!
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice.
! It was developed by the University of Nottingham and the Netherlands Aerospace
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
!
! Copyright (C) 2016-2018 University of Nottingham
!
! SACAMOS is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! SACAMOS is distributed in the hope that it will be useful, but
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
! for more details.
!
! A copy of the GNU General Public License version 3 can be found in the
! file GNU_GPL_v3 in the root or at .
!
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public
! License version can be found in the file GNU_LGPL in the root of EISPACK
! (/SRC/EISPACK ) or at .
!
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
! File Contents:
!
! SUBROUTINE PUL_LC_calc_wide_separation_approximation
! SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
! SUBROUTINE calculate_height_over_ground_plane(x,y,theta,d,h)
!
! NAME
! SUBROUTINE PUL_LC_calc_wide_separation_approximation
!
! Calculation of PUL_parameters for cylindrical conductors in free space
! using a wide separation approximation
! The calculation allows the inclusion of a ground plane in the system of conductors
!
! The calculation is based on the theory in the Theory Manual however more detailed analysis and derivations
! can be found in
! C.R.Paul, "Analysis of Multiconductor Transmission Lines" John Wiley and Sons
!
! COMMENTS
!
!
! HISTORY
! started 2/12/2015 CJS
! 8/5/2017 CJS: Include references to Theory_Manual
!
SUBROUTINE PUL_LC_calc_wide_separation_approximation(PUL)
USE type_specifications
USE constants
USE general_module
USE maths
IMPLICIT NONE
! variables passed to subroutine
type(PUL_type),intent(INOUT) :: PUL ! per-unit-length parameter calculation structure
! local variables
integer :: nc ! number of conductors
integer :: matrix_dimension
integer :: row,col
real(dp) :: x_0,y_0 ! x and y of reference conductor
real(dp) :: x_row,y_row ! x and y of row conductor
real(dp) :: x_col,y_col ! x and y of col conductor
real(dp) :: d_row_0 ! distance from row conductor to reference conductor
real(dp) :: d_row_col ! distance from row conductor to col conductor
real(dp) :: d_col_0 ! distance from col conductor to reference conductor
real(dp) :: r_row ! radius of row conductor
real(dp) :: r_col ! radius of col conductor
real(dp) :: r_0 ! radius of reference conductor
real(dp) :: h_row ! height of row conductor above the ground plane
real(dp) :: h_col ! height of col conductor above the ground plane
integer :: ierr
! START
! Work out the dimension of the per-unit-length matrices
nc=PUL%n_conductors
matrix_dimension=nc-1
if (verbose) then
write(*,*)'CALLED PUL_LC_calc_wide_separation_approximation'
write(*,*)'Number of conductors=',nc
write(*,*)'matrix dimension=',matrix_dimension
end if
! check we have a valid system
if (matrix_dimension.LT.1) then
run_status='ERROR in PUL_LC_calc_wide_separation_approximation, Matrix dimension is less than 1'
CALL write_program_status()
STOP 1
end if
! Allocate the per-unit-length matrices
PUL%L%dim=matrix_dimension
ALLOCATE( PUL%L%mat(1:PUL%L%dim,1:PUL%L%dim) )
PUL%C%dim=matrix_dimension
ALLOCATE( PUL%C%mat(1:PUL%C%dim,1:PUL%C%dim) )
PUL%G%dim=matrix_dimension
ALLOCATE( PUL%G%mat(1:PUL%G%dim,1:PUL%G%dim) )
! Allocate the impedance and admittance filter matrices
PUL%Zfilter%dim=matrix_dimension
ALLOCATE(PUL%Zfilter%sfilter_mat(1:PUL%Zfilter%dim,1:PUL%Zfilter%dim))
PUL%Yfilter%dim=matrix_dimension
ALLOCATE(PUL%Yfilter%sfilter_mat(1:PUL%Yfilter%dim,1:PUL%Yfilter%dim))
! Calculate the inductance matrix first
if (PUL%ground_plane_present) then
do row=1,nc-1
! calculate the diagonal element here
x_row=PUL%x(row)
y_row=PUL%y(row)
r_row=PUL%r(row)
CALL calculate_height_over_ground_plane(x_row,y_row,r_row, &
PUL%ground_plane_angle,PUL%ground_plane_offset,h_row)
PUL%L%mat(row,row)=(mu0/(2d0*pi))*log(2d0*h_row/r_row) ! Paul equation 3.66a Theory_Manual_Eqn 2.24
do col=row+1,nc-1
! calculate the off diagonal elements here
x_col=PUL%x(col)
y_col=PUL%y(col)
r_col=PUL%r(col)
d_row_col=sqrt((x_row-x_col)**2+(y_row-y_col)**2)
CALL calculate_height_over_ground_plane(x_col,y_col,r_col, &
PUL%ground_plane_angle,PUL%ground_plane_offset,h_col)
PUL%L%mat(row,col)=(mu0/(4d0*pi))*log(1d0+4d0*h_row*h_col/(d_row_col**2)) ! C.R.Paul equation 3.66b Theory_Manual_Eqn 2.25
! The matrix is symmetric so we can set L[col,row]=L[row,col]
PUL%L%mat(col,row)=PUL%L%mat(row,col)
end do ! next col
end do ! next row
else
! There is no ground plane so choose the last conductor specified as the reference
x_0=PUL%x(nc)
y_0=PUL%y(nc)
r_0=PUL%r(nc)
do row=1,nc-1
! calculate the diagonal element here
x_row=PUL%x(row)
y_row=PUL%y(row)
r_row=PUL%r(row)
d_row_0=sqrt((x_row-x_0)**2+(y_row-y_0)**2)
PUL%L%mat(row,row)=(mu0/(2d0*pi))*log(d_row_0**2/(r_0*r_row)) ! Paul equation 3.63a Theory_Manual_Eqn 2.21
do col=row+1,nc-1
! calculate the off diagonal elements here
x_col=PUL%x(col)
y_col=PUL%y(col)
d_col_0=sqrt((x_col-x_0)**2+(y_col-y_0)**2)
d_row_col=sqrt((x_row-x_col)**2+(y_row-y_col)**2)
PUL%L%mat(row,col)=(mu0/(2d0*pi))*log(d_row_0*d_col_0/(d_row_col*r_0)) ! C.R.Paul equation 3.63b Theory_Manual_Eqn 2.22
! The matrix is symmetric so we can set L[col,row]=L[row,col]
PUL%L%mat(col,row)=PUL%L%mat(row,col)
end do ! next col
end do ! next row
end if
! The capacitance matrix is calculated as mu0*eps0*[L_inverse] ! Theory_Manual_Eqn 2.23
ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
CALL dinvert_Gauss_Jordan(PUL%L%mat,matrix_dimension,PUL%C%mat,matrix_dimension,ierr)
PUL%C%mat(:,:)=mu0*eps0*PUL%C%mat(:,:)
! Conductance matrix is set to zero
PUL%G%mat(:,:)=0d0
! calculate the impedance and admittance filters
CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
if (verbose) then
write(*,*)'Inductance matrix, L'
CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
write(*,*)'Capacitance matrix, C'
CALL dwrite_matrix(PUL%C%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
end if
END SUBROUTINE PUL_LC_calc_wide_separation_approximation
!
! NAME
! SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
!
! Calculation of PUL_parameters for cylindrical conductors within a cylindrical return conductor (overshield)
! using a wide separation approximation
!
! The calculation is based on the theory in:
! C.R.Paul, "Analysis of Multiconductor Transmission Lines" John Wiley and Sons
!
! COMMENTS
!
!
! HISTORY
! started 18/04/2016 CJS
! 24/04/2016 CJS Fix problem with off diagonal inductance matrix calculation due to problem with cos_theta_row_col calculation.
! 26/10/2016 CJS Fix 0/0 error when d_col=0 for off diagonal elements
! 8/5/2017 CJS: Include references to Theory_Manual
!
SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation(PUL)
USE type_specifications
USE constants
USE general_module
USE maths
IMPLICIT NONE
! variables passed to subroutine
type(PUL_type),intent(INOUT) :: PUL ! per-unit-length parameter calculation structure
! local variables
integer :: nc ! number of conductors
integer :: matrix_dimension
integer :: row,col
real(dp) :: xs,ys ! x and y of reference conductor
real(dp) :: rs ! radius of reference conductor
real(dp) :: x_row,y_row ! x and y of row conductor
real(dp) :: d_row ! distance from row conductor to centre of reference conductor
real(dp) :: r_row ! radius of row conductor
real(dp) :: x_col,y_col ! x and y of col conductor
real(dp) :: d_col ! distance from col conductor to centre of reference conductor
real(dp) :: r_col ! radius of col conductor
real(dp) :: d_row_col ! distance from row conductor to col conductor
real(dp) :: theta_row ! angular of row conductor
real(dp) :: theta_col ! angular of row conductor
real(dp) :: cos_theta_row_col ! angular separation of conductors
real(dp) :: num
real(dp) :: den
integer :: ierr
! START
if (verbose) then
write(*,*)'CALLED: PUL_LC_calc_overshield_wide_separation_approximation'
write(*,*)'n_conductors (including overshield)=',PUL%n_conductors
end if
! Work out the dimension of the per-unit-length matrices
nc=PUL%n_conductors
matrix_dimension=nc-1 ! the conductor list includes the oversheild
! Allocate the per-unit-length matrices
PUL%L%dim=matrix_dimension
ALLOCATE( PUL%L%mat(1:PUL%L%dim,1:PUL%L%dim) )
PUL%C%dim=matrix_dimension
ALLOCATE( PUL%C%mat(1:PUL%C%dim,1:PUL%C%dim) )
PUL%G%dim=matrix_dimension
ALLOCATE( PUL%G%mat(1:PUL%G%dim,1:PUL%G%dim) )
! Allocate the impedance and admittance filter matrices
PUL%Zfilter%dim=matrix_dimension
ALLOCATE(PUL%Zfilter%sfilter_mat(1:PUL%Zfilter%dim,1:PUL%Zfilter%dim))
PUL%Yfilter%dim=matrix_dimension
ALLOCATE(PUL%Yfilter%sfilter_mat(1:PUL%Yfilter%dim,1:PUL%Yfilter%dim))
! Calculate the inductance matrix first
xs=PUL%overshield_x
ys=PUL%overshield_y
rs=PUL%overshield_r
do row=1,nc-1
! calculate the diagonal element here
x_row=PUL%x(row)
y_row=PUL%y(row)
r_row=PUL%r(row)
d_row=sqrt((x_row-xs)**2+(y_row-ys)**2)
theta_row=atan2((y_row-ys),(x_row-xs))
! Check we have a valid conductor system
if ((d_row+r_row).GE.rs) then
if (verbose) then
write(*,*)'ERROR in PUL_LC_calc_overshield_wide_separation_approximation'
write(*,*)'Conductor lies outside or intersects the reference shield conductor'
write(*,*)'Shield radius=',rs
write(*,*)'di =',d_row
write(*,*)'rwi=',r_row
end if
run_status='ERROR in PUL_LC_calc_overshield_wide_separation_approximation,'// &
' Conductor lies outside or intersects the reference shield conductor'
CALL write_program_status()
STOP 1
end if
PUL%L%mat(row,row)=(mu0/(2d0*pi))*log( (rs**2-d_row**2)/(rs*r_row) ) ! Paul equation 3.67a Theory_Manual_Eqn 2.27
if(verbose) then
write(*,*)'row=',row
write(*,*)'xs=',xs
write(*,*)'ys=',ys
write(*,*)'rs=',rs
write(*,*)'x_row=',x_row
write(*,*)'y_row=',y_row
write(*,*)'r_row=',r_row
write(*,*)'d_row=',d_row
write(*,*)'L=', PUL%L%mat(row,row)
end if
do col=row+1,nc-1
! calculate the off diagonal elements here
x_col=PUL%x(col)
y_col=PUL%y(col)
d_col=sqrt((x_col-xs)**2+(y_col-ys)**2)
d_row_col=sqrt((x_row-x_col)**2+(y_row-y_col)**2)
theta_col=atan2((y_col-ys),(x_col-xs))
cos_theta_row_col=cos(theta_row-theta_col)
! Check we have a valid conductor system
if ((d_col+r_col).GE.rs) then
if (verbose) then
write(*,*)'ERROR in PUL_LC_calc_overshield_wide_separation_approximation'
write(*,*)'Conductor lies outside or intersects the reference shield conductor'
write(*,*)'Shield radius=',rs
write(*,*)'di =',d_col
write(*,*)'rwi=',r_col
end if
run_status='ERROR in PUL_LC_calc_overshield_wide_separation_approximation,'// &
' Conductor lies outside or intersects the reference shield conductor'
CALL write_program_status()
STOP 1
end if
num=(d_row*d_col)**2+rs**4-2d0*d_row*d_col*(rs**2)*cos_theta_row_col
! divide den by d_col**2
den=(d_row)**2+d_col**2-2d0*d_row*d_col*cos_theta_row_col
! Divide by d_col
PUL%L%mat(row,col)=(mu0/(2d0*pi))*log( (1d0/rs)*sqrt(num/den) ) ! C.R.Paul equation 367b (revised) ! Theory_Manual_Eqn 2.28
! The matrix is symmetric so we can set L[col,row]=L[row,col]
PUL%L%mat(col,row)=PUL%L%mat(row,col)
end do ! next col
end do ! next row
! The capacitance matrix is calculated as mu0*eps0*[L_inverse] Theory_Manual_Eqn 2.29
if (verbose) then
write(*,*)'L:'
CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
end if
ierr=0 ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
CALL dinvert_Gauss_Jordan(PUL%L%mat,matrix_dimension,PUL%C%mat,matrix_dimension,ierr)
PUL%C%mat(:,:)=mu0*eps0*PUL%C%mat(:,:)
! Conductance matrix is set to zero
PUL%G%mat(:,:)=0d0
! calculate the impedance and admittance filters
CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
if (verbose) then
write(*,*)'Inductance matrix, L'
CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
write(*,*)'Capacitance matrix, C'
CALL dwrite_matrix(PUL%C%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
end if
END SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
!
! NAME
! SUBROUTINE calculate_height_over_ground_plane
!
!
! COMMENTS
!
!
! HISTORY
! started 2/12/2015 CJS
!
SUBROUTINE calculate_height_over_ground_plane(x,y,r,theta,d,h)
USE type_specifications
USE general_module
IMPLICIT NONE
! variables passed to subroutine
real(dp),intent(IN) :: x,y ! coordinates of point in the x-y plane
real(dp),intent(IN) :: r ! radius of the wire (to check that wire doesn't intersect the ground)
real(dp),intent(IN) :: theta ! angle of the ground plane normal to the x axis (radians)
real(dp),intent(IN) :: d ! distance from the origin to the ground plane along the normal direction
real(dp),intent(OUT) :: h ! distance from the point to the ground plane
! local variables
real(dp) :: nx,ny ! unit normal to ground plane in x-y plane
! START
nx=cos(theta)
ny=sin(theta)
! projecting a vector from the origin to the wire position gives
! the distance from the origin in the normal direction. Subtracting
! the distance from the origin to the ground plane in this direction
! gives the height of the point above the ground
h=x*nx+y*ny-d
! Do some checks to make sure that we have a physical situation (wires above ground, no wire-ground intersections)
if (h.LT.0d0) then
if (verbose) then
write(*,*)'wire x,y,r',x,y,r
write(*,*)'ground plane theta,d',theta*57.2957795d0,d
end if
run_status='ERROR in calculate_height_over_ground_plane, the wire is below the ground plane'
CALL write_program_status()
STOP 1
else if (h.LE.r) then
if (verbose) then
write(*,*)'wire x,y,r',x,y,r
write(*,*)'ground plane theta,d',theta*57.2957795d0,d
end if
run_status='ERROR in calculate_height_over_ground_plane, the wire intersects the ground plane'
CALL write_program_status()
STOP 1
end if
! passed the checks so continue...
RETURN
END SUBROUTINE calculate_height_over_ground_plane