The input file formats for the cable_model_builder are specific to each defined cable type. The formats are as follows: 1. Simple cylindrical wire 0.25mm_radius_wire # Cable name cylindrical # Cable type 1 # number of conductors 8 # number of parameters 0.25e-3 # parameter 1: conductor radius (m) 0.5e-3 # parameter 2: outer insulation radius (m) 1.0 # parameter 3: outer dielectric permittivity (air) 5.8E7 # parameter 4: conductor conductivity (S/m) 2. Coaxial cable RG58 # Cable name Coax # Cable type 2 # number of conductors 8 # number of parameters 0.455e-3 # parameter 1: inner conductor radius (m) 2.35 # parameter 2: inner dielectric permittivity (polythene) 1.75e-3 # parameter 3: shield conductor radius (m) 2.5e-3 # parameter 4: outer insulation radius (m) 3.0 # parameter 5: outer dielectric permittivity (PVC) 5.8E7 # parameter 6: inner conductor conductivity (S/m) 0.1E-3 # parameter 7: shield conductor thickness (m) 5.8E7 # parameter 8: shield conductor conductivity (S/m) In addition to the cable geometry and material specification we can specify a transfer impedance in three ways: 1. R+jwL model 2. Tabulated complex impedance data f, re{Z}, Im{Z} 3. Derived from braid geometry The inputs to the cable_model_builder for the three transfer impedance specification types. are as follows: 1. R+jwL model #Transfer Impedance model: R+jwL model; R(ohms/m) L(H/m) 0.0 0.250E-8 2. Tabulated complex impedance data; f, re{Z}, Im{Z} # tabulated complex transfer impedance data; f, re{Z}, Im{Z}; f(Hz), Z(ohms/m) 1000 # number of frequency domain samples f1 Re{Z(f1)} Im{Z(f1)} f2 Re{Z(f2)} Im{Z(f2)} . . . f1000 Re{Z(f1000)} Im{Z(f1000)} 3. Derived from braid geometry (TO BE SPECIFIED BY NLR - A REPRESENTATIVE DATASET FOLLOWS) #Braid geometry # Braid wire diameter, d (m) # Number of wires in a carrier, N # Number of carriers, C # Wire conductivity, sigma (S/m) # pitch angle, alpha (degrees)