! ! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. ! It was developed by the University of Nottingham and the Netherlands Aerospace ! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK. ! ! Copyright (C) 2016-2017 University of Nottingham ! ! SACAMOS is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! SACAMOS is distributed in the hope that it will be useful, but ! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ! for more details. ! ! A copy of the GNU General Public License version 3 can be found in the ! file GNU_GPL_v3 in the root or at . ! ! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to ! the GNU Lesser General Public License. A copy of the GNU Lesser General Public ! License version can be found in the file GNU_LGPL in the root of EISPACK ! (/SRC/EISPACK ) or at . ! ! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk ! ! File Contents: ! SUBROUTINE shielded_twisted_pair_set_parameters ! SUBROUTINE shielded_twisted_pair_set_internal_domain_information ! SUBROUTINE shielded_twisted_pair_plot! ! NAME ! shielded_twisted_pair_set_parameters ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! Set the overall parameters for a shielded_twisted_pair cable ! ! COMMENTS ! ! ! HISTORY ! ! started 5/9/2016 CJS based on shielded_twisted_pair.F90 ! ! SUBROUTINE shielded_twisted_pair_set_parameters(cable) USE type_specifications IMPLICIT NONE ! variables passed to subroutine type(cable_specification_type),intent(INOUT) :: cable ! local variables ! START cable%cable_type=cable_geometry_type_shielded_twisted_pair cable%tot_n_conductors=3 cable%tot_n_domains=3 cable%n_external_conductors=1 cable%n_internal_conductors=2 cable%n_internal_domains=2 ! note we have both a common mode and a differential mode internal domain cable%n_parameters=8 cable%n_dielectric_filters=2 cable%n_transfer_impedance_models=1 END SUBROUTINE shielded_twisted_pair_set_parameters ! ! NAME ! shielded_twisted_pair_set_internal_domain_information ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! Set the overall parameters for a shielded_twisted_pair cable ! ! COMMENTS ! Set the dimension of the domain transformation matrices to include an external reference conductor for the cable ! ! ! HISTORY ! ! started 5/9/2016 CJS based on shielded_twisted_pair.F90 ! 8/9/2016 CJS common mode/ differential mode loss correction ! 19/9/2016 CJS frequency dependent dielectric in Laplace solver ! 2/11/2016 CJS inhomogeneous dielectric in twisted pair model ! 15/12/2016 CJS frequeny dependent dielectric in twisted pair model with Laplace solver ! 8/5/2017 CJS: Include references to Theory_Manual ! ! SUBROUTINE shielded_twisted_pair_set_internal_domain_information(cable) USE type_specifications USE constants USE general_module USE maths USE PUL_parameter_module IMPLICIT NONE ! variables passed to subroutine type(cable_specification_type),intent(INOUT) :: cable ! local variables integer :: n_conductors integer :: dim integer :: domain type(PUL_type) :: PUL real(dp) :: L11,L12 real(dp) :: C11,C12 real(dp) :: LC,LD,CC,CD logical :: dielectric_is_homogeneous real(dp) :: C_air type(Sfilter) :: jw integer :: i real(dp) :: epsr ! variables for cable parameter checks logical :: cable_spec_error real(dp) :: rw real(dp) :: s real(dp) :: rd real(dp) :: rs real(dp) :: rd2 real(dp) :: t real(dp) :: sigma_w real(dp) :: sigma_s type(Sfilter) :: epsr1,epsr2,ZT type(Sfilter) :: YC,YD character(LEN=error_message_length) :: message ! START ! Check the cable parameters rw=cable%parameters(1) rd=cable%parameters(2) s=cable%parameters(3) rs=cable%parameters(4) t=cable%parameters(5) rd2=cable%parameters(6) sigma_w=cable%parameters(7) sigma_s=cable%parameters(8) epsr1=cable%dielectric_filter(1) epsr2=cable%dielectric_filter(2) ZT=cable%transfer_impedance(1) cable_spec_error=.FALSE. ! assume no errors initially message='' CALL shielded_twisted_pair_check(rw,rd,s,rs,rd2,cable_spec_error,cable%cable_name,message) CALL conductivity_check(sigma_w,cable_spec_error,cable%cable_name,message) CALL conductivity_check(sigma_s,cable_spec_error,cable%cable_name,message) CALL dielectric_check(epsr1,cable_spec_error,cable%cable_name,message) CALL dielectric_check(epsr2,cable_spec_error,cable%cable_name,message) CALL transfer_impedance_check(Zt,cable_spec_error,cable%cable_name,message) CALL surface_impedance_check(ZT,sigma_s,rs,t,cable_spec_error,cable%cable_name,message) if (cable_spec_error) then run_status='ERROR in cable_model_builder, error on parameters for cable:'//trim(cable%cable_name)//'. '//trim(message) CALL write_program_status() STOP 1 end if ! pre-calculate inductance matrix elements for two conductors in a cylindrical shield domain=1 epsr=evaluate_Sfilter_high_frequency_limit(epsr1) ! First calculate the elements of the 2x2 inductance matrix before ! determining the common mode and differential mode inductance and capacitance jw=jwA_filter(1d0) if (use_laplace) then ! allocate memory for the PUL parameter solver interface if(verbose) write(*,*)'Domain:',domain if(verbose) write(*,*)'Allocating PUL data structure for shielded twisted pairs' n_conductors=3 CALL allocate_and_reset_PUL_data(PUL,n_conductors) PUL%shape(1:n_conductors)=circle PUL%x(1)=-s/2d0 PUL%y(1)=0.0 PUL%r(1)=rw PUL%rd(1)=rd PUL%epsr(1)=epsr1 PUL%x(2)=s/2d0 PUL%y(2)=0.0 PUL%r(2)=rw PUL%rd(2)=rd PUL%epsr(2)=epsr1 PUL%epsr_background = 1d0 ! permittivity of homogeneous dielectric medium surrounding conductors (air) ! no ground plane PUL%ground_plane_present=.FALSE. ! add overshield i.e. the twinax shield PUL%overshield_present=.TRUE. PUL%overshield_x = 0d0 ! shield is centred at the origin in this calculation PUL%overshield_y = 0d0 PUL%overshield_r = rs ! shielded twisted pair shield radius CALL PUL_LC_Laplace(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain) ! Theory_Manual_Eqn 3.21 ! there may be slight asymmmetry due to meshing so average diagonal and off diagonal elements L11=(PUL%L%mat(1,1)+PUL%L%mat(1,1))/2d0 L12=(PUL%L%mat(1,2)+PUL%L%mat(2,1))/2d0 C11=(PUL%C%mat(1,1)+PUL%C%mat(1,1))/2d0 C12=(PUL%C%mat(1,2)+PUL%C%mat(2,1))/2d0 dielectric_is_homogeneous=.FALSE. CALL shielded_twisted_pair_cm_dm_parameter_calculation(L11,L12,C11,C12,epsr,LC,LD,CC,CD,dielectric_is_homogeneous) ! Theory_Manual_Eqn 3.22 YD=0.5d0*( PUL%Yfilter%sfilter_mat(1,1)+((-1d0)*PUL%Yfilter%sfilter_mat(1,2)) ) YC=2.0d0*( PUL%Yfilter%sfilter_mat(1,1)+PUL%Yfilter%sfilter_mat(1,2) ) else ! See C.R. Paul, 1st edition, equation 3.67a,b with cos(thetaij)=-1! Theory_Manual_Eqn 2.27, 2.28 L11=(mu0/(2d0*pi))*log( (rs**2-(s/2d0)**2)/(rs*rw) ) L12=(mu0/(2d0*pi))*log( (s/(2d0*rs)) * (rs**2+(s/2d0)**2)/(2d0*(s/2d0)**2) ) dielectric_is_homogeneous=.TRUE. CALL shielded_twisted_pair_cm_dm_parameter_calculation(L11,L12,C11,C12,epsr,LC,LD,CC,CD,dielectric_is_homogeneous) YD=CD*jw YC=CC*jw end if ! DOMAIN 1: Set the parameters for the internal differential mode domain domain=1 cable%n_internal_conductors_in_domain(domain)=2 ! The number of modes in the internal differential mode domain is 1 dim=1 cable%L_domain(domain)%dim=dim ALLOCATE(cable%L_domain(domain)%mat(dim,dim)) cable%C_domain(domain)%dim=dim ALLOCATE(cable%C_domain(domain)%mat(dim,dim)) cable%Z_domain(domain)%dim=dim ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim)) cable%Y_domain(domain)%dim=dim ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim)) cable%L_domain(domain)%mat(1,1)=LD cable%Z_domain(domain)%sfilter_mat(1,1)=cable%L_domain(domain)%mat(1,1)*jw cable%C_domain(domain)%mat(1,1)=CD cable%Y_domain(domain)%sfilter_mat(1,1)=YD ! DOMAIN 2: Set the parameters for the internal common mode domain domain=2 cable%n_internal_conductors_in_domain(domain)=2 ! The number of modes in the internal differential mode domain is 1 dim=1 cable%L_domain(domain)%dim=dim ALLOCATE(cable%L_domain(domain)%mat(dim,dim)) cable%C_domain(domain)%dim=dim ALLOCATE(cable%C_domain(domain)%mat(dim,dim)) cable%Z_domain(domain)%dim=dim ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim)) cable%Y_domain(domain)%dim=dim ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim)) cable%L_domain(domain)%mat(1,1)=LC cable%Z_domain(domain)%sfilter_mat(1,1)=cable%L_domain(domain)%mat(1,1)*jw cable%C_domain(domain)%mat(1,1)=CC cable%Y_domain(domain)%sfilter_mat(1,1)=YC if (use_laplace) CALL deallocate_PUL_data(PUL) ! deallocate the PUL data structure ! Set the domain decomposition matrices ! Theory_Manual_Eqn 6.11, 6.12 ! The dimension of the domain transformation matrices is 4 dim=4 cable%MI%dim=dim ALLOCATE(cable%MI%mat(dim,dim)) cable%MV%dim=dim ALLOCATE(cable%MV%mat(dim,dim)) cable%MI%mat(1,1)=0.5D0 cable%MI%mat(1,2)=-0.5d0 cable%MI%mat(1,3)=0d0 cable%MI%mat(1,4)=0d0 cable%MI%mat(2,1)=1d0 cable%MI%mat(2,2)=1d0 cable%MI%mat(2,3)=0d0 cable%MI%mat(2,4)=0d0 cable%MI%mat(3,1)=1d0 cable%MI%mat(3,2)=1d0 cable%MI%mat(3,3)=1d0 cable%MI%mat(3,4)=0d0 cable%MI%mat(4,1)=1d0 cable%MI%mat(4,2)=1d0 cable%MI%mat(4,3)=1d0 cable%MI%mat(4,4)=1d0 cable%MV%mat(1,1)=1D0 cable%MV%mat(1,2)=-1d0 cable%MV%mat(1,3)=0d0 cable%MV%mat(1,4)=0d0 cable%MV%mat(2,1)=0.5d0 cable%MV%mat(2,2)=0.5d0 cable%MV%mat(2,3)=-1d0 cable%MV%mat(2,4)=0d0 cable%MV%mat(3,1)=0d0 cable%MV%mat(3,2)=0d0 cable%MV%mat(3,3)=1d0 cable%MV%mat(3,4)=-1d0 cable%MV%mat(4,1)=0d0 cable%MV%mat(4,2)=0d0 cable%MV%mat(4,3)=0d0 cable%MV%mat(4,4)=1d0 ! Set the local reference conductor numbering ALLOCATE( cable%local_reference_conductor(3) ) cable%local_reference_conductor(1)=2 ! differential mode, reference is the second conductor cable%local_reference_conductor(2)=3 ! common mode, reference is the shield conductor cable%local_reference_conductor(3)=0 ! external domain conductor, reference not known ! Set the local domain information: include a reference conductor in the count ALLOCATE( cable%local_domain_n_conductors(1:cable%tot_n_domains) ) cable%local_domain_n_conductors(1)=2 ! differential mode domain cable%local_domain_n_conductors(2)=2 ! common mode cable%local_domain_n_conductors(3)=2 ! external domain ! Set the external domain conductor and dielectric information ALLOCATE( cable%external_model(cable%n_external_conductors) ) CALL reset_external_conductor_model(cable%external_model(1)) cable%external_model(1)%conductor_type=circle cable%external_model(1)%conductor_radius=rs cable%external_model(1)%dielectric_radius=rd2 cable%external_model(1)%dielectric_epsr=epsr2 ! set the conductor impedance model for the differential mode cable%conductor_impedance(1)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity cable%conductor_impedance(1)%radius=rw cable%conductor_impedance(1)%conductivity=sigma_w cable%conductor_impedance(1)%Resistance_multiplication_factor=1.5d0 ! set the conductor impedance model for the common mode cable%conductor_impedance(2)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity cable%conductor_impedance(2)%radius=rw cable%conductor_impedance(2)%conductivity=sigma_w cable%conductor_impedance(2)%Resistance_multiplication_factor=0.5d0 ! set the impedance model for the shield conductor cable%conductor_impedance(3)%impedance_model_type=impedance_model_type_cylindrical_shield cable%conductor_impedance(3)%radius=rs cable%conductor_impedance(3)%thickness=t cable%conductor_impedance(3)%conductivity=sigma_s cable%conductor_impedance(3)%ZT_filter=ZT ! Deallocate all filters CALL deallocate_Sfilter(epsr1) CALL deallocate_Sfilter(epsr2) CALL deallocate_Sfilter(ZT) CALL deallocate_Sfilter(jw) END SUBROUTINE shielded_twisted_pair_set_internal_domain_information ! ! NAME ! shielded_twisted_pair_plot ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! plot shielded twisted pair cable ! ! COMMENTS ! the angle has NO impact here due to the twisting ! ! HISTORY ! ! started 5/9/2016 CJS based on shielded_twisted_pair.F90 ! ! SUBROUTINE shielded_twisted_pair_plot(cable,x_offset,y_offset,theta,xmin,xmax,ymin,ymax) USE type_specifications USE general_module IMPLICIT NONE ! variables passed to subroutine type(cable_specification_type),intent(IN) :: cable real(dp),intent(IN) :: x_offset,y_offset,theta real(dp),intent(INOUT) :: xmin,xmax,ymin,ymax ! local variables real(dp) :: x,y,r,rd real(dp) :: s ! START ! Inner conductors r=cable%parameters(1) ! inner conductor radius rd=cable%parameters(2) ! inner dielecric radius s=cable%parameters(3) ! inner conductor separation ! plot inner conductor, 1 x=x_offset+(s/2d0) y=y_offset CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot inner conductor, 2 x=x_offset-(s/2d0) y=y_offset CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot inner dielectric, 1 x=x_offset+(s/2d0) y=y_offset CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot inner dielectric, 2 x=x_offset-(s/2d0) y=y_offset CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot shield conductor r=cable%parameters(4) ! outer shield radius x=x_offset y=y_offset CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot circular dielectric rd=cable%parameters(6) ! outer dielectric radius x=x_offset y=y_offset CALL write_circle(x,y,rd,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax) RETURN END SUBROUTINE shielded_twisted_pair_plot