!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2017 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at .
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at .
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE spacewire_set_parameters
! SUBROUTINE spacewire_set_internal_domain_information
! SUBROUTINE spacewire_plot
!
! NAME
! spacewire_set_parameters
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Set the overall parameters for a spacewire cable
!
! COMMENTS
!
!
! HISTORY
!
! started 5/9/2016 CJS based on spacewire.F90
! 16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions
!
!
SUBROUTINE spacewire_set_parameters(cable)
USE type_specifications
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(INOUT) :: cable
! local variables
! START
cable%cable_type=cable_geometry_type_spacewire
cable%tot_n_conductors=13
cable%tot_n_domains=10
cable%n_external_conductors=1
cable%n_internal_conductors=12
cable%n_internal_domains=9
cable%n_parameters=13
cable%n_dielectric_filters=3
cable%n_transfer_impedance_models=2
END SUBROUTINE spacewire_set_parameters
!
! NAME
! spacewire_set_internal_domain_information
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! Set the overall parameters for a spacewire cable
!
! COMMENTS
! Set the dimension of the domain transformation matrices to include an external reference conductor for the cable
!
!
! HISTORY
!
! started 12/4/201 CJS
! 8/9/2016 CJS common mode/ differential mode loss correction
! 19/9/2016 CJS frequency dependent dielectric in Laplace solver
! 2/11/2016 CJS inhomogeneous dielectric in twisted pair model
! 8/5/2017 CJS: Include references to Theory_Manual
!
!
SUBROUTINE spacewire_set_internal_domain_information(cable)
USE type_specifications
USE constants
USE general_module
USE maths
USE PUL_parameter_module
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(INOUT) :: cable
! local variables
integer :: n_conductors
integer :: dim
integer :: domain
integer :: inner_cable
real(dp) :: d,ctheta
real(dp) :: L11,L12,L13
real(dp) :: C11,C12
real(dp) :: LC,LD,CC,CD
logical :: dielectric_is_homogeneous
integer :: conductor_1,conductor_2,reference_conductor
integer :: diff,com,inner_shield,outer_shield
type(PUL_type) :: PUL
real(dp) :: C_air
type(Sfilter) :: jw
integer :: ierr,i
real(dp) :: epsr
! variables for cable parameter checks
logical :: cable_spec_error
real(dp) :: rw
real(dp) :: rd
real(dp) :: s
real(dp) :: rs
real(dp) :: rd2
real(dp) :: stpr
real(dp) :: rs2
real(dp) :: rd3
real(dp) :: t1
real(dp) :: t2
real(dp) :: sigma_w
real(dp) :: sigma_s1
real(dp) :: sigma_s2
type(Sfilter) :: epsr1,epsr2,epsr3,ZT1,ZT2
type(Sfilter) :: YC,YD
character(LEN=error_message_length) :: message
! START
! Check the cable parameters
rw=cable%parameters(1)
rd=cable%parameters(2)
s=cable%parameters(3)
rs=cable%parameters(4)
t1=cable%parameters(5)
rd2=cable%parameters(6)
stpr=cable%parameters(7)
rs2=cable%parameters(8)
t2=cable%parameters(9)
rd3=cable%parameters(10)
sigma_w=cable%parameters(11)
sigma_s1=cable%parameters(12)
sigma_s2=cable%parameters(13)
epsr1=cable%dielectric_filter(1)
epsr2=cable%dielectric_filter(2)
epsr3=cable%dielectric_filter(3)
ZT1=cable%transfer_impedance(1)
ZT2=cable%transfer_impedance(2)
write(*,*)'CHECKING FOR ERRORS'
cable_spec_error=.FALSE. ! assume no errors initially
message=''
CALL spacewire_check(rw,rd,s,rs,rd2,stpr,rs2,rd3,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_w,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_s1,cable_spec_error,cable%cable_name,message)
CALL conductivity_check(sigma_s2,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr1,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr2,cable_spec_error,cable%cable_name,message)
CALL dielectric_check(epsr3,cable_spec_error,cable%cable_name,message)
CALL transfer_impedance_check(ZT1,cable_spec_error,cable%cable_name,message)
CALL transfer_impedance_check(ZT2,cable_spec_error,cable%cable_name,message)
CALL surface_impedance_check(ZT1,sigma_s1,rs,t1,cable_spec_error,cable%cable_name,message)
CALL surface_impedance_check(ZT2,sigma_s2,rs2,t2,cable_spec_error,cable%cable_name,message)
if (cable_spec_error) then
run_status='ERROR in cable_model_builder, error on parameters for cable:'//trim(cable%cable_name)//'. '//trim(message)
CALL write_program_status()
STOP 1
end if
write(*,*)'Use laplace=',use_laplace
! pre-calculate inductance matrix elements for two conductors in a cylindrical shield
! See C.R. Paul, 1st edition, equation 3.67a,b with cos(thetaij)=-1
epsr=evaluate_Sfilter_high_frequency_limit(cable%dielectric_filter(1))
jw=jwA_filter(1d0)
domain=1
if (use_laplace) then
! allocate memory for the PUL parameter solver interface
if(verbose) write(*,*)'Domain:',domain
if(verbose) write(*,*)'Allocating PUL data structure for shielded twisted pairs'
n_conductors=3
CALL allocate_and_reset_PUL_data(PUL,n_conductors)
PUL%shape(1:n_conductors)=circle
PUL%x(1)=-s/2d0
PUL%y(1)=0.0
PUL%r(1)=rw
PUL%rd(1)=rd
PUL%epsr(1)=epsr1
PUL%x(2)=s/2d0
PUL%y(2)=0.0
PUL%r(2)=rw
PUL%rd(2)=rd
PUL%epsr(2)=epsr1
PUL%epsr_background = 1d0 ! permittivity of homogeneous dielectric medium surrounding the insulated conductors (air)
! no ground plane
PUL%ground_plane_present=.FALSE.
! add overshield i.e. the twinax shield
PUL%overshield_present=.TRUE.
PUL%overshield_x = 0d0 ! shield is centred at the origin in this calculation
PUL%overshield_y = 0d0
PUL%overshield_r = rs ! twinax shield radius
CALL PUL_LC_Laplace(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain)
! there may be slight asymmmetry due to meshing so average diagonal and off diagonal elements
! Theory_Manual_Eqn 3.21
L11=(PUL%L%mat(1,1)+PUL%L%mat(1,1))/2d0
L12=(PUL%L%mat(1,2)+PUL%L%mat(2,1))/2d0
C11=(PUL%C%mat(1,1)+PUL%C%mat(1,1))/2d0
C12=(PUL%C%mat(1,2)+PUL%C%mat(2,1))/2d0
dielectric_is_homogeneous=.FALSE.
CALL shielded_twisted_pair_cm_dm_parameter_calculation(L11,L12,C11,C12,epsr,LC,LD,CC,CD,dielectric_is_homogeneous)
! Theory_Manual_Eqn 3.22
YD=0.5d0*( PUL%Yfilter%sfilter_mat(1,1)+((-1d0)*PUL%Yfilter%sfilter_mat(1,2)) )
YC=2.0d0*( PUL%Yfilter%sfilter_mat(1,1)+PUL%Yfilter%sfilter_mat(1,2) )
else
! See C.R. Paul, 1st edition, equation 3.67a,b with cos(thetaij)=-1 ! Theory_Manual_Eqn 2.27, 2.28
L11=(mu0/(2d0*pi))*log( (rs**2-(s/2d0)**2)/(rs*rw) )
L12=(mu0/(2d0*pi))*log( (s/(2d0*rs)) * (rs**2+(s/2d0)**2)/(2d0*(s/2d0)**2) )
dielectric_is_homogeneous=.TRUE.
CALL shielded_twisted_pair_cm_dm_parameter_calculation(L11,L12,C11,C12,epsr,LC,LD,CC,CD,dielectric_is_homogeneous)
YD=CD*jw
YC=CC*jw
end if
if (use_laplace) CALL deallocate_PUL_data(PUL) ! deallocate the PUL data structure
domain=0
do inner_cable=1,4
! DOMAIN 1 of this sub-cable: Set the parameters for the internal differential mode domain
domain=domain+1
cable%n_internal_conductors_in_domain(domain)=2
! The number of modes in the internal differential mode domain is 1
dim=1
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
cable%L_domain(domain)%mat(1,1)=LD
cable%Z_domain(domain)%sfilter_mat(1,1)=cable%L_domain(domain)%mat(1,1)*jw
cable%C_domain(domain)%mat(1,1)=CD
cable%Y_domain(domain)%sfilter_mat(1,1)=YD
! DOMAIN 2 of this sub-cable: Set the parameters for the internal common mode domain
domain=domain+1
cable%n_internal_conductors_in_domain(domain)=2
! The number of modes in the internal common mode domain is 2
dim=1
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
cable%L_domain(domain)%mat(1,1)=LC
cable%Z_domain(domain)%sfilter_mat(1,1)=cable%L_domain(domain)%mat(1,1)*jw
cable%C_domain(domain)%mat(1,1)=CC
cable%Y_domain(domain)%sfilter_mat(1,1)=YC
end do ! next inner cable
! now set the parameters for the domain consisting of the outer shield and shields of the inner cables
domain=domain+1
cable%n_internal_conductors_in_domain(domain)=5
! The number of modes in this domain is 4
dim=4
cable%L_domain(domain)%dim=dim
ALLOCATE(cable%L_domain(domain)%mat(dim,dim))
cable%C_domain(domain)%dim=dim
ALLOCATE(cable%C_domain(domain)%mat(dim,dim))
cable%Z_domain(domain)%dim=dim
ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim))
cable%Y_domain(domain)%dim=dim
ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim))
! get the parameters for this domain
d=stpr ! radius on which the centres of the 4 shielded twisted pairs sit
epsr=evaluate_Sfilter_high_frequency_limit(epsr2) !
if (use_laplace) then
! allocate memory for the PUL parameter solver interface
if(verbose) write(*,*)'Domain:',domain
if(verbose) write(*,*)'Allocating PUL data structure for shielded twisted pairs'
n_conductors=5
CALL allocate_and_reset_PUL_data(PUL,n_conductors)
PUL%shape(1:n_conductors)=circle
PUL%x(1)=stpr
PUL%y(1)=0.0
PUL%r(1)=rs
PUL%rd(1)=rd2
PUL%epsr(1)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%x(2)=0.0
PUL%y(2)=stpr
PUL%r(2)=rs
PUL%rd(2)=rd2
PUL%epsr(2)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%x(3)=-stpr
PUL%y(3)=0.0
PUL%r(3)=rs
PUL%rd(3)=rd2
PUL%epsr(3)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%x(4)=0.0
PUL%y(4)=-stpr
PUL%r(4)=rs
PUL%rd(4)=rd2
PUL%epsr(4)=epsr2 ! permittivity of frequency dependent dielectric medium surrounding conductors
PUL%epsr_background =1d0 ! permittivity of homogeneous medium surrounding the insulated shields (air)
! no ground plane
PUL%ground_plane_present=.FALSE.
! add overshield i.e. the twinax shield
PUL%overshield_present=.TRUE.
PUL%overshield_x = 0d0 ! shield is centred at the origin in this calculation
PUL%overshield_y = 0d0
PUL%overshield_r = rs2 ! twisted pair shield radius
CALL PUL_LC_Laplace(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain)
cable%L_domain(domain)%mat(:,:)=PUL%L%mat(:,:)
cable%C_domain(domain)%mat(:,:)=PUL%C%mat(:,:)
cable%Z_domain(domain)%sfilter_mat(:,:)=PUL%Zfilter%sfilter_mat(:,:)
cable%Y_domain(domain)%sfilter_mat(:,:)=PUL%Yfilter%sfilter_mat(:,:)
else
! See C.R. Paul, 1st edition, equation 3.67a,b ! Theory_Manual_Eqn 2.27, 2.28
! self inductance
L11=(mu0/(2d0*pi))*log( (rs2**2-d**2)/(rs2*rs) )
! adjacent conductors, theta=90degrees, cos(theta)=0
ctheta=0
L12=(mu0/(2d0*pi))*log( (d/(rs2)) * &
sqrt( ((d*d)**2+rs2**4-2d0*d*d*rs2*rs2*ctheta)/((d*d)**2+d**4-2d0*(d**4)*ctheta) ) )
! opposite conductors, theta=180 degrees, cos(theta)=-1
ctheta=-1d0
L13=(mu0/(2d0*pi))*log( (d/(rs2)) * &
sqrt( ((d*d)**2+rs2**4-2d0*d*d*rs2*rs2*ctheta)/((d*d)**2+d**4-2d0*(d**4)*ctheta) ) )
cable%L_domain(domain)%mat(1,1)=L11
cable%L_domain(domain)%mat(1,2)=L12
cable%L_domain(domain)%mat(1,3)=L13
cable%L_domain(domain)%mat(1,4)=L12
cable%L_domain(domain)%mat(2,1)=L12
cable%L_domain(domain)%mat(2,2)=L11
cable%L_domain(domain)%mat(2,3)=L12
cable%L_domain(domain)%mat(2,4)=L13
cable%L_domain(domain)%mat(3,1)=L13
cable%L_domain(domain)%mat(3,2)=L12
cable%L_domain(domain)%mat(3,3)=L11
cable%L_domain(domain)%mat(3,4)=L12
cable%L_domain(domain)%mat(4,1)=L12
cable%L_domain(domain)%mat(4,2)=L13
cable%L_domain(domain)%mat(4,3)=L12
cable%L_domain(domain)%mat(4,4)=L11
! calculate the capacitance matrix from the inverse of the inductance matrix *eps0*epsr*mu0
ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
CALL dinvert_Gauss_Jordan(cable%L_domain(domain)%mat,4,cable%C_domain(domain)%mat,4,ierr)
cable%C_domain(domain)%mat(:,:)=eps0*epsr*mu0*cable%C_domain(domain)%mat(:,:)
CALL Z_Y_from_L_C(cable%L_domain(domain),cable%C_domain(domain),cable%Z_domain(domain),cable%Y_domain(domain))
end if
if (use_laplace) CALL deallocate_PUL_data(PUL) ! deallocate the PUL data structure
! Set the domain decomposition matrices ! Theory_Manual_Eqn 6.13, 6.14
! The dimension of the domain transformation matrices is 14
dim=14
cable%MI%dim=dim
ALLOCATE(cable%MI%mat(dim,dim))
cable%MV%dim=dim
ALLOCATE(cable%MV%mat(dim,dim))
cable%MI%mat(1:dim,1:dim)=0d0
cable%MV%mat(1:dim,1:dim)=0d0
! domain decomposition for the 4 sheilded twisted pair cables
do inner_cable=1,4
conductor_1=2*(inner_cable-1)+1
conductor_2=conductor_1+1
diff=2*(inner_cable-1)+1
com=diff+1
inner_shield=8+inner_cable
cable%MI%mat(diff,conductor_1)=0.5d0
cable%MI%mat(diff,conductor_2)=-0.5d0
cable%MI%mat(com,conductor_1)=1d0
cable%MI%mat(com,conductor_2)=1d0
cable%MV%mat(diff,conductor_1)=1d0
cable%MV%mat(diff,conductor_2)=-1d0
cable%MV%mat(com,conductor_1)=0.5d0
cable%MV%mat(com,conductor_2)=0.5d0
cable%MV%mat(com,inner_shield)=-1d0
end do
! domain decomposition for the domain between outer shield and twisted pair shields
outer_shield=13
do inner_cable=1,4
conductor_1=2*(inner_cable-1)+1
conductor_2=conductor_1+1
inner_shield=8+inner_cable
cable%MI%mat(inner_shield,conductor_1)=1d0
cable%MI%mat(inner_shield,conductor_2)=1d0
cable%MI%mat(inner_shield,inner_shield)=1d0
cable%MV%mat(inner_shield,inner_shield)=1d0
cable%MV%mat(inner_shield,outer_shield)=-1d0
end do
! domain decomposition for the external domain conductor.
cable%MI%mat(13,1:13)=1d0
cable%MV%mat(13,13)=1d0
cable%MV%mat(13,14)=-1d0
! domain decomposition for the reference domain conductor. Outer shield current is equal to the sum of all other currents
cable%MI%mat(14,1:14)=1d0
cable%MV%mat(14,14)=1d0
! Set the local reference conductor numbering
ALLOCATE( cable%local_reference_conductor(13) )
cable%local_reference_conductor(1)=2 ! differential mode, reference is the second conductor
cable%local_reference_conductor(2)=9 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(3)=3 ! differential mode, reference is the second conductor
cable%local_reference_conductor(4)=10 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(5)=4 ! differential mode, reference is the second conductor
cable%local_reference_conductor(6)=11 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(7)=5 ! differential mode, reference is the second conductor
cable%local_reference_conductor(8)=12 ! common mode, reference is the local shield conductor
cable%local_reference_conductor(9)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(10)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(11)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(12)=13 ! domain within outer shield, reference is the outer shield conductor
cable%local_reference_conductor(13)=0 ! external domain conductor, reference not known
! Set the local domain information: include a reference conductor in the count
ALLOCATE( cable%local_domain_n_conductors(1:cable%tot_n_domains) )
cable%local_domain_n_conductors(1)=2 ! differential mode domain
cable%local_domain_n_conductors(2)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(3)=2 ! differential mode domain
cable%local_domain_n_conductors(4)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(5)=2 ! differential mode domain
cable%local_domain_n_conductors(6)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(7)=2 ! differential mode domain
cable%local_domain_n_conductors(8)=2 ! common mode: reference in external domain
cable%local_domain_n_conductors(9)=5 ! domain within outer shield
cable%local_domain_n_conductors(10)=2 ! external domain
! Set the external domain conductor and dielectric information
ALLOCATE( cable%external_model(cable%n_external_conductors) )
CALL reset_external_conductor_model(cable%external_model(1))
cable%external_model(1)%conductor_type=circle
cable%external_model(1)%conductor_radius=rs2
cable%external_model(1)%dielectric_radius=rd3
cable%external_model(1)%dielectric_epsr=epsr3
! set the conductor impedance model for the four pairs of inner conductors
do i=1,7,2
cable%conductor_impedance(i)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity
cable%conductor_impedance(i)%radius=rw
cable%conductor_impedance(i)%conductivity=sigma_w
cable%conductor_impedance(i)%Resistance_multiplication_factor=1.5d0
cable%conductor_impedance(i+1)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity
cable%conductor_impedance(i+1)%radius=rw
cable%conductor_impedance(i+1)%conductivity=sigma_w
cable%conductor_impedance(i+1)%Resistance_multiplication_factor=0.5d0
end do
! set the conductor impedance model for the four inner shields
do i=9,12
cable%conductor_impedance(i)%impedance_model_type=impedance_model_type_cylindrical_shield
cable%conductor_impedance(i)%radius=rs
cable%conductor_impedance(i)%thickness=t1
cable%conductor_impedance(i)%conductivity=sigma_s1
cable%conductor_impedance(i)%ZT_filter=ZT1
end do
! set the transfer impedance model for the outer shield conductor
cable%conductor_impedance(13)%impedance_model_type=impedance_model_type_cylindrical_shield
cable%conductor_impedance(13)%radius=rs2
cable%conductor_impedance(13)%thickness=t2
cable%conductor_impedance(13)%conductivity=sigma_s2
cable%conductor_impedance(13)%ZT_filter=ZT2
! Deallocate all filters
CALL deallocate_Sfilter(epsr1)
CALL deallocate_Sfilter(epsr2)
CALL deallocate_Sfilter(epsr3)
CALL deallocate_Sfilter(ZT1)
CALL deallocate_Sfilter(ZT2)
CALL deallocate_Sfilter(jw)
ALLOCATE( cable%conductor_label(1:cable%tot_n_conductors) )
cable%conductor_label(1)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 1 : Twisted pair 1 wire 1'
cable%conductor_label(2)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 2 : Twisted pair 1 wire 2'
cable%conductor_label(3)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 3 : Twisted pair 2 wire 1'
cable%conductor_label(4)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 4 : Twisted pair 2 wire 2'
cable%conductor_label(5)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 5 : Twisted pair 3 wire 1'
cable%conductor_label(6)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 6 : Twisted pair 3 wire 2'
cable%conductor_label(7)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 7 : Twisted pair 4 wire 1'
cable%conductor_label(8)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 8 : Twisted pair 4 wire 2'
cable%conductor_label(9)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 9 : Inner Shield 1'
cable%conductor_label(10)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 10: Inner Shield 2'
cable%conductor_label(11)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 11: Inner Shield 3'
cable%conductor_label(12)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 12: Inner Shield 4'
cable%conductor_label(13)='Cable name: '//trim(cable%cable_name)// &
'. type: '//trim(cable%cable_type_string)//'. conductor 13: Outer Shield'
END SUBROUTINE spacewire_set_internal_domain_information
!
! NAME
! spacewire_plot
!
! AUTHORS
! Chris Smartt
!
! DESCRIPTION
! plot spacewire cable
!
! COMMENTS
! The angle has an impact here
! The conductor geometry must be consistent with the documentation...
!
! HISTORY
!
! started 14/4/2016 CJS
!
!
SUBROUTINE spacewire_plot(cable,x_offset,y_offset,theta,xmin,xmax,ymin,ymax)
USE type_specifications
USE general_module
USE constants
IMPLICIT NONE
! variables passed to subroutine
type(cable_specification_type),intent(IN) :: cable
real(dp),intent(IN) :: x_offset,y_offset,theta
real(dp),intent(INOUT) :: xmin,xmax,ymin,ymax
! local variables
real(dp) :: x,y
real(dp) :: rw,rd
real(dp) :: s,rstp
real(dp) :: xstp,ystp
real(dp) :: isr ! inner shield radius
real(dp) :: idr ! inner dielectric radius
real(dp) :: osr ! outer shield radius
real(dp) :: odr ! outer dielectric radius
integer :: inner_cable
! START
rw=cable%parameters(1) ! inner conductor radius
rd=cable%parameters(2) ! inner conductor dielectric radius
s=cable%parameters(3) ! inner conductor separation
isr=cable%parameters(4) ! inner shield radius
idr=cable%parameters(6) ! inner dielectric radius
rstp=cable%parameters(7) ! inner conductor separation
osr=cable%parameters(8) ! outer shield radius
odr=cable%parameters(10) ! outer dielectric radius
do inner_cable=1,4
! calculate the centre for this inner cable
xstp=x_offset+rstp*sin((inner_cable-1)*pi/2d0-theta)
ystp=y_offset+rstp*cos((inner_cable-1)*pi/2d0-theta)
! plot inner conductor, 1
x=xstp+(s/2d0)*sin(-theta)
y=ystp+(s/2d0)*cos(-theta)
CALL write_circle(x,y,rw,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot inner conductor, 2
x=xstp-(s/2d0)*sin(-theta)
y=ystp-(s/2d0)*cos(-theta)
CALL write_circle(x,y,rw,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot inner conductor dielectric, 1
x=xstp+(s/2d0)*sin(-theta)
y=ystp+(s/2d0)*cos(-theta)
CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot inner conductor dielectric, 2
x=xstp-(s/2d0)*sin(-theta)
y=ystp-(s/2d0)*cos(-theta)
CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot shield conductor
x=xstp
y=ystp
CALL write_circle(x,y,isr,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot circular dielectric
x=xstp
y=ystp
CALL write_circle(x,y,idr,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
end do ! next inner cable
! plot outer shield conductor
x=x_offset
y=y_offset
CALL write_circle(x,y,osr,conductor_geometry_file_unit,xmin,xmax,ymin,ymax)
! plot outer circular dielectric
x=x_offset
y=y_offset
CALL write_circle(x,y,odr,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax)
RETURN
END SUBROUTINE spacewire_plot