\chapter{Twisted Pair cable models} Twisted pair models have been developed with gauges 20, 22, 24, from 3 different standards \cite{3901/019}, \cite{3901/002} and \cite{3901/025} i.e. 9 models in total. The process followed to obtain the parameters for the \textbf{.cable\_spec} file from information in the ESCC specifications is as follows (where we assume that all dimensions are converted to metres): \begin{enumerate} \item \begin{equation} comnductor\_radius = \sqrt{\frac{nominal\_section}{\pi}} \end{equation} \item \begin{equation} dielectric\_radius = \frac{core\_max\_diameter}{2} \end{equation} \item \begin{equation} conductor\_separation = finished\_wire\_diameter -2* dielectric\_radius \end{equation} \item The conductor in the model is a homogeneous cylindrical conductor so we need an effective conductivity. This is based on the maximum resistance (quoted in ohms/km) \begin{equation} Conductivity = \frac{length}{(max\_resistance*nominal\_section)} \end{equation} \item The dielectric surrounding each conductor is also assumed to be homogeneous and independent of frequency. polyimide: $\epsilon_r=3.4$ \end{enumerate} As an example, the cable specification for the 20AWG cable, variant 14 from \cite{3901/019} TP\_AWG\_20\_ESCC\_3901019\_V14.cable\_spec: \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS Twisted_pair 2 # number of conductors 4 # number of parameters 4.370E-04 # parameter 1: inner conductor radius 1.520E-03 # parameter 2: inner conductor separation 7.400E-04 # parameter 3: inner dielectric radius 4.762E+07 # parameter 4: conductivity 1 # number of frequency dependent parameters # Dielectric relative permittivity model follows 1.0 # w normalisation constant 0 # a order, a coefficients follow below: 3.400E+00 0 # b order, b coefficients follow below: 1.0 \end{verbatim} \clearpage