!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at .
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at .
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
! PROGRAM cable_model_builder
!
! NAME
! cable_model_builder
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! cable_model_builder collects all the information required to characterise
! an individual cable from a .cable_spec file. The code performs any calculations necessary to
! derive the per-unit-length parameters of any shielded (internal) domains as required.
!
! The software supports the following cable types:
!
! Frequency Dependent Cylindrical conductor with dielectric
! Frequency Dependent Coaxial cable with transfer impedance and shield surface impedance loss
! Frequency Dependent Twinax cable with transfer impedance and shield surface impedance loss
! Frequency Dependent Twisted pair
! Frequency Dependent Shielded twisted pair with transfer impedance and shield surface impedance loss
! Frequency Dependent Spacewire with transfer impedance and shield surface impedance loss
! Frequency Dependent Overshield with transfer impedance and shield surface impedance loss
! Frequency Dependent flex cable
! D connector
!
! The input to the program is the name of a cable specification file. A file name.cable_spec must exist, containing
! all the data required to specify a cable.
!
! The output of the cable_model_builder code is a file name.cable which can be used as an input to the
! cable_bundle_model_builder software
!
! The .cable file is placed in a directory specified in the .cable_spec file. This may be the local directory (./)
! or another specified path. In this way the software can interact with a library of cable models (MOD).
!
! The program may be run with the cable name specified in the command line i.e. 'cable_model_builder name'
! or it the name is absent from the command line, the user is prompted for the name.
!
!
! COMMENTS
! Updated to V2
!
! HISTORY
!
! started 25/11/2015 CJS Started STAGE_1 developments
! started 21/03/2016 CJS Started STAGE_3 developments
! 7/4/2016 CJS add twinax, twisted_pair and shielded_twisted_pair cable types
! 27/4/2016 CJS add the conductor impedance (loss) model
! 12/5/2016 CJS Generalise the conductor impedance model to include transfer impedance
! 21/7/2016 CJS add models for FD_twisted_pair ZT_FD_shielded_twisted_pair ZT_FD_spacewire ZT_FD_twinax
! 5/9/2016 CJS Include the shielded cable models with surface impedance loss:
! FD_coax2, ZT_FD_coax2, FD_twisted_pair2, ZT_FD_shielded_twisted_pair2, ZT_FD_spacewire2 ZT_FD_twinax2
! 23/9/2016 CJS Include rectangular conductor type
! 16/11/2016 CJS Include Dconnector type
! December 2016 CJS Version 2: Rationalise cable types so that there is only a single version of each type of cable
! 24/2/2017 CJS Allow the input name to include a path i.e. the _spec file does not need to be local.
! 23/10/2017 CJS Check the pole stability of the dielectric and transfer impedance filters.
! 16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
! 13/3/2018 CJS Add flag for direct/ iterative matrix solver in Laplace solution
!
!
PROGRAM cable_model_builder
USE type_specifications
USE general_module
USE constants
USE cable_module
USE filter_module
IMPLICIT NONE
! local variables
! command line argument value and length
character(len=filename_length) :: argument1
integer :: argument1_length
character(len=filename_length) :: cable_name_with_path ! name of the cable including the path
character(len=filename_length) :: cable_path ! path to the cable_spec file
character(len=filename_length) :: cable_name ! name of the cable
character(len=filename_length) :: filename ! filename of the .cable_spec file
logical :: file_exists
! Structure to hold the cable specification (see CABLE_MODULES/cable_module.F90)
type(cable_specification_type) :: cable_spec
! string for reading flags
character(len=line_length) :: line
integer :: ierr ! integer to return error codes from file reads
! temporary variables for reading number of conductors, parameters, frequency dependent parameters, transfer impedance functions.
integer :: nc_in,np_in,nFDp_in,nFDZT_in
logical :: check_passed ! flag for stability testing of S domain transfer function filters
! loop variable
integer :: i
! START
! Open the input file describing the cable parameters
! This file could be created by the associated GUI or otherwise generated
program_name="cable_model_builder"
run_status='Started'
CALL write_program_status()
CALL read_version()
CALL write_license()
! get the first command line argument. If set then this is the cable name, if it is not set then
! it must be read
CALL get_command_argument(1 , argument1, argument1_length)
if (argument1_length.NE.0) then
cable_name_with_path =trim(argument1)
else
write(*,*)'Enter the name of the cable specification data (without .cable_spec extension)'
read(*,'(A)')cable_name_with_path
end if
CALL strip_path(cable_name_with_path,cable_path,cable_name)
filename=trim(cable_name_with_path)//cable_spec_file_extn
inquire(file=trim(filename),exist=file_exists)
if (.NOT.file_exists) then
run_status='ERROR in cable_model_builder, Cannot find the file:'//trim(filename)
CALL write_program_status()
STOP 1
end if
! open and read the file
OPEN(unit=cable_spec_file_unit,file=filename)
write(*,*)'Opened file:',trim(filename)
! set the cable name to be the same as the name of the cable specification data
cable_spec%cable_name=cable_name
! set the version tag in the cable structure
cable_spec%version=SPICE_CABLE_MODEL_BUILDER_version
! read the directory for the cable models
read(cable_spec_file_unit,*) ! comment line
read(cable_spec_file_unit,'(A)')MOD_cable_lib_dir
CALL path_format(MOD_cable_lib_dir)
! ensure that the paths exist
CALL check_and_make_path(MOD_cable_lib_dir)
! read the cable type
read(cable_spec_file_unit,'(A)')cable_spec%cable_type_string
CALL convert_to_lower_case(cable_spec%cable_type_string,line_length)
if (cable_spec%cable_type_string.eq.'cylindrical') then
CALL cylindrical_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'twisted_pair') then
CALL twisted_pair_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'coax') then
CALL coax_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'twinax') then
CALL twinax_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'shielded_twisted_pair') then
CALL shielded_twisted_pair_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'spacewire') then
CALL spacewire_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'original_flex_cable') then
CALL flex_cable_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'flex_cable') then
CALL ML_flex_cable_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'dconnector') then
CALL Dconnector_set_parameters(cable_spec)
else if (cable_spec%cable_type_string.eq.'overshield') then
CALL overshield_set_parameters(cable_spec)
else
run_status='ERROR in cable_model_builder, Unknown cable type:'//trim(cable_spec%cable_type_string)
CALL write_program_status()
STOP 1
end if
! read the number of conductors from the .cable_spec file
read(cable_spec_file_unit,*,IOSTAT=ierr)nc_in
if (ierr.NE.0) then
run_status='ERROR reading number of conductors'
CALL write_program_status()
STOP 1
end if
if (cable_spec%tot_n_conductors.NE.0) then ! This cable type has a specific number of conductors so
! check that the number of conductors is consistent with this cable type
if (nc_in.NE.cable_spec%tot_n_conductors) then
run_status='ERROR, Wrong number of conductors'
CALL write_program_status()
STOP 1
end if
else
! the number of conductors is set in the cable specification so set the
! paramter values accordingly
cable_spec%tot_n_conductors=nc_in
! if the number of external conductors is not set then we assume that all condcutors are external (e.g. flex cable)
if (cable_spec%n_external_conductors.NE.0) then
cable_spec%n_external_conductors=nc_in
end if
end if
! read the number of parameters from the .cable_spec file
read(cable_spec_file_unit,*,IOSTAT=ierr)np_in
if (ierr.NE.0) then
run_status='ERROR reading number of parameters'
CALL write_program_status()
STOP 1
end if
if (cable_spec%n_parameters.NE.0) then
! Check that the number of parameters is consistent with this cable type
if (np_in.NE.cable_spec%n_parameters) then
run_status='ERROR, Wrong number of parameters'
CALL write_program_status()
STOP 1
end if
else
! for a ML_flex cable the number of parameters depends on the cable specification
cable_spec%n_parameters=np_in
end if
! allocate and read parameters
ALLOCATE( cable_spec%parameters(1:cable_spec%n_parameters) )
do i=1,cable_spec%n_parameters
read(cable_spec_file_unit,*,IOSTAT=ierr)cable_spec%parameters(i)
if (ierr.NE.0) then
run_status='ERROR reading cable_spec%parameters'
CALL write_program_status()
STOP 1
end if
end do
! read the number of dielectric filters from the .cable_spec file or assume 0 if the information is not there
read(cable_spec_file_unit,*,IOSTAT=ierr)nFDp_in
if (ierr.NE.0) then
! Assume that there are no frequency dependent dielectric models
backspace(cable_spec_file_unit)
nFDp_in=0
end if
! Check that the number of dielectric filters is consistent with this cable type
if (nFDp_in.NE.cable_spec%n_dielectric_filters) then
run_status='ERROR, Wrong number of dielectric models for this cable type'
CALL write_program_status()
STOP 1
end if
if (cable_spec%n_dielectric_filters.GT.0) then
ALLOCATE( cable_spec%dielectric_filter(1:cable_spec%n_dielectric_filters) )
do i=1,cable_spec%n_dielectric_filters
read(cable_spec_file_unit,*,IOSTAT=ierr) ! comment line
CALL read_Sfilter(cable_spec%dielectric_filter(i),cable_spec_file_unit)
! test pole stability
CALL test_filter_pole_stability(cable_spec%dielectric_filter(i),check_passed)
if (.NOT.check_passed) then
write(*,*)'ERROR in cable_model_builder'
write(*,*)'The dielectric filter function has unstable poles'
write(*,*)'Dielectric filter function number:',i
CALL write_Sfilter(cable_spec%dielectric_filter(i),0)
write(run_status,'(A,I2)')'ERROR, Unstable poles in dielectric filter function: ',i
CALL write_program_status()
STOP 1
else
if (verbose) write(*,*)'The dielectric filter function has stable poles: function number ',i
end if
end do
end if
! read the number of transfer impedance filters from the .cable_spec file or assume 0 if the information is not there
read(cable_spec_file_unit,*,IOSTAT=ierr)nFDZT_in
if (ierr.NE.0) then
! Assume that there are no transfer impedance filters
backspace(cable_spec_file_unit)
nFDZT_in=0
end if
! Check that the number of transfer impedance filters is consistent with this cable type
if (nFDZT_in.NE.cable_spec%n_transfer_impedance_models) then
run_status='ERROR, Wrong number of transfer impedance models for this cable type'
CALL write_program_status()
STOP 1
end if
if (cable_spec%n_transfer_impedance_models.GT.0) then
ALLOCATE( cable_spec%transfer_impedance(1:cable_spec%n_transfer_impedance_models) )
do i=1,cable_spec%n_transfer_impedance_models
read(cable_spec_file_unit,*,IOSTAT=ierr) ! comment line
CALL read_Sfilter(cable_spec%transfer_impedance(i),cable_spec_file_unit)
! test pole stability
CALL test_filter_pole_stability(cable_spec%transfer_impedance(i),check_passed)
if (.NOT.check_passed) then
write(*,*)'ERROR in cable_rmpedance filter function has unstable poles'
write(*,*)'Transfer impedance filter function number:',i
CALL write_Sfilter(cable_spec%transfer_impedance(i),0)
write(run_status,'(A,I2)')'ERROR, Unstable poles in transfer impedance filter function: ',i
CALL write_program_status()
STOP 1
else
if (verbose) write(*,*)'The transfer impedance filter function has stable poles: function number ',i
end if
end do
end if
! Set deafult propagation correction transfer function fit information
cable_spec%Y_fit_model_order=0
CALL reset_frequency_specification(cable_spec%Y_fit_freq_spec)
CALL set_up_frequency_specification(cable_spec%Y_fit_freq_spec)
! Read the optional propagation correction transfer function fit information
read(cable_spec_file_unit,*,IOSTAT=ierr)cable_spec%Y_fit_model_order
if (ierr.NE.0) then
! Assume there is no filter fit information specified so move on to the next stage
backspace(cable_spec_file_unit)
goto 100
end if
write(*,*)'Reading the filter fit frequency range'
CALL read_and_set_up_frequency_specification(cable_spec%Y_fit_freq_spec,cable_spec_file_unit)
100 continue
! the end of the file can contain flags to control the running of the software and the output
do
read(cable_spec_file_unit,*,END=110,ERR=110)line
CALL convert_to_lower_case(line,line_length)
! Set flags according to the information at the end of the .spice_model_spec file
if (INDEX(line,'verbose').NE.0) verbose=.TRUE.
if (INDEX(line,'use_s_xfer').NE.0) use_s_xfer=.TRUE.
if (INDEX(line,'no_s_xfer').NE.0) use_s_xfer=.FALSE.
if (INDEX(line,'use_laplace').NE.0) use_Laplace=.TRUE.
if (INDEX(line,'no_laplace').NE.0) use_Laplace=.FALSE.
if (INDEX(line,'use_fasthenry').NE.0) use_FastHenry=.TRUE.
if (INDEX(line,'no_fasthenry').NE.0) use_FastHenry=.FALSE.
if (INDEX(line,'plot_potential').NE.0) plot_potential=.TRUE.
if (INDEX(line,'no_plot_potential').NE.0) plot_potential=.FALSE.
if (INDEX(line,'plot_mesh').NE.0) plot_mesh=.TRUE.
if (INDEX(line,'no_plot_mesh').NE.0) plot_mesh=.FALSE.
if (INDEX(line,'direct_solver').NE.0) direct_solver=.TRUE.
if (INDEX(line,'iterative_solver').NE.0) direct_solver=.FALSE.
! redefine mesh generation parameters if required
if (INDEX(line,'laplace_boundary_constant').NE.0) then
read(cable_spec_file_unit,*,END=9000,ERR=9000)Laplace_boundary_constant
end if
if (INDEX(line,'laplace_surface_mesh_constant').NE.0) then
read(cable_spec_file_unit,*,END=9000,ERR=9000)Laplace_surface_mesh_constant
end if
if (INDEX(line,'twisted_pair_equivalent_radius').NE.0) then
read(cable_spec_file_unit,*,END=9000,ERR=9000)Twisted_pair_equivalent_radius
end if
if (INDEX(line,'max_mesh_edge_length').NE.0) then
read(cable_spec_file_unit,*,END=9000,ERR=9000)max_mesh_edge_length
end if
if (INDEX(line,'cg_tol').NE.0) then
read(cable_spec_file_unit,*,END=9000,ERR=9000)cg_tol
end if
end do ! continue until all flags are read - indicated by an end of file.
110 CONTINUE
! close the file with the cable data
CLOSE(unit=cable_spec_file_unit)
if (cable_spec%n_internal_domains.GT.0) then
! construct the information for the internal domains
! allocate internal domain information
ALLOCATE(cable_spec%n_internal_conductors_in_domain(1:cable_spec%n_internal_domains))
ALLOCATE(cable_spec%L_domain(1:cable_spec%n_internal_domains))
ALLOCATE(cable_spec%C_domain(1:cable_spec%n_internal_domains))
ALLOCATE(cable_spec%Z_domain(1:cable_spec%n_internal_domains))
ALLOCATE(cable_spec%Y_domain(1:cable_spec%n_internal_domains))
end if ! There are internal domains requiring parameter specification
! allocate the conductor based impedance model and reset all parameters assuming PEC for now
ALLOCATE( cable_spec%conductor_impedance(1:cable_spec%tot_n_conductors) )
do i=1,cable_spec%tot_n_conductors
cable_spec%conductor_impedance(i)%impedance_model_type=impedance_model_type_PEC
cable_spec%conductor_impedance(i)%radius=0d0
cable_spec%conductor_impedance(i)%conductivity=0d0
cable_spec%conductor_impedance(i)%Resistance_multiplication_factor=1d0
end do
! Set the cable structure information according to each cable type
if (cable_spec%cable_type.EQ.cable_geometry_type_cylindrical) then
CALL cylindrical_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_twisted_pair) then
CALL twisted_pair_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_coax) then
CALL coax_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_twinax) then
CALL twinax_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_shielded_twisted_pair) then
CALL shielded_twisted_pair_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_spacewire) then
CALL spacewire_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_flex_cable) then
CALL flex_cable_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_ML_flex_cable) then
CALL ML_flex_cable_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_dconnector) then
CALL dconnector_set_internal_domain_information(cable_spec)
else if (cable_spec%cable_type.EQ.cable_geometry_type_overshield) then
CALL overshield_set_internal_domain_information(cable_spec)
end if
! Write the cable information to a .cable file
CAll write_cable(cable_spec,cable_file_unit)
! deallocate memory used
CALL deallocate_frequency_specification(cable_spec%Y_fit_freq_spec)
CAll deallocate_cable(cable_spec)
! finish up
run_status='Finished_Correctly'
CALL write_program_status()
STOP
9000 run_status='ERROR reading control parameter from the cable_spec file'
CALL write_program_status()
STOP 1
END PROGRAM cable_model_builder