 2. Variable change Part 2

R = AA; % AA(sx,x,y1,y2)

% variable change on the outer correlation matrix R(X1,X2) -> R(x,s)

for y1 = [1:L]; % nx matrix    
    for y2 = [1:L]; % ny matrix
    y = (y1+y2)/2;  % change of variable to y
    sy = (y1-y2);    % change sy=y1-y2 
    q(:,:,sy+L,2*y-1)=(R(:,:,y1,y2)); %D(s,x) value
    end
end


% averaging in between the real value after variable change
for h = 2:2:2*L-2
    q(:,:,h,L) = (q(:,:,h-1,L)+q(:,:,h,L-1)+q(:,:,h,L+1)+q(:,:,h+1,L))/4; 
end

for t=1:L-1
    for m = 1:L-1
    q(:,:,m+t,L-m+t) = (q(:,:,m+t-1,L-m+t)+q(:,:,m+t,L-m+t-1)+q(:,:,m+t,L-m+t+1)+q(:,:,m+t+1,L-m+t))/4; 
    end
end

clear R
clear AA
%% 3. rearrange Q(sx,x,sy,y) -> Q(sy,sx,y,x) and do FFT2 on sx and sy 

CFr=permute(q,[3,1,4,2]); %rearrange Q to be CFr(sy,sx,y,x)

clear q
%%
pmax=lambda/2*fs;
range = 1.5; % new range -1.5<P<1.5 
NFFT=round((2*L-1)*(lambda*fs)/(range*2)); % Defines zero padding value

for y=1:(2*L-1)
    y
    for x=1:(2*L-1)
       
       s=CFr(:,:,y,x);
       S=padarray(s,[(NFFT-(2*L-1))/2 (NFFT-(2*L-1))/2]);
 
       % for range -1.5 to 1.5 with zero padding
       S1=fftshift(fft2((ifftshift(S)))); 
       WF(:,:,y,x)= S1(ceil(-L+(NFFT/2)+1):ceil((L+(NFFT/2)-1)),ceil(-L+(NFFT/2)+1):ceil((L+(NFFT/2)-1))); %WF(py,px,y,x) 
       
    end;
end;

clear CFr
%% 4. Plot WF(py,px,y,x)

figure
x=linspace(-D/2,D/2,2*L-1); % range of x
p=linspace(1.5,-1.5, 2*L-1);
size = 14;

imagesc(x,p,abs(squeeze(WF(60,:,60,:)))); % WF(py,px,y,x)
set(gca,'YDir','normal')
colormap('jet'); % set the colorscheme
colorbar
title('$$WF\,at \,1cm$$','Interpreter','latex', 'FontSize', size)
xlabel('$$x_1 [m]$$','Interpreter','latex', 'FontSize', size);
ylabel('$$Momentum \,[P_x]$$','Interpreter','latex', 'FontSize', size);
set(gca,'fontsize', size)

%% 5. Frobenius Perron Approximation - Wigner Transformed Function (x-domain)

clearvars -except WF
clc

L=60;  %sets the number of sample points 
D=0.295;    %sets the physical distance range
c=3e8;
f=3e9;
lambda=c/f; 
k=2*pi/lambda;

ds = 0.005; %sampling rate
fs = 1/ds; % sampling frequency
pmax=lambda/2*fs;
NFFT=2*L-1;
z=0.09; % propagaion distance

n = 2*L-1; % Resolution
[x1,y1] = meshgrid(linspace(-D/2,D/2,n),linspace(-D/2,D/2,n));

Px = linspace(-1.5,1.5,NFFT);
Py = linspace(-1.5,1.5,NFFT);

for ipy=1:NFFT
    for ipx=1:NFFT
    mag_p(ipy,ipx) = sqrt(Px(ipx)^2+Py(ipy)^2); %mag_p(py,px)
    end
end

Wq1 = zeros(2*L-1,n); % Preallocate Wq

%% 6. FP on WF(py,px,y,x)

for py=1:NFFT; %py
    py
    for px=1:NFFT; %px
    
    Wx = squeeze(WF(py,px,:,:)); % Wx(y,x) from WF3/WF(py,px,y,x)
    
% Transform domain
% Interpolate W with new xq and yq axes

                if abs(mag_p(py,px)) <= 1 % FP propagation
                    xq = x1 - z.*(Px(px)./sqrt(1-abs(mag_p(py,px)).^2));
                    yq = y1 - z.*(Py(py)./sqrt(1-abs(mag_p(py,px)).^2));
                    
                    %Wq1 = interp2(xq,yq,Wx,x1,y1,'cubic',0); %1-D data interpolation 
                    Wq1 = interp2(xq,yq,Wx,x1,y1,'cubic',0); %1-D data interpolation 
                else % Evanescent propagation
                    Wq1 = exp(-2*k*z*sqrt(mag_p(py,px).^2-1))*interp2(x1,y1,Wx,x1,y1,'cubic',0);
                end
        WF2(py,px,:,:) = Wq1; %WF3(py,px,yq,xq)
    end
end

%% 7. Plot WF3(py,px,yq,xq)

figure
px=linspace(1.5,-1.5,NFFT);
imagesc(x1(1,:),px,abs(squeeze(WF2(60,:,60,:)))); %WF4(py,px,yq,xq)
set(gca,'YDir','normal')
colormap('jet'); % set the colorscheme
title('1cm propagated to 15cm')
xlabel('Transformed Position (f(X,Z,P))');
ylabel('Momentum (P)')
colorbar

%% 8. inverse WF 

for y=1:(2*L-1)
    y
    for x=1:(2*L-1)
       
       g=fftshift(ifft2(ifftshift(squeeze(WF2(:,:,y,x)))));
       CFr2(:,:,y,x)= g; % CFr2(sy,sx,y,x)
    end;
                
end;

CFr3 = permute(CFr2,[2,4,1,3]); %CFr3(sx,x,sy,y)

figure
imagesc(abs(squeeze(CFr3(:,:,60,60)))); %CFr2 without zero padding - WF(sx,x,sy,x)
title('CF(sx,x,60,60) - 5cm')
set(gca,'YDir','normal')
colormap('jet'); % set the colorscheme
colorbar

%% 9. zoom in on the sx and sy
CFr4=CFr3(50:70,:,50:70,:);

[sx,sy] = meshgrid(linspace(-D,D,length(CFr4(:,1,1,1))));
[sx2,sy2] = meshgrid(linspace(-D,D,119));

for x=1:2*L-1; %py
    x
    for y=1:2*L-1; %px
   
    Wx = squeeze(CFr4(:,x,:,y)); % Wx(y,x)
    Wq1 = interp2(sx,sy,Wx,sx2,sy2,'cubic',0); %2-D data interpolation 
    
    CFr5(:,x,:,y) = Wq1;
    end
end

figure
imagesc(abs(squeeze(CFr5(:,:,60,60)))); %CFr2 without zero padding - WF(sx,x,sy,x)
title('CF(sx,x,60,60) - 1cm')
set(gca,'YDir','normal')
colormap('jet'); % set the colorscheme
colorbar

%% change of variable CFr2(:,:,sy,y) to CFr2(:,:,y1,y2)
for y1 = [1:L]; % nx matrix    
    for y2 = [1:L]; % ny matrix
    y = (y1+y2)/2;  % change of variable to y1 and y2
    sy = (y1-y2);    % change s=y1-y2 
    Cr(:,:,y1,y2)=CFr5(:,:,sy+L,2*y-1); %Cr(sx,x,y1,y2)
    end
end

%% change of variable F(sx,x) to F(x1,x2)

for k=1:L
    for n=1:L
        
        F = Cr(:,:,k,n);
        
 % variable rotation for each inner matrix

        % variable change on the correlation matrix R(X2,X1) -> R(x,s)

        for X1 = [1:L]; % nx matrix
            for X2 = [1:L]; % ny matrix
            x = (X1+X2)/2;  % change of variable x to X1/X2
            sx = (X1-X2);    % change 
            RR(X1,X2)=F(sx+L,2*x-1); %RR(X1,X2)
    
            end
        end
       CF2(:,:,k,n) = RR; % set CF2(x1,x2,y1,y2)
    end
   
end

%%
load('SF1.mat') % scaling factor

Hy_CF3 = CF2 .* SF1;
%Hy_CF3 = CF2 .* SF1.*(PF_ave(1601)^2);

x=linspace(-D/2,D/2,L); % range of x
y=linspace(-D/2,D/2,L); % range of y
size = 14;

figure
pcolor(x,y,squeeze(abs(Hy_CF3(30,:,30,:)))'); %Hy_CF3(x1,x2,y1,y2)
title('$$CF\,propagated\,to \,10\,cm$$','Interpreter','latex', 'FontSize', size)
set(gca,'YDir','normal')
colormap('jet');
colorbar
shading interp
%caxis([0 14e-4])
xlabel('$$x_1 [m]$$','Interpreter','latex', 'FontSize', size);
ylabel('$$y_1 [m]$$','Interpreter','latex', 'FontSize', size);
set(gca,'fontsize', size)