! ! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. ! It was developed by the University of Nottingham and the Netherlands Aerospace ! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK. ! ! Copyright (C) 2016-2018 University of Nottingham ! ! SACAMOS is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! SACAMOS is distributed in the hope that it will be useful, but ! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ! for more details. ! ! A copy of the GNU General Public License version 3 can be found in the ! file GNU_GPL_v3 in the root or at . ! ! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to ! the GNU Lesser General Public License. A copy of the GNU Lesser General Public ! License version can be found in the file GNU_LGPL in the root of EISPACK ! (/SRC/EISPACK ) or at . ! ! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk ! ! ! File Contents: ! SUBROUTINE frequency_domain_analysis_FH2 ! ! NAME ! frequency_domain_analysis_FH2 ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! This subroutine controls the analytic solution for the frequency domain analysis of ! multi-conductor transmission lines. ! The solution is obtained using the full dimension transmission line equations ! i.e. we are NOT using the weak form of transfer impedance coupling ! Note also that frequency dependent quantities are evaluated separately at ! each frequency of analysis, i.e. the frequency dependence of the solution is rigorous ! given only the frequency dependence of the dielectrics is modelled using impedance/ admittance ! matrices whose elements are rational frequency dependent filter functions. ! ! INPUTS: ! spice_bundle_model structure ! spice_validation_test structure ! ! OUTPUT ! analytic frequency domain termination voltage for the specified validation test case written to file ! ! COMMENTS ! STAGE_1: frequency independent parameter solution ! STAGE_2: multi-conductor solution ! STAGE_3: shielded cable solution ! STAGE_4: frequency dependent model ! STAGE_5: transfer impedance model ! ! HISTORY ! ! started 7/12/2015 CJS: STAGE_1 developments ! 24/03/2016 CJS: STAGE_3 developments -shielded cables ! 22/04/2016 CJS: STAGE_4 developments -frequency dependent model ! Include general conductor impedance model 12/05/2016 CJS ! Fix bug with conductor impedance contributions 12/05/2016 CJS ! 25/08/2016 CJS Include revised transfer impedance/ condcutor impedance model for shields ! 8/09/2016 CJS Correct the common mode/ differential mode loss terms for twisted pairs ! 13/10/2016 CJS Correct transfer impedance for multiple modes in external domain ! 7/3/2017 CJS: Add resistance and voltage source onto the reference coonductor ! 8/5/2017 CJS: Include references to Theory_Manual ! ! 26/10/2023 CJS: use FastHenry impedance matrix in analytic solution ! SUBROUTINE frequency_domain_analysis_FH2(spice_bundle_model,spice_validation_test) USE type_specifications USE general_module USE constants USE cable_module USE cable_bundle_module USE spice_cable_bundle_module USE maths USE frequency_spec IMPLICIT NONE ! variables passed to subroutine TYPE(spice_model_specification_type),intent(IN):: spice_bundle_model ! Spice cable bundle model structure TYPE(spice_validation_test_type),intent(IN) :: spice_validation_test ! Spice validation circuit structure ! local variables real(dp) :: f,w ! frequency and angular frequency integer :: frequency_loop ! frequency loop variable integer :: dim ! dimension of matrix system to solve ! domain based impedance and admittance matrices complex(dp),allocatable :: Z_domain(:,:) complex(dp),allocatable :: Y_domain(:,:) ! domain based conductor impedance terms complex(dp),allocatable ::Z_domain_conductor_impedance_correction(:,:) ! Vectors and matrices used in the frequency domain solution of the transmission line equations with termination conditions complex(dp),allocatable :: Vs1(:) complex(dp),allocatable :: Z1(:,:) complex(dp),allocatable :: Vs2(:) complex(dp),allocatable :: Z2(:,:) complex(dp) :: Vout ! complex output voltage value ! domain transformation matrices complex(dp),allocatable :: MI(:,:) complex(dp),allocatable :: MII(:,:) complex(dp),allocatable :: MV(:,:) complex(dp),allocatable :: MVI(:,:) ! temporary working matrices complex(dp),allocatable :: TM1(:,:) ! temporary variables integer :: conductor,inner_domain,outer_domain integer :: domain1,inner_domain1,outer_domain1 integer :: conductor1,reference_conductor1 integer :: domain_conductor1,domain_reference_conductor1 logical :: is_shield1 integer :: domain2,inner_domain2,outer_domain2 integer :: conductor2,reference_conductor2 integer :: domain_conductor2,domain_reference_conductor2 logical :: is_shield2 ! conductor based impedance (loss) and transfer impedance model data complex(dp) :: Zint_c ! conductor surface impedance complex(dp) :: Zint_c_ref ! reference conductor surface impedance real(dp) :: Rdc_c ! d.c. resistance of conductor real(dp) :: Rdc_c_ref ! d.c. resistance of reference conductor complex(dp) :: Zint_t ! conductor transfer impedance complex(dp) :: Zint_t_ref ! reference conductor transfer impedance real(dp) :: Rdc_t ! d.c. resistance of conductor (from transfer impedance) real(dp) :: Rdc_t_ref ! d.c. resistance of reference conductor (from transfer impedance) ! complex amplitude of incident field complex(dp) :: Einc logical,allocatable :: is_shielded_flag(:) ! flags conductors which are not exposed to the incident field integer :: shield_conductor ! temporary variable, shield conductor number for shielded conductors real(dp),allocatable :: local_conductor_x_offset(:) ! x coordinate in bundle cross section of conductors real(dp),allocatable :: local_conductor_y_offset(:) ! y coordinate in bundle cross section of conductors integer :: n_conductors_outer_domain ! for shield conductors, the number of conductors in the domain outside the shield integer :: shield_conductor_number_in_outer_domain ! for shield conductors, the conductor number in the domain outside the shield ! loop variables integer :: row,col integer :: i integer :: ierr ! error code for matrix inverse calls ! FastHenry2 stuff... character(LEN=256) :: line character(LEN=256) :: freq_and_dim_string integer :: local_line_length integer :: n_freq_in real(dp) :: freq integer :: nrows,ncols,r,c complex(dp),allocatable :: Zc_in(:,:,:) real(dp),allocatable :: freq_in(:) real(dp),allocatable :: values(:),re,im integer :: loop,floop ! START ! Open output file open(unit=analytic_soln_file_unit,file=trim(analytic_soln_filename)) ! write the file header line if (spice_validation_test%analysis_freq_spec%freq_range_type.EQ.'log') then write(analytic_soln_file_unit,'(A)')log_freq_header else if (spice_validation_test%analysis_freq_spec%freq_range_type.EQ.'lin') then write(analytic_soln_file_unit,'(A)')lin_freq_header end if dim=spice_bundle_model%bundle%system_dimension ! allocate memory ALLOCATE( Z_domain(dim,dim) ) ALLOCATE( Y_domain(dim,dim) ) ALLOCATE( Z_domain_conductor_impedance_correction(dim,dim) ) ALLOCATE( Vs1(dim) ) ALLOCATE( Z1(dim,dim) ) ALLOCATE( Vs2(dim) ) ALLOCATE( Z2(dim,dim) ) ! domain transformation matrices ALLOCATE( MI(dim,dim) ) ALLOCATE( MII(dim,dim) ) ALLOCATE( MV(dim,dim) ) ALLOCATE( MVI(dim,dim) ) ! temporary working matrices ALLOCATE( TM1(dim,dim) ) ALLOCATE( is_shielded_flag(1:dim+1) ) ALLOCATE( local_conductor_x_offset(1:dim+1) ) ALLOCATE( local_conductor_y_offset(1:dim+1) ) ! loop over conductors to work out which are in shielded domains and which are in the external domain ! also get the position of the conductor in the bundle cross section for incident field excitation do i=1,dim+1 if (spice_bundle_model%bundle%terminal_conductor_to_outer_domain(i).EQ.spice_bundle_model%bundle%tot_n_domains) then is_shielded_flag(i)=.FALSE. local_conductor_x_offset(i)=spice_bundle_model%bundle%conductor_x_offset(i) local_conductor_y_offset(i)=spice_bundle_model%bundle%conductor_y_offset(i) else is_shielded_flag(i)=.TRUE. ! work out the conductor number of the shield shield_conductor=spice_bundle_model%bundle%terminal_conductor_to_reference_terminal_conductor(i) ! shielded conductors pick up the coordinate of the shield for the purposes of incident field excitation local_conductor_x_offset(i)=spice_bundle_model%bundle%conductor_x_offset(shield_conductor) local_conductor_y_offset(i)=spice_bundle_model%bundle%conductor_y_offset(shield_conductor) end if end do ! build the termination specifications and convert to complex Vs1(1:dim)=cmplx( spice_validation_test%Vs_end1(1:dim)-spice_validation_test%Vs_end1(dim+1) ) Vs2(1:dim)=cmplx( spice_validation_test%Vs_end2(1:dim)-spice_validation_test%Vs_end2(dim+1) ) Z1(:,:) =cmplx( spice_validation_test%R_end1(dim+1) ) Z2(:,:) =cmplx( spice_validation_test%R_end2(dim+1) ) do i=1,dim Z1(i,i) =Z1(i,i)+cmplx( spice_validation_test%R_end1(i) ) Z2(i,i) =Z2(i,i)+cmplx( spice_validation_test%R_end2(i) ) end do ! Copy the domain transformation matrices and calculate the inverses MI(:,:)=cmplx(spice_bundle_model%bundle%global_MI%mat(:,:)) MV(:,:)=cmplx(spice_bundle_model%bundle%global_MV%mat(:,:)) if (verbose) write(*,*)'Invert MI' ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix CALL cinvert_Gauss_Jordan(MI,dim,MII,dim,ierr) if (verbose) then write(*,*)'Transpose[MII]' do row=1,dim write(*,8000)(real(MII(col,row)),col=1,dim) end do write(*,*)'[MV]' do row=1,dim write(*,8000)(real(MV(row,col)),col=1,dim) end do 8000 format(20F4.1) end if ! verbose if (verbose) write(*,*)'Invert MV' ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix CALL cinvert_Gauss_Jordan(MV,dim,MVI,dim,ierr) if (verbose) then write(*,*) write(*,*)' Processing frequency dependent impedance file from FastHenry2' write(*,*) end if OPEN(unit=fh2_output_file_unit,file='Zc.mat') do loop=1,2 n_freq_in=0 10 CONTINUE read(fh2_output_file_unit,'(A)',END=1000,ERR=1000)line if (line(1:32).NE.'Impedance matrix for frequency =') GOTO 10 ! if we get here then we have some impedance matrix data to read ! write(*,*)'Found impedance matrix:',trim(line) ! increase the number of frequencies for which we have an impedance matrix n_freq_in=n_freq_in+1 local_line_length=len(trim(line)) freq_and_dim_string=line(33:local_line_length) ! write(*,*)'reading matrix for:',trim(freq_and_dim_string) ! replace the 'x' by a space then read the frequency, nrows and ncols local_line_length=len(trim(freq_and_dim_string)) do i=1,local_line_length if (freq_and_dim_string(i:i).EQ.'x') freq_and_dim_string(i:i)=' ' end do ! write(*,*)'data string:',trim(freq_and_dim_string) read(freq_and_dim_string,*)freq,nrows,ncols if (nrows.NE.ncols) then write(*,*)'****** ERROR: nrows.NE.ncols ******' end if ! write(*,*)'frequency=',freq,' n=',nrows if (loop.EQ.2) then freq_in(n_freq_in)=freq end if do r=1,nrows read(fh2_output_file_unit,'(A)',END=1000,ERR=1000)line if (loop.EQ.2) then ! replace the 'j's by a space then read the complex data local_line_length=len(trim(line)) do i=1,local_line_length if (line(i:i).EQ.'j') line(i:i)=' ' end do read(line,*)(values(i),i=1,2*ncols) do c=1,ncols re=values(c*2-1) im=values(c*2) Zc_in(n_freq_in,r,c)=cmplx(re,im) end do ! next column end if end do ! next row GOTO 10 ! continue to read the file ! Jump here when the file has been read 1000 CONTINUE if (loop.Eq.1) then if (verbose) write(*,*)'Number of frequencies=',n_freq_in ALLOCATE( freq_in(n_freq_in) ) ALLOCATE( Zc_in(n_freq_in,nrows,ncols) ) ALLOCATE( values(2*ncols) ) rewind(unit=fh2_output_file_unit) end if end do ! next file read loop CLOSE(unit=fh2_output_file_unit) ! Check dimensions if (nrows.NE.dim) then write(*,*)'ERROR in frequency_domain_analysis_FH2: nrows.NE.dim' write(*,*)'nrows from FH2 =',nrows,' dim=',dim write(run_status,*)'ERROR in frequency_domain_analysis_FH2: dimension error:',dim,nrows CALL write_program_status() STOP 1 end if ! ************* LOOP OVER FREQUENCY *************** ! Loop over the specified frequencies do frequency_loop=1,n_freq_in ! get the frequency and angular frequency values f=freq_in(frequency_loop) w=2d0*pi*f ! Use the global domain based L and C matrices and the domain voltage and current ! domain transformation matrices to calculate the impedance [Z] and admittance [Y] matrices do row=1,dim do col=1,dim ! Evaluate the cable impedance filter function Z_domain(row,col)=Zc_in(frequency_loop,row,col) !! TEMP TEST FOR STP CABLES: CALCULATE DM AND CM IMPEDANCE MATRIX ! Z_domain(1,1)=2d0*(Zc_in(frequency_loop,1,1)-Zc_in(frequency_loop,1,2)) ! Z_domain(1,2)=0d0 ! Z_domain(2,1)=0d0 ! Z_domain(2,2)=0.5d0*(Zc_in(frequency_loop,1,1)+Zc_in(frequency_loop,1,2)) ! Evaluate the cable admittance filter function Y_domain(row,col)=evaluate_Sfilter_frequency_response(spice_bundle_model%bundle%global_Y%sfilter_mat(row,col),f) end do ! next col end do ! next row ! Contribution to the impedance matrices from the conductor based impedance models is zero here Z_domain_conductor_impedance_correction(1:dim,1:dim)=(0d0,0d0) if (verbose) write(*,*)'Add transfer impedance contributions' ! add transfer impedance contributions *********** NOT SURE WHETHER WE NEED TO DO ANYTHING HERE ********* ! loop over conductors looking for shields. Note include all conductors including the reference here do conductor=1,dim+1 is_shield1=spice_bundle_model%bundle%terminal_conductor_is_shield_flag(conductor) if (is_shield1) then ! add transfer impedance contributions to inner and outer domain conductors inner_domain=spice_bundle_model%bundle%terminal_conductor_to_inner_domain(conductor) outer_domain=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(conductor) CALL evaluate_conductor_impedance_model(spice_bundle_model%bundle%conductor_impedance(conductor), & f,Zint_c,Rdc_c,Zint_t,Rdc_t) ! Check whether the shield is the reference conductor in the outer domain - the contributions ! are different if this is the case. n_conductors_outer_domain=spice_bundle_model%bundle%n_conductors(outer_domain) shield_conductor_number_in_outer_domain=spice_bundle_model%bundle%terminal_conductor_to_local_domain_conductor(conductor) ! number of conductors in a domain is spice_bundle_model%bundle%n_conductors(domain) if (shield_conductor_number_in_outer_domain.NE.n_conductors_outer_domain) then ! loop over all conductors do row=1,dim ! get the domain of row conductor domain1=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(row) if (domain1.EQ.inner_domain) then ! The row conductor is in the inner shield domain and so gets a transfer impedance contribution from the shield conductor ! the shield couples these two domains so add the transfer impedance term - also include term to make the matrix symmetric domain_conductor1=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(row) domain_conductor2=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(conductor) Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2)= & Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2) -Zint_t Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1)= & Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1) -Zint_t if (verbose) then write(*,*)'Shield conductor',conductor,' inner domain',inner_domain,' outer domain',outer_domain write(*,*)'row',row,' col',col,' row domain',domain1,' col domain',domain2 write(*,*)'Contribution to Zt(',domain_conductor1,domain_conductor2,')' write(*,*)'Contribution to Zt(',domain_conductor2,domain_conductor1,')' write(*,*)'Zt conductor:',-Zint_t end if ! verbose end if ! transfer impedance term required end do ! next row conductor else ! shield IS reference conductor in outer domain ! loop over all conductors do row=1,dim ! get the domain of row conductor domain1=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(row) if (domain1.EQ.inner_domain) then ! The row conductor is in the inner shield domain and so gets a transfer impedance contribution from the shield conductor ! the shield couples these two domains so add the transfer impedance term - also include term to make the matrix symmetric domain_conductor1=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(row) ! As the shield conductor is the reference we need to find all the conductors contributing to the shield current ! note that the contribution is then -ve of the normal transfer impedance contribution as the currents are in the ! opposite direction do col=1,dim domain2=spice_bundle_model%bundle%terminal_conductor_to_outer_domain(col) ! Check the domain of the col conductor. If it is an outer domain conductor of the shield then it contributes if (domain2.EQ.outer_domain) then domain_conductor2=spice_bundle_model%bundle%terminal_conductor_to_global_domain_conductor(col) Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2)= & Z_domain_conductor_impedance_correction(domain_conductor1,domain_conductor2) +Zint_t Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1)= & Z_domain_conductor_impedance_correction(domain_conductor2,domain_conductor1) +Zint_t if (verbose) then write(*,*)'Shield conductor',conductor,' inner domain',inner_domain,' outer domain',outer_domain write(*,*)'row',row,' col',col,' row domain',domain1,' col domain',domain2 write(*,*)'Contribution to Zt(',domain_conductor1,domain_conductor2,')' write(*,*)'Contribution to Zt(',domain_conductor2,domain_conductor1,')' write(*,*)'Zt conductor:',-Zint_t end if ! verbose end if ! transfer impedance term required for this col conductor end do ! next condutor to check end if ! transfer impedance term required for this row conductor end do ! next row conductor end if ! shield is/ is not reference conductor in outer domain end if ! conductor is a shield end do ! next conductor ! Add the conductor impedance contributions to the domain based impedance matrix Z_domain(:,:)=Z_domain(:,:)+Z_domain_conductor_impedance_correction(:,:) if (verbose) then write(*,*)'[R_domain]=Re[Z_domain]' do row=1,dim write(*,8020)(real(Z_domain(row,col)),col=1,dim) end do end if ! verbose if (verbose) then write(*,*)'Im[Z_domain]' do row=1,dim write(*,8010)(aimag(Z_domain(row,col)),col=1,dim) end do write(*,*)'[R_domain]=Re[Z_domain]' do row=1,dim write(*,8020)(real(Z_domain(row,col)),col=1,dim) end do write(*,*)'Im[Y_domain]' do row=1,dim write(*,8010)(aimag(Y_domain(row,col)),col=1,dim) end do 8010 format(20ES10.2) 8020 format(20F12.4) end if ! verbose ! Get the incident field amplitude Einc=cmplx(spice_bundle_model%Eamplitude) ! Solve the frequency domain multi-conductor transmission line equations with the specified termination circuit and ! incident field excitation, return the required conductor voltage in Vout. if (.NOT.run_validation_test_Vbased) then CALL frequency_domain_MTL_solution(dim,Z_domain,Y_domain,MV,MVI,MI,MII, & Einc,spice_bundle_model%Ex,spice_bundle_model%Ey,spice_bundle_model%Ez, & spice_bundle_model%Hx,spice_bundle_model%Hy,spice_bundle_model%Hz, & spice_bundle_model%kx,spice_bundle_model%ky,spice_bundle_model%kz, & local_conductor_x_offset, & local_conductor_y_offset, & spice_bundle_model%bundle%ground_plane_present, & spice_bundle_model%bundle%ground_plane_x, & spice_bundle_model%bundle%ground_plane_y, & spice_bundle_model%bundle%ground_plane_theta, & spice_bundle_model%length,Vs1,Z1,Vs2,Z2, & is_shielded_flag, & f,spice_validation_test%output_end,spice_validation_test%output_conductor, & spice_validation_test%output_conductor_ref,Vout) else CALL frequency_domain_MTL_solution_V(dim,Z_domain,Y_domain,MV,MVI,MI,MII, & Einc,spice_bundle_model%Ex,spice_bundle_model%Ey,spice_bundle_model%Ez, & spice_bundle_model%Hx,spice_bundle_model%Hy,spice_bundle_model%Hz, & spice_bundle_model%kx,spice_bundle_model%ky,spice_bundle_model%kz, & local_conductor_x_offset, & local_conductor_y_offset, & spice_bundle_model%bundle%ground_plane_present, & spice_bundle_model%bundle%ground_plane_x, & spice_bundle_model%bundle%ground_plane_y, & spice_bundle_model%bundle%ground_plane_theta, & spice_bundle_model%length,Vs1,Z1,Vs2,Z2, & is_shielded_flag, & f,spice_validation_test%output_end,spice_validation_test%output_conductor, & spice_validation_test%output_conductor_ref,Vout) end if ! Output the result to file if (spice_validation_test%output_type.EQ.'li') then if (plot_real) then write(analytic_soln_file_unit,*)f,real(Vout),aimag(Vout) else write(analytic_soln_file_unit,*)f,abs(Vout),atan2(aimag(Vout),real(Vout)) end if else if (spice_validation_test%output_type.EQ.'dB') then write(analytic_soln_file_unit,*)f,20d0*log10(abs(Vout)) end if ! output format (linear or dB) end do ! next frequency in frequency loop ! Close output file Close(unit=analytic_soln_file_unit) ! deallocate memory DEALLOCATE( Z_domain ) DEALLOCATE( Y_domain ) DEALLOCATE( Z_domain_conductor_impedance_correction ) DEALLOCATE( Vs1 ) DEALLOCATE( Z1 ) DEALLOCATE( Vs2 ) DEALLOCATE( Z2 ) ! domain transformation matrices DEALLOCATE( MI ) DEALLOCATE( MII ) DEALLOCATE( MV ) DEALLOCATE( MVI ) DEALLOCATE( is_shielded_flag ) DEALLOCATE( local_conductor_x_offset ) DEALLOCATE( local_conductor_y_offset ) ! temporary working matrices DEALLOCATE( TM1 ) DEALLOCATE( freq_in ) DEALLOCATE( Zc_in ) DEALLOCATE( values ) RETURN END SUBROUTINE frequency_domain_analysis_FH2