\chapter{File Formats} \label{file_formats} This chapter describes the file formats used as the input to the spice cable bundle model building process. There are three processes in the creation of a spice cable bundle model. These are: \begin{enumerate} \item cable model building process \item cable bundle model building process \item spice cable bundle model building process \end{enumerate} Frequency dependent parameters The file formats used to drive each of these processes are described in the following sections. \section{Cable Specification File Formats} \label{Cable_spec_file_formats} This section describes the cable specification file formats used as the input to the cable model building process. Cable specification files have the extension \textbf{name.cable\_spec}. Models of the following cable types have been developed: \begin{enumerate} \item Cylindrical conductor \item Cylindrical conductor with dielectric \item Frequency Dependent Cylindrical conductor with dielectric \item Coaxial cable \item Frequency Dependent Coaxial cable \item Frequency Dependent Coaxial cable including shield surface impedance loss \item Frequency Dependent Coaxial cable with transfer impedance - low frequency model \item Frequency Dependent Coaxial cable with transfer impedance - high frequency model including shield surface impedance loss \item Twinax cable \item Frequency Dependent Twinax cable with transfer impedance - low frequency model \item Frequency Dependent Twinax cable with transfer impedance - high frequency model including shield surface impedance loss \item Twisted pair \item Frequency Dependent Twisted pair \item Shielded twisted pair \item Frequency Dependent Shielded twisted pair with transfer impedance - low frequency model \item Frequency Dependent Shielded twisted pair with transfer impedance - high frequency model including shield surface impedance loss \item Spacewire \item Frequency Dependent Spacewire with transfer impedance - low frequency model \item Frequency Dependent Spacewire with transfer impedance - high frequency model including shield surface impedance loss \item Frequency Dependent Overshield with transfer impedance \item Rectangular conductor \item Frequency Dependent flex cable \item D connector \end{enumerate} Frequency dependent parameters may be defined using a rational function form for example a frequency dependent dielectric may be represented using the following form \begin{equation} \label{eq:rational_permittivity} \epsilon_{r}=\frac{a_0+ a_1 \left( \frac{j\omega}{\omega_0} \right) +a_2 \left( \frac{j\omega}{\omega_0} \right)^2 + \cdots}{b_0+ b_1 \left( \frac{j\omega}{\omega_0} \right) +b_2 \left( \frac{j\omega}{\omega_0} \right)^2 + \cdots} \end{equation} The cable\_model\_builder process calculates the per-unit-length inductance and capacitance matrices of all internal domains. This may be achieved using an analytic solution in the case of coaxial cables for example. For domains with inhomogeneous dielectric then a numerical Laplace solver may be used to calculate the per-unit-length parameters. Within a cable specification file this frequency dependent data is specified in the following format: \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{5cm} |} \hline Line number & Typical value & Description \\ \hline 1 & \# dielectric model & Comment line \\ \hline 2 & 1E8 & $\omega_{0}$ (rad/second) \\ \hline 3 & 1 & order of numerator \\ \hline 4 & 2.60 2.25 & list of numerator (a) coefficients \\ \hline 5 & 1 & order of numerator \\ \hline 6 & 1.0 1.0 & list of denominator (b) coefficients \\ \hline \end{tabular} \end{center} In addition to the information required to specifiy a cable, additional flags to control the operation of the software can be included. These flags consist of text commands. The available flags and their effect are as follows \begin{enumerate} \item 'verbose' output detailed summary of the software operation and calculation results.\\ \item 'use\_laplace' use the numerical Laplace solver to calculate inductance and capacitance matrices where appropriate (i.e. where an exact analytic solution is not available.) By default, approximate analytic formulae are used. \\ \item 'plot\_mesh' output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\ \end{enumerate} If the Laplace solver is used then the mesh generation is be controlled by the paramter 'Laplace\_surface\_mesh\_constant' This parameter determines the number of finite element edges on a conductor surface The number of elements on a cylindrical conductor of radius r is $\frac{r}{Laplace_surface_mesh_constant}$. The default value is 3. (As the Laplace solver is only applied to internal domains at this stage then the parameter Laplace\_boundary\_constant is not used. The default parameters are a compromise between accuracy and computation time for the Laplace solution. The default values may be overridden by the user by appending the following to the end of the .cable\_spec file: \begin{verbatim} Laplace_surface_mesh_constant 4 \end{verbatim} The file formats required to specify each of these cable types is described in the folllowing sub-sections together with an example. \subsection{Cylindrical conductor format} \label{Cylindrical_conductor_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & cylindrical & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 1 & integer & Number of conductors, always 1 for cylindrical cables \\ \hline 5 & 1 & integer & Number of parameters, always 1 for cylindrical cables \\ \hline 6 & 0.25e-3 & metre & parameter 1: conductor radius \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . cylindrical 1 # number of conductors 1 # number of parameters 1.905e-4 # parameter 1: conductor radius \end{verbatim} \subsection{Cylindrical conductor with dielectric format} \label{Cylindrical_conductor_dielectric_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & cylindrical\_with\_dielectric & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 1 & integer & Number of conductors, always 1 for cylindrical cables with dielectric \\ \hline 5 & 3 & integer & Number of parameters, always 3 for cylindrical cables with dielectric \\ \hline 6 & 0.25e-3 & metre & parameter 1: conductor radius \\ \hline 7 & 0.65e-3 & metre & parameter 2: outer dielectric radius \\ \hline 8 & 2.25 & - & parameter 3: realtive permittivity of dielectric \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . cylindrical_with_dielectric 1 # number of conductors 3 # number of parameters 1.905e-4 # parameter 1: conductor radius 0.5e-3 # parameter 2: dielectric radius 2.25 # parameter 3: dielectric relative permittivity \end{verbatim} \subsection{Frequency dependent cylindrical conductor with dielectric coating format} \label{FD_Cylindrical_conductor_dielectric_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & FD\_cylindrical\_with\_dielectric & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 1 & integer & Number of conductors, always 1 for cylindrical cables with dielectric \\ \hline 5 & 3 & integer & Number of parameters, always 3 for frequency dependent cylindrical cables with dielectric \\ \hline 6 & 0.25e-3 & metre & parameter 1: conductor radius \\ \hline 6 & 0.5e-3 & metre & parameter 2: dielectric radius \\ \hline 7 & 5e7 & Siemens/metre & parameter 3: electric conductivity \\ \hline 8 & 1 & integer & Number of frequency dependent parameters, always 1 for frequency dependent cylindrical cables with dielectric \\ \hline 9 & \# Dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 10 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 11 & 1 & integer & order of numerator model \\ \hline 12 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 13 & 1 & integer & order of denominator model \\ \hline 14 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . FD_cylindrical_with_dielectric 1 # number of conductors 3 # number of parameters 1.905e-4 # parameter 1: conductor radius 0.5e-3 # parameter 2: dielectric radius 5E7 # parameter 3: conductivity 1 # number of frequency dependent parameters # dielectric relative permittivity model follows 1E8 # w normalisation constant 1 # a order, a coefficients follow below: 2.60 2.25 1 # b order, b coefficients follow below: 1.0 1.0 \end{verbatim} \subsection{Coaxial cable format} \label{coaxial_cable_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & coaxial & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for coaxial cables \\ \hline 5 & 5 & integer & Number of parameters, always 5 for coaxial cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 1.5e-3 & metre & parameter 2: shield radius \\ \hline 8 & 2.25 & - & parameter 3: relative permittivity of inner dielectric \\ \hline 9 & 2.5e-3 & metre & parameter 4: outer insulation radius \\ \hline 10 & 2.5 & - & parameter 5: relative permittivity of outer dielectric \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS coaxial # cable type 2 # number of conductors 5 # NUMBER OF PARAMETERS 0.00042 # parameter 1: inner conductor radius (m) 0.00147 # parameter 2: shield radius (m) 2.25 # parameter 3: relative permittivity of inner dielectric 0.0025 # parameter 4: outer insulation radius (m) 2.50 # parameter 5: relative permittivity of outer dielectric \end{verbatim} \subsection{Frequency dependent coaxial cable - low frequency model format format} \label{FD_coaxial_cable_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & FD\_coaxial & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for FD\_coaxial cables \\ \hline 5 & 4 & integer & Number of parameters, always 4 for FD\_coaxial cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 1.5e-3 & metre & parameter 2: shield radius \\ \hline 8 & 2.5e-3 & metre & parameter 3: outer insulation radius \\ \hline 9 & 5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline 10 & 2 & integer & number of frequency dependent parameters \\ \hline 11 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 12 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 13 & 1 & integer & order of numerator model \\ \hline 14 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 15 & 1 & integer & order of denominator model \\ \hline 16 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 17 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 18 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 19 & 1 & integer & order of numerator model \\ \hline 20 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 21 & 1 & integer & order of denominator model \\ \hline 22 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS FD_coaxial # cable type 2 # number of conductors 4 # NUMBER OF PARAMETERS 0.00042 # parameter 1: inner conductor radius (m) 0.00147 # parameter 2: shield radius (m) 0.0025 # parameter 3: outer insulation radius (m) 5e7 # parameter 4: inner conductor electric conductivity 2 # number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 \end{verbatim} \subsection{Frequency dependent coaxial cable - high frequency model including shield surface impedance loss format} \label{FD_coaxial_cable2_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & FD\_coaxial2 & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for FD\_coaxial2 cables \\ \hline 5 & 6 & integer & Number of parameters, always 6 for FD\_coaxial2 cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 1.5e-3 & metre & parameter 2: shield radius \\ \hline 8 & 2.5e-3 & metre & parameter 3: outer insulation radius \\ \hline 9 & 5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline 8 & 0.1e-3 & metre & parameter 5: shield thickness \\ \hline 9 & 5e7 & Siemens/metre & parameter 6: shield electric conductivity \\ \hline 10 & 2 & integer & number of frequency dependent parameters \\ \hline 11 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 12 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 13 & 1 & integer & order of numerator model \\ \hline 14 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 15 & 1 & integer & order of denominator model \\ \hline 16 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 17 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 18 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 19 & 1 & integer & order of numerator model \\ \hline 20 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 21 & 1 & integer & order of denominator model \\ \hline 22 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS FD_coaxial2 # cable type 2 # number of conductors 6 # NUMBER OF PARAMETERS 0.00042 # parameter 1: inner conductor radius (m) 0.00147 # parameter 2: shield radius (m) 0.0025 # parameter 3: outer insulation radius (m) 5e7 # parameter 4: inner conductor electric conductivity 0.0001 # parameter 5: shield conductor thickness (m) 5e7 # parameter 6: shield electric conductivity 2 # number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 \end{verbatim} \subsection{Frequency dependent coaxial cable with transfer impedance - low frequency model format} \label{ZT_FD_coaxial_cable_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_coaxial & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for FD\_coaxial cables \\ \hline 5 & 4 & integer & Number of parameters, always 4 for FD\_coaxial cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 1.5e-3 & metre & parameter 2: shield radius \\ \hline 8 & 2.5e-3 & metre & parameter 3: outer insulation radius \\ \hline 9 & 5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline 10 & 2 & integer & number of frequency dependent parameters \\ \hline 11 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 12 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 13 & 1 & integer & order of numerator model \\ \hline 14 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 15 & 1 & integer & order of denominator model \\ \hline 16 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 17 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 18 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 19 & 1 & integer & order of numerator model \\ \hline 20 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 21 & 1 & integer & order of denominator model \\ \hline 22 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 23 & 1 & integer & number of frequency dependent transfer ipedance models \\ \hline 24 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 25 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 26 & 1 & integer & order of numerator model \\ \hline 27 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 28 & 0 & integer & order of denominator model \\ \hline 29 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS ZT_FD_coaxial # cable type 2 # number of conductors 5 # NUMBER OF PARAMETERS 0.00042 # parameter 1: inner conductor radius (m) 0.00147 # parameter 2: shield radius (m) 0.0025 # parameter 3: outer insulation radius (m) 5e7 # parameter 4: inner conductor electric conductivity 2 # number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 1 & integer & number of frequency dependent transfer ipedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Frequency dependent coaxial cable with transfer impedance - high frequency model including shield surface impedance loss format} \label{ZT_FD_coaxial_cable2_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_coaxial2 & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for FD\_coaxial2 cables \\ \hline 5 & 6 & integer & Number of parameters, always 6 for FD\_coaxial2 cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 1.5e-3 & metre & parameter 2: shield radius \\ \hline 8 & 2.5e-3 & metre & parameter 3: outer insulation radius \\ \hline 9 & 5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline 10 & 0.2e-3 & metre & parameter 5: shield conductor thickness \\ \hline 11 & 5e7 & Siemens/metre & parameter 6: shield conductor electric conductivity \\ \hline 12 & 2 & integer & number of frequency dependent parameters \\ \hline 13 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 14 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 15 & 1 & integer & order of numerator model \\ \hline 16 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 17 & 1 & integer & order of denominator model \\ \hline 18 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 19 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 20 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 21 & 1 & integer & order of numerator model \\ \hline 22 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 23 & 1 & integer & order of denominator model \\ \hline 24 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 25 & 1 & integer & number of frequency dependent transfer ipedance models \\ \hline 26 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 27 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 28 & 1 & integer & order of numerator model \\ \hline 29 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 30 & 0 & integer & order of denominator model \\ \hline 31 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS ZT_FD_coaxial2 # cable type 2 # number of conductors 6 # NUMBER OF PARAMETERS 0.00042 # parameter 1: inner conductor radius (m) 0.00147 # parameter 2: shield radius (m) 0.0025 # parameter 3: outer insulation radius (m) 5e7 # parameter 4: inner conductor electric conductivity 0.0002 # parameter 5: shield conductor thickness 5e7 # parameter 6: shield electric conductivity 2 # number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 1 & integer & number of frequency dependent transfer ipedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Twinax cable} \label{twinax_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & twinax & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 3 & integer & Number of conductors, always 3 for twinax cables \\ \hline 5 & 6 & integer & Number of parameters, always 6 for twinax cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.4e-3 & metre & parameter 2: conductor separation \\ \hline 8 & 1.5e-3 & metre & parameter 3: shield radius \\ \hline 9 & 2.25 & - & parameter 4: relative permittivity of inner dielectric \\ \hline 10 & 2.5e-3 & metre & parameter 5: outer dielectric radius \\ \hline 11 & 2.5 & - & parameter 6: relative permittivity of outer dielectric \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . twinax 3 # number of conductors 6 # number of parameters 0.25e-3 # parameter 1: conductor radius 1.0e-3 # parameter 2: conductor separation 2.0e-3 # parameter 3: shield radius 1.00 # parameter 4: inner dielectric relative permittivity 3.0e-3 # parameter 5: outer dielectric radius 1.00 # parameter 6: outer dielectric relative permittivity \end{verbatim} \subsection{Frequency dependent twinax cable with transfer impedance - low frequency model} \label{ZT_FD_twinax_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_twinax & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 3 & integer & Number of conductors, always 3 for frequency dependent twinax cables \\ \hline 5 & 6 & integer & Number of parameters, always 6 for frequency dependent twinax cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.18e-3 & metre & parameter 2: inner dielectric radius \\ \hline 8 & 0.4e-3 & metre & parameter 3: conductor separation \\ \hline 9 & 1.5e-3 & metre & parameter 4: shield radius \\ \hline 10 & 2.5e-3 & metre & parameter 5: outer dielectric radius \\ \hline 11 & 5e7 & Siemens/metre & parameter 6: inner conductor electric conductivity \\ \hline 12 & 2 & integer & number of frequency dependent parameters \\ \hline 13 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 14 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 15 & 1 & integer & order of numerator model \\ \hline 16 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 17 & 1 & integer & order of denominator model \\ \hline 18 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 19 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 20 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 21 & 1 & integer & order of numerator model \\ \hline 22 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 23 & 1 & integer & order of denominator model \\ \hline 24 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 25 & 1 & integer & number of frequency dependent transfer ipedance models \\ \hline 26 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 27 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 28 & 1 & integer & order of numerator model \\ \hline 29 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 29 & 0 & integer & order of denominator model \\ \hline 30 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . ZT_FD_twinax 3 Number of conductors 6 Number of parameters 0.25e-3 parameter 1: inner conductor radius 0.40e-3 parameter 2: inner dielectric radius 1.0e-3 parameter 3: inner conductor separation 2.0e-3 parameter 4: shield radius 2.5e-3 parameter 5: outer dielectric radius 5e7 parameter 6: inner conductor electric conductivity 2 number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 1 & integer & number of frequency dependent transfer ipedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Frequency dependent twinax cable with transfer impedance - high frequency model} \label{ZT_FD_twinax_formats2} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_twinax2 & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 3 & integer & Number of conductors, always 3 for frequency dependent twinax2 cables \\ \hline 5 & 8 & integer & Number of parameters, always 8 for frequency dependent twinax2 cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.18e-3 & metre & parameter 2: inner dielectric radius \\ \hline 8 & 0.4e-3 & metre & parameter 3: conductor separation \\ \hline 9 & 1.5e-3 & metre & parameter 4: shield radius \\ \hline 10 & 0.1e-3 & metre & parameter 5: shield thickness \\ \hline 11 & 2.5e-3 & metre & parameter 6: outer dielectric radius \\ \hline 12 & 5e7 & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline 13 & 5e7 & Siemens/metre & parameter 8: shield electric conductivity \\ \hline 14 & 2 & integer & number of frequency dependent parameters \\ \hline 15 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 16 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 16 & 1 & integer & order of numerator model \\ \hline 17 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 18 & 1 & integer & order of denominator model \\ \hline 19 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 20 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 21 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 22 & 1 & integer & order of numerator model \\ \hline 23 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 24 & 1 & integer & order of denominator model \\ \hline 25 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 26 & 1 & integer & number of frequency dependent transfer ipedance models \\ \hline 27 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 28 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 29 & 1 & integer & order of numerator model \\ \hline 30 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 31 & 0 & integer & order of denominator model \\ \hline 32 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . ZT_FD_twinax2 3 Number of conductors 6 Number of parameters 0.25e-3 parameter 1: inner conductor radius 0.40e-3 parameter 2: inner dielectric radius 1.0e-3 parameter 3: inner conductor separation 2.0e-3 parameter 4: shield radius 0.1e-3 parameter 5: shield thickness 2.5e-3 parameter 6: outer dielectric radius 5e7 parameter 7: inner conductor electric conductivity 5e7 parameter 8: shield electric conductivity 2 number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 1 & integer & number of frequency dependent transfer ipedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Twisted pair} \label{twisted_pair_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & twisted\_pair & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for twisted pair cables \\ \hline 5 & 4 & integer & Number of parameters, always 4 for twisted pair cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: conductor radius \\ \hline 7 & 0.4e-3 & metre & parameter 2: conductor separation \\ \hline 8 & 2.5e-3 & metre & parameter 3: outer dielectric radius \\ \hline 9 & 2.5 & - & parameter 4: relative permittivity of outer dielectric \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . twisted_pair 2 # number of conductors 4 # number of parameters 0.25e-3 # parameter 1: conductor radius 1.0e-3 # parameter 2: conductor separation 0.45e-3 # parameter 3: dielectric radius 2.5 # parameter 4: dielectric relative permittivity \end{verbatim} \subsection{Frequency Dependent Twisted pair} \label{FD_twisted_pair_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & FD\_twisted\_pair & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 2 & integer & Number of conductors, always 2 for frequency dependent twisted pair cables \\ \hline 5 & 4 & integer & Number of parameters, always 4 for frequency dependent twisted pair cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: conductor radius \\ \hline 7 & 0.4e-3 & metre & parameter 2: conductor separation \\ \hline 8 & 2.5e-3 & metre & parameter 3: outer dielectric radius \\ \hline 9 & 5e7 & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline 10 & 1 & integer & number of frequency dependent parameters \\ \hline 11 & \# Dielectric & - & Comment line Frequency dependent dielectric relative permittivity model \\ \hline 12 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 13 & 1 & integer & order of numerator model \\ \hline 14 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 15 & 1 & integer & order of denominator model \\ \hline 16 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . FD_twisted_pair 2 # number of conductors 4 # number of parameters 0.25e-3 # parameter 1: conductor radius 1.0e-3 # parameter 2: conductor separation 0.45e-3 # parameter 3: dielectric radius 5e7 # parameter 4: inner conductor electric conductivity # Dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 \end{verbatim} \subsection{Shielded twisted pair} \label{shielded_twisted_pair_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & shielded\_twisted\_pair & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 3 & integer & Number of conductors, always 3 for shielded twisted pair cables \\ \hline 5 & 6 & integer & Number of parameters, always 6 for shielded twisted pair cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.4e-3 & metre & parameter 2: conductor separation \\ \hline 8 & 1.5e-3 & metre & parameter 3: shield radius \\ \hline 9 & 2.25 & - & parameter 4: relative permittivity of inner dielectric \\ \hline 10 & 2.5e-3 & metre & parameter 5: outer dielectric radius \\ \hline 11 & 2.5 & - & parameter 6: relative permittivity of outer dielectric \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . shielded_twisted_pair 3 # number of conductors 6 # number of parameters 0.25e-3 # parameter 1: conductor radius 1.0e-3 # parameter 2: conductor separation 2.0e-3 # parameter 3: shield radius 2.25 # parameter 4: inner dielectric relative permittivity 3.0e-3 # parameter 5: outer dielectric radius 2.5 # parameter 6: outer dielectric relative permittivity \end{verbatim} \subsection{Frequency dependent shielded twisted pair cable with transfer impedance - low frequency model} \label{ZT_FD_shielded_twisted_pair_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_shielded\_twisted\_pair & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 3 & integer & Number of conductors, always 3 for frequency dependent shielded twisted pair cables \\ \hline 5 & 6 & integer & Number of parameters, always 6 for frequency dependent shielded twisted pair cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.18e-3 & metre & parameter 2: inner dielectric radius \\ \hline 8 & 0.4e-3 & metre & parameter 3: conductor separation \\ \hline 9 & 1.5e-3 & metre & parameter 4: shield radius \\ \hline 10 & 2.5e-3 & metre & parameter 5: outer dielectric radius \\ \hline 11 & 5e7 & Siemens/metre & parameter 6: inner conductor electric conductivity \\ \hline 12 & 2 & integer & number of frequency dependent parameters \\ \hline 13 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 14 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 15 & 1 & integer & order of numerator model \\ \hline 16 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 16 & 1 & integer & order of denominator model \\ \hline 17 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 18 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 19 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 20 & 1 & integer & order of numerator model \\ \hline 21 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 22 & 1 & integer & order of denominator model \\ \hline 23 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 24 & 1 & integer & number of frequency dependent transfer ipedance models \\ \hline 25 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 26 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 27 & 1 & integer & order of numerator model \\ \hline 28 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 29 & 0 & integer & order of denominator model \\ \hline 30 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . ZT_FD_shielded_twisted_pair 3 Number of conductors 6 Number of parameters 0.25e-3 parameter 1: inner conductor radius 0.40e-3 parameter 2: inner dielectric radius 1.0e-3 parameter 3: inner conductor separation 2.0e-3 parameter 4: shield radius 2.5e-3 parameter 5: outer dielectric radius 5e7 parameter 6: inner conductor electric conductivity 2 number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 1 & integer & number of frequency dependent transfer ipedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Frequency dependent shielded twisted pair cable with transfer impedance - high frequency model including shield surface impedance loss} \label{ZT_FD_shielded_twisted_pair2_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_shielded\_twisted\_pair2 & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 3 & integer & Number of conductors, always 3 for frequency dependent shielded twisted pair2 cables \\ \hline 5 & 8 & integer & Number of parameters, always 8 for frequency dependent shielded twisted pair2 cables \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.18e-3 & metre & parameter 2: inner dielectric radius \\ \hline 8 & 0.4e-3 & metre & parameter 3: conductor separation \\ \hline 9 & 1.5e-3 & metre & parameter 4: shield radius \\ \hline 10 & 0.1e-3 & metre & parameter 5: shield thickness \\ \hline 11 & 2.5e-3 & metre & parameter 6: outer dielectric radius \\ \hline 12 & 5e7 & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline 13 & 5e7 & Siemens/metre & parameter 8: shield electric conductivity \\ \hline 14 & 2 & integer & number of frequency dependent parameters \\ \hline 15 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 16 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 16 & 1 & integer & order of numerator model \\ \hline 17 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 18 & 1 & integer & order of denominator model \\ \hline 19 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 20 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 21 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 22 & 1 & integer & order of numerator model \\ \hline 23 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 24 & 1 & integer & order of denominator model \\ \hline 25 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 26 & 1 & integer & number of frequency dependent transfer ipedance models \\ \hline 27 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 28 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 29 & 1 & integer & order of numerator model \\ \hline 30 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 31 & 0 & integer & order of denominator model \\ \hline 32 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . ZT_FD_shielded_twisted_pair2 3 Number of conductors 8 Number of parameters 0.25e-3 parameter 1: inner conductor radius 0.40e-3 parameter 2: inner dielectric radius 1.0e-3 parameter 3: inner conductor separation 2.0e-3 parameter 4: shield radius 0.1e-3 parameter 5: shield thickness 2.5e-3 parameter 6: outer dielectric radius 5e7 parameter 7: inner conductor electric conductivity 5e7 parameter 8: shield electric conductivity 2 number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 1 & integer & number of frequency dependent transfer ipedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Spacewire} \label{spacewire_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & spacewire & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 13 & integer & Number of conductors, always 13 for spacewire \\ \hline 5 & 10 & integer & Number of parameters, always 10 for spacewire \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.4e-3 & metre & parameter 2: conductor separation \\ \hline 8 & 0.8e-3 & metre & parameter 3: inner sheild radius \\ \hline 9 & 2.25 & - & parameter 4: inner dielectric relative permittivity\\ \hline 10 & 1.0e-3 & metre & parameter 5: inner shield jacket radius \\ \hline 11 & 2.25 & - & parameter 6: inner shield jacket relative permittivity\\ \hline 12 & 2.0e-3 & metre & parameter 7: shielded twisted pair radius \\ \hline 13 & 4.5e-3 & metre & parameter 8: outer shield radius \\ \hline 14 & 5.0e-3 & metre & parameter 9: outer dielectric radius \\ \hline 15 & 2.5 & - & parameter 10: outer dielectric relative permittivity\\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . spacewire 13 # number of conductors 10 # number of parameters 0.25e-3 # parameter 1: inner conductor radius 1.0e-3 # parameter 2: inner conductor separation 2.0e-3 # parameter 3: inner shield radius 2.2 # parameter 4: inner dielectric relative permittivity 2.2e-3 # parameter 5: inner shield jacket radius 2.5 # parameter 6: inner shield jacket relative permittivity 4.0e-3 # parameter 7: shielded twisted pair radius 8.0e-3 # parameter 8: outer shield radius 9.0e-3 # parameter 9: outer dielectric radius 2.25 # parameter 10: outer dielectric relative permittivity \end{verbatim} \subsection{Frequency dependent spacewire with transfer impedance - low frequency model} \label{ZT_FD_spacewire_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_spacewire & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 13 & integer & Number of conductors, always 13 for ZT\_FD\_spacewire \\ \hline 5 & 9 & integer & Number of parameters, always 9 for ZT\_FD\_spacewire \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.18e-3 & metre & parameter 2: inner dielectric radius \\ \hline 8 & 0.4e-3 & metre & parameter 3: conductor separation \\ \hline 9 & 0.8e-3 & metre & parameter 4: inner sheild radius \\ \hline 10 & 1.0e-3 & metre & parameter 5: inner shield jacket radius \\ \hline 11 & 2.0e-3 & metre & parameter 6: shielded twisted pair radius \\ \hline 12 & 4.5e-3 & metre & parameter 7: outer shield radius \\ \hline 13 & 5.0e-3 & metre & parameter 8: outer dielectric radius \\ \hline 14 & 5e7 & Siemens/metre & parameter 9: inner conductor electric conductivity \\ \hline 15 & 3 & integer & number of frequency dependent parameters \\ \hline 16 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 17 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 18 & 1 & integer & order of numerator model \\ \hline 19 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 20 & 1 & integer & order of denominator model \\ \hline 21 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 22 & \# Inner shield dielectric & - & Comment line Frequency dependent inner shield dielectric relative permittivity model \\ \hline 23 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 24 & 1 & integer & order of numerator model \\ \hline 25 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 26 & 1 & integer & order of denominator model \\ \hline 27 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 28 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 29 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 30 & 1 & integer & order of numerator model \\ \hline 31 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 32 & 1 & integer & order of denominator model \\ \hline 33 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 34 & 2 & integer & number of frequency dependent transfer ipedance models \\ \hline 35 & \# Inner shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 36 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 37 & 1 & integer & order of numerator model \\ \hline 38 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 39 & 0 & integer & order of denominator model \\ \hline 40 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 41 & \# Outer shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 42 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 43 & 1 & integer & order of numerator model \\ \hline 44 & 0.02 1.9E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 45 & 0 & integer & order of denominator model \\ \hline 46 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . spacewire 13 # number of conductors 9 # Number of parameters 0.25e-3 # parameter 1: inner conductor radius 0.40e-3 # parameter 2: inner dielectric radius 1.0e-3 # parameter 3: inner conductor separation 2.0e-3 # parameter 4: inner shield radius 2.25e-3 # parameter 5: inner shield jacket radius 3.25e-3 # parameter 6: shielded twisted pair radius 5.5e-3 # parameter 7: outer shield radius 6.25e-3 # parameter 8: outer dielectric radius 5e7 # parameter 9: inner conductor electric conductivity 3 number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Inner shield dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 2 & integer & number of frequency dependent transfer ipedance models # Inner shield Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... # Outer shield Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.002 2.8E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Frequency dependent spacewire with transfer impedance - high frequency model including shield surface impedance loss} \label{ZT_FD_spacewire_formats2} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & ZT\_FD\_spacewire2 & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 13 & integer & Number of conductors, always 13 for ZT\_FD\_spacewire2 \\ \hline 5 & 13 & integer & Number of parameters, always 13 for ZT\_FD\_spacewire2 \\ \hline 6 & 0.1e-3 & metre & parameter 1: inner conductor radius \\ \hline 7 & 0.18e-3 & metre & parameter 2: inner dielectric radius \\ \hline 8 & 0.4e-3 & metre & parameter 3: conductor separation \\ \hline 9 & 0.8e-3 & metre & parameter 4: inner sheild radius \\ \hline 10 & 0.1e-3 & metre & parameter 5: inner shield thickness \\ \hline 11 & 1.0e-3 & metre & parameter 6: inner shield jacket radius \\ \hline 12 & 2.0e-3 & metre & parameter 7: shielded twisted pair radius \\ \hline 13 & 4.5e-3 & metre & parameter 8: outer shield radius \\ \hline 14 & 0.1e-3 & metre & parameter 9: outer shield thickness \\ \hline 15 & 5.0e-3 & metre & parameter 10: outer dielectric radius \\ \hline 16 & 5e7 & Siemens/metre & parameter 11: inner conductor electric conductivity \\ \hline 17 & 5e7 & Siemens/metre & parameter 12: inner shield electric conductivity \\ \hline 18 & 5e7 & Siemens/metre & parameter 13: outer shield electric conductivity \\ \hline 19 & 3 & integer & number of frequency dependent parameters \\ \hline 20 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 21 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 22 & 1 & integer & order of numerator model \\ \hline 23 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 24 & 1 & integer & order of denominator model \\ \hline 25 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 26 & \# Inner shield dielectric & - & Comment line Frequency dependent inner shield dielectric relative permittivity model \\ \hline 27 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 28 & 1 & integer & order of numerator model \\ \hline 29 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 30 & 1 & integer & order of denominator model \\ \hline 31 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 32 & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 33 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 34 & 1 & integer & order of numerator model \\ \hline 35 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 36 & 1 & integer & order of denominator model \\ \hline 37 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 38 & 2 & integer & number of frequency dependent transfer ipedance models \\ \hline 39 & \# Inner shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 40 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 41 & 1 & integer & order of numerator model \\ \hline 42 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 43 & 0 & integer & order of denominator model \\ \hline 44 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline 45 & \# Outer shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 46 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 47 & 1 & integer & order of numerator model \\ \hline 48 & 0.02 1.9E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 49 & 0 & integer & order of denominator model \\ \hline 50 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . spacewire 13 # number of conductors 13 # Number of parameters 0.25e-3 # parameter 1: inner conductor radius 0.40e-3 # parameter 2: inner dielectric radius 1.0e-3 # parameter 3: inner conductor separation 2.0e-3 # parameter 4: inner shield radius 0.1e-3 # parameter 5: inner shield thickness 2.25e-3 # parameter 6: inner shield jacket radius 3.25e-3 # parameter 7: shielded twisted pair radius 5.5e-3 # parameter 8: outer shield radius 0.1e-3 # parameter 9: outer shield thickness 6.25e-3 # parameter 10: outer dielectric radius 5e7 # parameter 11: inner conductor electric conductivity 5e7 # parameter 12: inner shield electric conductivity 5e7 # parameter 13: outer shield electric conductivity 3 number of frequency dependent parameters # Inner dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Inner shield dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.6 2.0 1 # b order, b coefficients follow below: 1.0 1.0 # Outer dielectric relative permittivity model follows 1E7 # w normalisation constant 1 # a order, a coefficients follow below: 2.40 2.20 1 # b order, b coefficients follow below: 1.0 1.0 2 & integer & number of frequency dependent transfer ipedance models # Inner shield Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... # Outer shield Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.002 2.8E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Overshield format} \label{overshield_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & overshield & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 1 & integer & Number of conductors, always 1 for an overshield \\ \hline 5 & 3 & integer & Number of parameters, always 3 for an overshield \\ \hline 6 & 0.005 & m & \# parameter 1: overshield radius \\ \hline 7 & 0.0001 & m & \# parameter 2: overshield thickness \\ \hline 8 & 5E7 & Siemens/m & \# parameter 3: overshield conductivity \\ \hline 9 & 0 & integer & number of frequency dependent parameters \\ \hline 10 & 1 & integer & number of frequency dependent transfer impedance models \\ \hline 11 & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline 12 & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 13 & 1 & integer & order of numerator model \\ \hline 14 & 0.05 1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 15 & 0 & integer & order of denominator model \\ \hline 16 & 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS overshield # cable type 1 # number of conductors 3 # number of parameters 0.005 # parameter 1: overshield radius 0.0001 # parameter 2: overshield thickness 5E7 # parameter 3: overshield conductivity 0 # number of frequency dependent parameters 1 # number of frequency dependent transfer impedance models # Transfer impedance model 1.0 # angular frequency normalisation 1 # order of numerator model 0.05 1.6E-9 # list of numerator coefficients a0 a1 a2... 0 # order of denominator model 1.0 # list of denominator coefficients b0 b1 b2... \end{verbatim} \subsection{Rectangular conductor format} \label{rectangular_conductor_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & rectangular & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 1 & integer & Number of conductors, always 1 for rectangular cables \\ \hline 5 & 1 & integer & Number of parameters, always 2 for rectangular cables \\ \hline 6 & 1.5e-3 & metre & parameter 1: conductor width \\ \hline 7 & 0.25e-3 & metre & parameter 2: conductor height \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . rectangular 1 # number of conductors 2 # number of parameters 1.1e-4 # parameter 1: conductor width 1.0e-3 # parameter 1: conductor height \end{verbatim} \subsection{flex cable format} \label{flex_cable_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & flex\_cable & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 1 & integer & Number of conductors - can be any number of conductors in a flex cable model\\ \hline 5 & 6 & integer & Number of parameters, always 6 for flex cables \\ \hline 6 & 1.5e-3 & metre & parameter 1: conductor width (x) \\ \hline 7 & 0.25e-3 & metre & parameter 2: conductor height (y)\\ \hline 8 & 0.25e-3 & metre & parameter 3: conductor separation (x) \\ \hline 9 & 0.25e-3 & metre & parameter 4: dielectric offset in x \\ \hline 10 & 0.25e-3 & metre & parameter 5: dielectric offset in y \\ \hline 11 & 5E7 & Siemens/metre & parameter 6: conductivity \\ \hline 12 & 1 & integer & number of frequency dependent parameters \\ \hline 13 & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline 14 & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline 15 & 1 & integer & order of numerator model \\ \hline 16 & 2.6 2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline 17 & 1 & integer & order of denominator model \\ \hline 18 & 1.0 1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . flex_cable 3 # number of conductors 6 # number of parameters 1.0e-3 # parameter 1: conductor width (x dimension) 0.25e-3 # parameter 2: conductor height (y dimension) 0.5e-3 # parameter 3: conductor separation (x dimension) 0.2e-3 # parameter 4: dielectric offset x 0.1e-3 # parameter 5: dielectric offset y 5E7 # parameter 6: conductivity 1 # number of frequency dependent parameters # dielectric relative permittivity model follows 1E9 # w normalisation constant 1 # a order, a coefficients follow below: 2.2 2.0 1 # b order, b coefficients follow below: 1.0 1.0 \end{verbatim} \subsection{Dconnector format} \label{Dconnector_file_formats} \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to write the cable model file to \\ \hline 3 & Dconnector & - & Cable type. Note there should be nothing else on this line \\ \hline 4 & 10 & integer & Number of conductors must be at least 5 for a Dconnector model\\ \hline 5 & 4 & integer & Number of parameters, always 4 for a D connector \\ \hline 6 & 0.45e-3 & metre & parameter 1: conductor radius \\ \hline 7 & 0.25e-3 & metre & parameter 2: conductor pitch (separation in x) \\ \hline 8 & 0.25e-3 & metre & parameter 3: conductor separation in y \\ \hline 9 & 0.25e-3 & metre & parameter 4: offset from conductors to shell \\ \hline 10 & 0 & integer & number of frequency dependent parameters \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} \begin{verbatim} #MOD_cable_lib_dir . Dconnector 10 # number of conductors 4 # number of parameters 0.5e-3 # parameter 1: conductor radius 1.5e-3 # parameter 2: conductor pitch (separation in x) 1.5e-3 # parameter 3: conductor separation in y 1.0e-3 # parameter 4: offset from conductors to shell 0 # number of frequency dependent parameters 0 # number of transfer impedance models use_laplace plot_mesh \end{verbatim} \section{Cable Bundle Specification File Formats} \label{Cable_bundle_spec_file_formats} This section describes the cable bundle specification file formats used as the input to the cable bundle model building process. Cable bundle specification files have the extension \textbf{name.bundle\_spec}. The inputs required are the cables which constitute the bundle and their configuration in the bundle cross section, an indication of the presence or absence of a ground plane and if a ground plane is present, its configuration in the bundle cross section. In addition to the data required to specify a cable bundle, additional flags may be specified to influence the operation of the software. These flags are as follows: \begin{enumerate} \item 'verbose' output detailed summary of the software operation and calculation results.\\ \item 'use\_laplace' use the numerical Laplace solver to calculate inductance and capacitance matrices for the external domain and any overshielded domains. By default, approximate analytic formulae are used. \\ \item 'plot\_mesh' output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\ \end{enumerate} If the Laplace solver is used then the mesh generation is be controlled by the paramters \begin{enumerate} \item 'Laplace\_boundary\_constant' This parameter determines the distance to the outer boundary in open boundary domains. The distance to the outer boundary is calculated by first determining the largest dimension of the conductor system (including the ground plane point), bundle\_size. The outer boundary is defined as a circle of radius $bundle_size*Laplace_boundary_constant$. The default value is 3. \\ \item 'Laplace\_surface\_mesh\_constant' This parameter determines the number of finite element edges on a conductor surface. The number of elements on a cylindrical conductor of radius r is $\frac{r}{Laplace_surface_mesh_constant}$. The default value is 3. \\ \end{enumerate} The default parameters are a compromise between accuracy and computation time for the Laplace solution. The default values may be overridden by the user by appending the following to the end of the .bundle\_spec file: \begin{verbatim} Laplace_boundary_constant 4 Laplace_surface_mesh_constant 5 \end{verbatim} A ground plane may be included in the bundle as shown in figure \ref{fig_ground_plane_specification} \begin{figure}[h] \centering \includegraphics[scale=1]{./Imgs/ground_plane_specification.eps} \caption{Specification of the ground plane position in the bundle cross section} \label{fig_ground_plane_specification} \end{figure} The .bundle\_spec file format is shown below, along with an example. \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to read the cable model file to \\ \hline 3 & \#MOD\_bundle\_lib\_dir & - & Comment line \\ \hline 4 & . & - & Directory to write the cable bundle model file to \\ \hline 5 & 2 & integer & Number of cables in the cable bundle \\ \hline \\ \hline For each cable: & & & \\ \hline - & cable name & - & Name of cable in the cable model directory \\ \hline - & 0.02 0.045 & metres metres & x and y coordinates of the centre of the cable in the bundle cross section \\ \hline \\ \hline - & ground\_plane & - & ground\_plane or no\_ground\_plane as required for the bundlle\\ \hline - & $\theta$ d & degrees metres & If a ground plane is specified then propvide the angle of the ground plane normal measured from the x axis and offset from the origin along the normal direction figure \ref{fig_ground_plane_specification} \\ \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{Example}} Bundle model name: two\_wires\_over\_ground \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS #MOD_bundle_lib_dir LIBRARY_OF_BUNDLE_MODELS 2 # Number of cables in bundle, cable list follows single_wire 6.35e-4 -0.001 single_wire 6.35e-4 0.001 ground_plane 0.0 0.0 ! angle and offset of ground plane use_laplace plot_mesh Laplace_boundary_constant 4 Laplace_surface_mesh_constant 5 \end{verbatim} \section{Spice Cable Bundle Specification File Formats} \label{Spice_cable_bundle_spec_file_formats} This section describes the spice cable bundle specification file formats used as the input to the spice cable bundle model building process. Spice cable bundle specification files have the extension \textbf{name.spice\_model\_spec}. The input file to the spice cable bundle building processs includes the bundle name, bundle length, incident field specification (if required) and the specification of the validation test configuration. In addition information regarding the transfer impedance models to be included and also information to control the transfer function fitting process can be specified. The validation test configuration is shown in figure \ref{fig_validation_test_case_config} \begin{figure}[h] \centering \includegraphics[scale=1]{./Imgs/validation_test_case_configuration_portrait.eps} \caption{Validation test case configuration} \label{fig_validation_test_case_config} \end{figure} In addition to the data required to specify a cable bundle, additional flags may be specified to influence the operation of the software. These flags are as follows: \begin{enumerate} \item 'verbose' output detailed summary of the software operation and calculation results.\\ \item 'use\_xie' use Xie's model for incident field excitation of shielded cables.\\ \item 'no\_s\_xfer' For first order frequency dependent models (transfer impedance, propagation correction) we may use a passive circuit implementation for frequency dependent transfer functions instead of s-domain transfer functions. This may be of use in Ngspice models which fail to run.\\ \end{enumerate} The file format with no transfer impdance models or transfer function fitting information is as follows: \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to read the cable model file to \\ \hline 3 & \#MOD\_bundle\_lib\_dir & - & Comment line \\ \hline 4 & . & - & Directory to read the cable bundle model file from \\ \hline 5 & \#MOD\_spice\_bundle\_lib\_dir & - & Comment line \\ \hline 6 & . & - & Directory to write the spice cable bundle model file to \\ \hline 7 & \# two wires over ground plane, crosstalk model & - & Comment line \\ \hline 8 & two\_wires\_over\_ground & - & Cable bundle name Note there should be nothing else on this line \\ \hline 9 & \# bundle length & - & Comment line \\ \hline 10 & 2.0 & metres & Cable bundle length \\ \hline 11 & \# incident field specification & - & Comment line \\ \hline 12 & 0.0 & V/m & Amplitude \\ \hline 13 & 90.0 0.0 & degrees & Wave vector angle k$\theta$ k$\phi$ \\ \hline 14 & 1.0 0.0 & degrees & Polarisation E$\theta$ E$\phi$ \\ \hline 15 & \# End 1 termination model & - & Number of sources and resistances = number of conductors-1 \\ \hline 16 & 1.0 & V & End 1, conductor 1 voltage source amplitude \\ \hline - & 0.0 & V & End 1, conductor 2 voltage source amplitude \\ \hline - & 50.0 & $\Omega$ & End 1, conductor 1 resistance \\ \hline - & 25.0 & $\Omega$ & End 1, conductor 2 resistance \\ \hline - & \# End 2 termination model & - & Number of sources and resistances = number of conductors-1 \\ \hline - & 1.0 & V & End 2, conductor 1 voltage source amplitude \\ \hline - & 0.0 & V & End 2, conductor 2 voltage source amplitude \\ \hline - & 50.0 & $\Omega$ & End 2, conductor 1 resistance \\ \hline - & 25.0 & $\Omega$ & End 2, conductor 2 resistance \\ \hline - & \# Type of analysis & - & Comment line \\ \hline - & AC & - & AC or TRANS \\ \hline \\ \hline For AC analysis: & & & \\ \hline - & lin & - & logarithmic (log) or linear (lin) frequency scale \\ \hline - & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency number of frequencies \\ \hline \\ \hline For TRANSIENT analysis & & & \\ \hline - & 0.01E-9 100E-9 & seconds seconds & \# timestep runtime \\ \hline - & 1e-9 50e-9 & seconds seconds & \# pulse risetime pulse width \\ \hline \\ \hline - & \# Output conductor number and end number & - & Comment line \\ \hline - & 1 1 & integer integer & Output conductor number and end number \\ \hline - & lin & - & For AC only: Output voltage scaling, linear or dB \\ \hline \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{AC example}} \begin{verbatim} #MOD_cable_lib_dir LIBRARY_OF_CABLE_MODELS #MOD_bundle_lib_dir LIBRARY_OF_BUNDLE_MODELS #MOD_spice_bundle_lib_dir #LIBRARY_OF_BUNDLE_MODELS/two_wires_over_ground ./ #spice_symbol_dir SYMBOL_DIR # Specification for spice model of single wire over ground, no loss two_wires_over_ground # cable bundle length (m) 2.0 #Incident field specification 0.0 amplitude (V/m) 90.0 0.0 ktheta kphi (degrees) -1.0 0.0 Etheta Ephi # End 1 termination model 1.0 End 1 voltage source list 0.0 100.0 End 1 impedance list 25.0 # End 2 termination model 0.0 End 2 voltage source list 0.0 75.0 End 2 impedance list 50.0 # Type of analysis AC log # frequency scale (log or lin) 1e3 1e8 1000 # fmin fmax number_of_frequencies # Output conductor number and end number 1 1 lin # output type (lin or dB) \end{verbatim} \vspace{5mm} \textbf{\underline{Transient example}} \begin{verbatim} #MOD_cable_lib_dir . #MOD_bundle_lib_dir . MOD_spice_bundle_lib_dir . #spice_symbol_dir SYMBOL_DIR 2 # number of conductors, n. Conductor n is always the reference conductor 2_wire # cable bundle length (m) 2.0 #Incident field specification 0.0 amplitude (V/m) 90.0 0.0 ktheta kphi (degrees) -1.0 0.0 Etheta Ephi # End 1 termination model 1 End 1 voltage source list 50.0 End 1 impedance list # End 2 termination model 0 End 2 voltage source list 50.0 End 2 impedance list # Type of analysis TRANS 0.01E-9 100E-9 # timestep runtime 1e-9 50e-9 # pulse_risetime pulse_width # Output conductor number and end number 1 1 \end{verbatim} In the case of frequency dependent models and transfer impedance coupling models then the above file format can be adapted to include additional information required to drive these models. A weak form of the transfer impedance is implemented in this work hence the direction of coupling must be specified. In order to include a transfer impedance model the conductor number for the shield whose transfer impdeance is required. In addition to this the direction of the transfer impedance coupling must be specified. The direction is specified as an integer where +1 indicates coupling from inside the shield to outside and -1 indicates coupling from the outside to the inside. The frequency dependent propagation correction takes the form of a s-domain transfer function in the spice model. These propagation correction transfer functions are derived using a rational function fitting process. This process provides a best fit model of specified order over a specified frequency range. As a default the model order is 0 i.e. no frequency dependent propagation correction. The model order can be specified in two ways: \begin{enumerate} \item The order is specified as a positive integer and this is the order used \item A negative integer is specified. In this case the order is chosen using an automatic algorithm which attempts to choose the best order from 0 up to |specified order| \end{enumerate} The frequency range for the model fit may also be specified as can the use of a log or linear frequency scale. If the frequency range is not specified then it is derived from the definition of the validation test case. The format is descibed below followed by an example. \begin{center} \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |} \hline Line number & Typical value & Unit & Description \\ \hline 1 & \#MOD\_cable\_lib\_dir & - & Comment line \\ \hline 2 & . & - & Directory to read the cable model file to \\ \hline 3 & \#MOD\_bundle\_lib\_dir & - & Comment line \\ \hline 4 & . & - & Directory to read the cable bundle model file from \\ \hline 5 & \#MOD\_spice\_bundle\_lib\_dir & - & Comment line \\ \hline 6 & . & - & Directory to write the spice cable bundle model file to \\ \hline 7 & \# two wires over ground plane, crosstalk model & - & Comment line \\ \hline 8 & two\_wires\_over\_ground & - & Cable bundle name Note there should be nothing else on this line \\ \hline 9 & \# bundle length & - & Comment line \\ \hline 10 & 2.0 & metres & Cable bundle length \\ \hline 11 & \# incident field specification & - & Comment line \\ \hline 12 & 0.0 & V/m & Amplitude \\ \hline 13 & 90.0 0.0 & degrees & Wave vector angle k$\theta$ k$\phi$ \\ \hline 14 & 1.0 0.0 & relative amplitudes & Polarisation E$\theta$ E$\phi$ \\ \hline 15 & \#Transfer impedance terms & - & this line must inlcude the words 'transfer impedance' to indicate that transfer impedance information follows \\ \hline 16 & 1 & integer & \# number of transfer impedances to include in the model \\ \hline - & 3 +1 & integer integer & \# shield conductor number and coupling direction for transfer impedance model 1 + is inside to out \\ \hline - & \# End 1 termination model & - & Number of sources and resistances = number of conductors-1 \\ \hline - & 1.0 & V & End 1, conductor 1 voltage source amplitude \\ \hline - & 0.0 & V & End 1, conductor 2 voltage source amplitude \\ \hline - & 50.0 & $\Omega$ & End 1, conductor 1 resistance \\ \hline - & 25.0 & $\Omega$ & End 1, conductor 2 resistance \\ \hline - & \# End 2 termination model & - & Number of sources and resistances = number of conductors-1 \\ \hline - & 1.0 & V & End 2, conductor 1 voltage source amplitude \\ \hline - & 0.0 & V & End 2, conductor 2 voltage source amplitude \\ \hline - & 50.0 & $\Omega$ & End 2, conductor 1 resistance \\ \hline - & 25.0 & $\Omega$ & End 2, conductor 2 resistance \\ \hline - & \# Type of analysis & - & Comment line \\ \hline - & AC & - & AC or TRANS \\ \hline \\ \hline For AC analysis: & & & \\ \hline - & lin & - & logarithmic (log) or linear (lin) frequency scale \\ \hline - & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency number of frequencies \\ \hline \\ \hline For TRANSIENT analysis & & & \\ \hline - & 0.01E-9 100E-9 & seconds seconds & \# timestep runtime \\ \hline - & 1e-9 50e-9 & seconds seconds & \# pulse risetime pulse width \\ \hline \\ \hline - & \# Output conductor number and end number & - & Comment line \\ \hline - & 1 1 & integer integer & Output conductor number and end number \\ \hline - & lin & - & For AC only: Output voltage scaling, linear or dB \\ \hline - & -10 & integer & \# order for transfer function fit model \\ \hline - & log & - & logarithmic (log) or linear (lin) frequency scale for transfer function fitting \\ \hline - & real real integer & 1e5 1e9 200 & \# fmin fmax number\_of\_frequencies for transfer function fitting \\ \hline \hline \end{tabular} \end{center} \vspace{5mm} \textbf{\underline{AC example for a frequency dependent coaxial cable with a transfer impedance model plus a single wire}} \begin{verbatim} #MOD_cable_lib_dir ./ #MOD_bundle_lib_dir ./ #MOD_spice_bundle_lib_dir ./ #spice_symbol_dir ./ # Specification for spice model of two wire transmission line, no loss zt_test # cable bundle length (m) 1.0 #Incident field specification 0.0 amplitude (V/m) 90.0 0.0 ktheta kphi (degrees) -1.0 0.0 Etheta Ephi #Transfer impedance terms 1 # number of transfer impedances to include in the model 3 +1 # conductor number and coupling direction for transfer impedance model 1 + is inside to out # End 1 termination model 0.02 End 1 voltage source list 0.5 300.0 End 1 impedance list 20.0 # End 2 termination model 0.03 End 2 voltage source list 1.0 1000.0 End 2 impedance list 150.0 # Type of analysis AC log # frequency scale (log or lin) 1e5 1e9 1000 # fmin fmax number_of_frequencies # Output conductor number and end number 1 2 lin # output type (lin or dB) -10 # order for transfer function fit model log # frequency scale for transfer function fit (log or lin) 1e5 1e9 200 # fmin fmax number_of_frequencies for transfer function fit \end{verbatim} In addition to the data required to specify a spice cable bundle model, additional flags may be specified to influence the operation of the software. These flags are as follows: \begin{enumerate} \item 'verbose' output detailed summary of the software operation and calculation results.\\ \end{enumerate} \cleardoublepage