! ! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. ! It was developed by the University of Nottingham and the Netherlands Aerospace ! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK. ! ! Copyright (C) 2016-2018 University of Nottingham ! ! SACAMOS is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! SACAMOS is distributed in the hope that it will be useful, but ! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ! for more details. ! ! A copy of the GNU General Public License version 3 can be found in the ! file GNU_GPL_v3 in the root or at . ! ! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to ! the GNU Lesser General Public License. A copy of the GNU Lesser General Public ! License version can be found in the file GNU_LGPL in the root of EISPACK ! (/SRC/EISPACK ) or at . ! ! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk ! ! ! File Contents: ! SUBROUTINE twisted_pair_set_parameters ! SUBROUTINE twisted_pair_set_internal_domain_information ! ! NAME ! twisted_pair_set_parameters ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! Set the overall parameters for a twisted_pair cable ! ! COMMENTS ! ! ! HISTORY ! ! started 12/4/201 CJS ! 16/11/2017 CJS Include network synthesis process to replace s-domain transfer functions ! ! SUBROUTINE twisted_pair_set_parameters(cable) USE type_specifications IMPLICIT NONE ! variables passed to subroutine type(cable_specification_type),intent(INOUT) :: cable ! local variables ! START cable%cable_type=cable_geometry_type_twisted_pair cable%tot_n_conductors=2 cable%tot_n_domains=2 cable%n_external_conductors=1 cable%n_internal_conductors=1 cable%n_internal_domains=1 cable%n_parameters=4 cable%n_dielectric_filters=1 cable%n_transfer_impedance_models=0 END SUBROUTINE twisted_pair_set_parameters ! ! NAME ! twisted_pair_set_internal_domain_information ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! Set the overall parameters for a twisted_pair cable ! ! COMMENTS ! Set the dimension of the domain transformation matrices to include an external reference conductor for the cable ! We need to set a radius for the 'common mode equivalent conductor'. Set to 1.5* wire radius for now... ! ! HISTORY ! ! started 12/4/201 CJS ! 8/9/2016 CJS common mode/ differential mode loss correction ! 19/9/2016 CJS frequency dependent dielectric in Laplace solver ! 8/5/2017 CJS: Include references to Theory_Manual ! 30/10/2023 CJS: Start FastHenry model ! ! SUBROUTINE twisted_pair_set_internal_domain_information(cable) USE type_specifications USE constants USE general_module USE PUL_parameter_module IMPLICIT NONE ! variables passed to subroutine type(cable_specification_type),intent(INOUT) :: cable ! local variables integer :: n_conductors integer :: dim type(PUL_type) :: PUL integer :: domain ! variables for cable parameter checks logical :: cable_spec_error real(dp) :: rw real(dp) :: s real(dp) :: rd real(dp) :: sigma type(Sfilter) :: epsr character(LEN=error_message_length) :: message ! START write(*,*)'CALLED twisted_pair_set_internal_domain_information' ! Check the cable parameters rw=cable%parameters(1) s=cable%parameters(2) rd=cable%parameters(3) sigma=cable%parameters(4) epsr=cable%dielectric_filter(1) cable_spec_error=.FALSE. ! assume no errors initially message='' CALL twisted_pair_check(rw,rd,s,cable_spec_error,cable%cable_name,message) CALL conductivity_check(sigma,cable_spec_error,cable%cable_name,message) CALL dielectric_check(epsr,cable_spec_error,cable%cable_name,message) if (cable_spec_error) then run_status='ERROR in cable_model_builder, error on parameters for cable:'//trim(cable%cable_name)//'. '//trim(message) CALL write_program_status() STOP 1 end if ! The differential mode is treated as an internal domain which doesn't couple to other conductors domain=1 cable%n_internal_conductors_in_domain(domain)=2 ! The number of modes in the internal domain is 1 dim=1 cable%L_domain(domain)%dim=dim ALLOCATE(cable%L_domain(domain)%mat(dim,dim)) cable%C_domain(domain)%dim=dim ALLOCATE(cable%C_domain(domain)%mat(dim,dim)) ! the L and C matrix elements are for the differential mode ! this is calculated as if the conductors were in free space with no other conductors if ( (use_laplace).OR.(use_FastHenry) ) then ! allocate memory for the PUL parameter solver interface if(verbose) write(*,*)'Domain:',domain if(verbose) write(*,*)'Allocating PUL data structure for shielded twisted pairs' n_conductors=2 CALL allocate_and_reset_PUL_data(PUL,n_conductors) PUL%shape(1:n_conductors)=circle PUL%x(1)=-s/2d0 PUL%y(1)=0.0 PUL%r(1)=rw PUL%rd(1)=rd PUL%epsr(1)=epsr PUL%sigma(1)=sigma PUL%x(2)=s/2d0 PUL%y(2)=0.0 PUL%r(2)=rw PUL%rd(2)=rd PUL%epsr(2)=epsr PUL%sigma(2)=sigma PUL%epsr_background = 1d0 ! permittivity of homogeneous dielectric medium surrounding conductors (air) ! no ground plane PUL%ground_plane_present=.FALSE. ! no overshield PUL%overshield_present=.FALSE. CALL PUL_LC_Laplace(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain) cable%L_domain(domain)%mat(1,1)=PUL%L%mat(1,1) ! High frequency inductance from Laplace solution cable%C_domain(domain)%mat(1,1)=PUL%C%mat(1,1) ! High frequency capacitance from Laplace solution cable%Y_domain(domain)%dim=dim ALLOCATE(cable%Y_domain(domain)%sfilter_mat(dim,dim)) cable%Y_domain(domain)%sfilter_mat(:,:)=PUL%Yfilter%sfilter_mat(:,:) cable%Z_domain(domain)%dim=dim ALLOCATE(cable%Z_domain(domain)%sfilter_mat(dim,dim)) if (use_FastHenry) then CALL PUL_RL_FastHenry2(PUL,cable%cable_name,cable%Y_fit_model_order,cable%Y_fit_freq_spec,domain) end if cable%Z_domain(domain)%sfilter_mat(:,:)=PUL%Zfilter%sfilter_mat(:,:) else ! See C.R. Paul, 1st edition, equation 3.46 ! Theory_Manual_Eqn 2.27, 2.28 cable%C_domain(domain)%mat(1,1)=pi*eps0/log( s/(2d0*rw)+sqrt( (s/(2d0*rw))**2 -1) ) cable%L_domain(domain)%mat(1,1)=(mu0*eps0)/cable%C_domain(domain)%mat(1,1) CALL Z_Y_from_L_C(cable%L_domain(domain),cable%C_domain(domain),cable%Z_domain(domain),cable%Y_domain(domain)) end if if (use_laplace.OR.use_FastHenry) CALL deallocate_PUL_data(PUL) ! deallocate the PUL data structure ! Set the domain decomposition matrices ! Theory_Manual_Eqn 6.9, 6.10 ! The dimension of the domain transformation matrices is 3 dim=3 cable%MI%dim=dim ALLOCATE(cable%MI%mat(dim,dim)) cable%MV%dim=dim ALLOCATE(cable%MV%mat(dim,dim)) cable%MI%mat(1,1)=0.5D0 cable%MI%mat(1,2)=-0.5d0 cable%MI%mat(1,3)=0d0 cable%MI%mat(2,1)=1d0 cable%MI%mat(2,2)=1d0 cable%MI%mat(2,3)=0d0 cable%MI%mat(3,1)=1d0 cable%MI%mat(3,2)=1d0 cable%MI%mat(3,3)=1d0 cable%MV%mat(1,1)=1D0 cable%MV%mat(1,2)=-1d0 cable%MV%mat(1,3)=0d0 cable%MV%mat(2,1)=0.5d0 cable%MV%mat(2,2)=0.5d0 cable%MV%mat(2,3)=-1d0 cable%MV%mat(3,1)=0d0 cable%MV%mat(3,2)=0d0 cable%MV%mat(3,3)=1d0 ! Set the local reference conductor numbering ALLOCATE( cable%local_reference_conductor(2) ) cable%local_reference_conductor(1)=2 ! differential mode, reference is the second conductor cable%local_reference_conductor(2)=0 ! common mode, reference is in the external domain and not known ! Set the local domain information: include a reference conductor in the count ALLOCATE( cable%local_domain_n_conductors(1:cable%tot_n_domains) ) cable%local_domain_n_conductors(1)=2 ! differential mode domain cable%local_domain_n_conductors(2)=2 ! common mode: reference in external domain ! Set the external domain conductor and dielectric information ALLOCATE( cable%external_model(cable%n_external_conductors) ) CALL reset_external_conductor_model(cable%external_model(1)) cable%external_model(1)%conductor_type=circle cable%external_model(1)%conductor_radius =rw*Twisted_pair_equivalent_radius ! equivalent radius model for common mode cable%external_model(1)%dielectric_radius=rw*Twisted_pair_equivalent_radius+(rd-rw) ! add dielectric layer of the same thickness as specified cable%external_model(1)%dielectric_epsr=epsr cable%external_model(1)%conductor_sigma=sigma ! For FastHenry2 ! set the conductor impedance model for the conductors cable%conductor_impedance(1)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity cable%conductor_impedance(1)%radius=rw cable%conductor_impedance(1)%conductivity=sigma cable%conductor_impedance(1)%Resistance_multiplication_factor=1.5d0 cable%conductor_impedance(2)%impedance_model_type=impedance_model_type_cylindrical_with_conductivity cable%conductor_impedance(2)%radius=rw cable%conductor_impedance(2)%conductivity=sigma cable%conductor_impedance(2)%Resistance_multiplication_factor=0.5d0 CALL deallocate_Sfilter(epsr) ALLOCATE( cable%conductor_label(1:cable%tot_n_conductors) ) cable%conductor_label(1)='Cable name: '//trim(cable%cable_name)// & '. type: '//trim(cable%cable_type_string)//'. conductor 1 : Twisted pair wire 1' cable%conductor_label(2)='Cable name: '//trim(cable%cable_name)// & '. type: '//trim(cable%cable_type_string)//'. conductor 2 : Twisted pair wire 2' END SUBROUTINE twisted_pair_set_internal_domain_information ! ! NAME ! twisted_pair_plot ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! plot twisted pair cable ! ! COMMENTS ! the angle has NO impact here due to the twisting ! ! HISTORY ! ! started 14/4/2016 CJS ! ! SUBROUTINE twisted_pair_plot(cable,x_offset,y_offset,theta,xmin,xmax,ymin,ymax) USE type_specifications USE general_module IMPLICIT NONE ! variables passed to subroutine type(cable_specification_type),intent(IN) :: cable real(dp),intent(IN) :: x_offset,y_offset,theta real(dp),intent(INOUT) :: xmin,xmax,ymin,ymax ! local variables real(dp) :: x,y,r real(dp) :: s ! START ! plot inner conductor, 1 r=cable%parameters(1) ! conductor radius s=cable%parameters(2) ! conductor separation x=x_offset+(s/2d0) y=y_offset CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot inner conductor, 2 x=x_offset-(s/2d0) y=y_offset CALL write_circle(x,y,r,conductor_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot conductor1 dielectric r=cable%parameters(3) ! dielectric radius, conductor 1 x=x_offset+(s/2d0) y=y_offset CALL write_circle(x,y,r,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax) ! plot conductor2 dielectric x=x_offset-(s/2d0) y=y_offset CALL write_circle(x,y,r,dielectric_geometry_file_unit,xmin,xmax,ymin,ymax) RETURN END SUBROUTINE twisted_pair_plot