! ! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. ! It was developed by the University of Nottingham and the Netherlands Aerospace ! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK. ! ! Copyright (C) 2016-2018 University of Nottingham ! ! SACAMOS is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! SACAMOS is distributed in the hope that it will be useful, but ! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ! or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ! for more details. ! ! A copy of the GNU General Public License version 3 can be found in the ! file GNU_GPL_v3 in the root or at . ! ! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to ! the GNU Lesser General Public License. A copy of the GNU Lesser General Public ! License version can be found in the file GNU_LGPL in the root of EISPACK ! (/SRC/EISPACK ) or at . ! ! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk ! ! ! File Contents: ! SUBROUTINE calc_incident_field_components ! SUBROUTINE calculate_incident_field_sources ! SUBROUTINE calculate_ZT_incident_field_sources ! SUBROUTINE calc_incident_field_FD_values ! SUBROUTINE calc_incident_field_FD_values_GP ! SUBROUTINE calculate_lumped_incident_field_sources ! ! NAME ! calc_incident_field_components ! ! AUTHORS ! Chris Smartt ! ! DESCRIPTION ! This subroutine calculates the cartesian components of the incident field ! excitation and the propagation (k) vector from the inputs which are in ! a spherical coordinate system ! #FIGURE_REFERENCE_REQUIRED ! ! COMMENTS ! ! ! HISTORY ! ! started 13/6/2016 CJS: STAGE_6 developments ! 8/5/2017 CJS: Include references to Theory_Manual ! SUBROUTINE calc_incident_field_components(Ktheta,Kphi,Etheta,Ephi, & Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz) USE type_specifications USE general_module USE constants USE eispack USE maths IMPLICIT NONE ! variables passed to the subroutine real(dp),intent(IN) :: ktheta ! theta component of k vector real(dp),intent(IN) :: kphi ! phi component of k vector real(dp),intent(IN) :: etheta ! theta component of E field polarisation vector real(dp),intent(IN) :: ephi ! phi component of E field polarisation vector ! Cartesian field components real(dp),intent(OUT) :: Ex real(dp),intent(OUT) :: Ey real(dp),intent(OUT) :: Ez real(dp),intent(OUT) :: Hx real(dp),intent(OUT) :: Hy real(dp),intent(OUT) :: Hz ! Cartesian propagation vector components real(dp),intent(OUT) :: kx real(dp),intent(OUT) :: ky real(dp),intent(OUT) :: kz ! local variables real(dp) :: r,theta,phi real(dp) :: x,y,z real(dp) :: dxdt,dxdp real(dp) :: dydt,dydp real(dp) :: dzdt,dzdp real(dp) :: vx,vy,vz real(dp) :: norm ! START ! calculate unit length incident wave vector Theory_Manual_Eqn 3.135 r=1d0 theta=Ktheta phi=Kphi kx=r*sin(theta)*cos(phi) ky=r*sin(theta)*sin(phi) kz=r*cos(theta) ! Calculate cartesian unit vectors in the theta and phi directions. Theory_Manual_Eqn 3.137, 3.138 dxdt= r*cos(theta)*cos(phi) dxdp=-r*sin(phi) dydt= r*cos(theta)*sin(phi) dydp= r*cos(phi) dzdt=-r*sin(theta) dzdp=0d0 ! Calculate the cartesian E field vector from the sum of Etheta and Ephi contributions. Theory_Manual_Eqn 3.139 vx=Etheta*dxdt+Ephi*dxdp vy=Etheta*dydt+Ephi*dydp vz=Etheta*dzdt+Ephi*dzdp ! Normalise the E field vector to a length of 1 norm=sqrt(vx*vx+vy*vy+vz*vz) if (norm.eq.0d0) then if (verbose) then write(*,*)'Error calculating incident field data' write(*,8000)'E vector(theta)=',dxdt,dydt,dzdt write(*,8000)'E vector(phi)=',dxdp,dydp,dzdp write(*,8000)'E vector=',Etheta,Ephi end if run_status='ERROR in calc_incident_field_components: Zero length incident E field vector' CALL write_program_status() STOP 1 end if Ex=vx/norm Ey=vy/norm Ez=vz/norm ! H = (K x E)/Z0. Theory_Manual_Eqn 3.142 Hx=(ky*Ez-kz*Ey)/Z0 Hy=(kz*Ex-kx*Ez)/Z0 Hz=(kx*Ey-ky*Ex)/Z0 if (verbose) then write(*,*)'Incident_field_components:' write(*,8000)'K=',kx,ky,kz write(*,8000)'E=',Ex,Ey,Ez write(*,8000)'H=',Hx,Hy,Hz 8000 format(A,3E16.6) end if RETURN END SUBROUTINE calc_incident_field_components ! ! NAME ! calculate_incident_field_sources ! ! DESCRIPTION ! calculate constants required to determine the controlled sources ! for Spice models of transient incident field illumination using the ! method of characterisitcs based solution ! ! ! COMMENTS ! Refer to Theory_Manual_Section 3.7 ! Also discussed in more depth in C.R. Paul, "Analysis of Multiconductor Transmission Lines" ! 1st edition, section 7.3.2 ! ! ! HISTORY ! ! started 16/06/2016 CJS ! 28/6/2016 CJS :Include the presence of a ground plane if required. ! 8/5/2017 CJS: Include references to Theory_Manual ! ! SUBROUTINE calculate_incident_field_sources(xcoord,ycoord,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, & length,n_modes,TI,Tdi,Tdz,alpha_0,alpha_L) USE type_specifications USE constants USE general_module IMPLICIT NONE ! variables passed to subroutine integer,intent(IN) :: n_modes ! input: number of modes in the illuminated domain real(dp),intent(IN) :: xcoord(n_modes+1),ycoord(n_modes+1) ! input: centre coordinates of conductors real(dp),intent(IN) :: Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! input: incident field specification logical ,intent(IN) :: ground_plane_present ! input: flag indicating the presence of a ground plane real(dp),intent(IN) :: ground_plane_x,ground_plane_y ! input: x and y coordinates of a point on the ground plane real(dp),intent(IN) :: ground_plane_theta ! input: angle of the ground plane from the x axis real(dp),intent(IN) :: length ! input: length of transmission line real(dp),intent(IN) :: TI(n_modes,n_modes) ! input: mode decomposition matrix real(dp),intent(IN) :: Tdi(n_modes) ! input: mode delays real(dp),intent(OUT) :: alpha_0(n_modes),alpha_L(n_modes) ! output: constants for controlled sources at z=0 and z=L real(dp),intent(OUT) :: Tdz ! output: incident field delay time ! local variables integer :: n_conductors real(dp) :: xk,yk real(dp) :: rvx,rvy,rvz real(dp) :: Tdxyk(n_modes) real(dp) :: vi integer :: i,k ! START n_conductors=n_modes+1 alpha_0(:)=0d0 alpha_L(:)=0d0 if (Eamplitude.eq.0d0) then ! there is no incident field so return zero constants return end if ! calculate 1/velocity in each direction (avoids divide by zeros using reciprocal values) ! obtained from Theory_Manual_Eqn 3.136 rvx=kx/c0 rvy=ky/c0 rvz=kz/c0 ! Time delay in Z direction Tdz=length*rvz ! loop over all conductors except the reference conductor do k=1,n_conductors-1 ! Assume that the final (reference) conductor lies at the origin of the xy plane ! and calculate the vector xk,yk from the reference conductor to conductor k. ! If there is a ground plane then calculate the vector to the closest point on the ground plane ! i.e. in the y direction since the ground plane is along the x axis. if (ground_plane_present) then xk=0d0 else xk=xcoord(k)-xcoord(n_modes+1) end if yk=ycoord(k)-ycoord(n_modes+1) ! work out the delay propagating from this conductor to the reference Tdxyk(k)=xk*rvx+yk*rvy end do ! loop over modes, i do i=1,n_modes ! loop over all conductors except the reference conductor do k=1,n_conductors-1 ! Again, assume that the final (reference) conductor lies at the origin of the xy plane ! and calculate the vector xk,yk from the reference conductor to conductor k. ! If there is a ground plane then calculate the vector to the closest point on the ground plane ! i.e. in the y direction since the ground plane is along the x axis. if (ground_plane_present) then ! only the height over the ground plane matters so set x coordinate to zero and y is the height over ground xk=0d0 else xk=xcoord(k)-xcoord(n_modes+1) end if yk=ycoord(k)-ycoord(n_modes+1) ! note alpha_0,alpha_L are used to calculate the response of mode i due to excitations on all conductors, k ! hence the summation with over k with coefficients TI(k,i) ! Theory_Manual_Eqn 3.167 alpha_0(i)=alpha_0(i)+( Ez*Tdxyk(k)*length - (Ex*xk+Ey*yk)*(Tdi(i)+Tdz) )*TI(k,i) ! note, TI(k,i) = TI(conductor,mode) alpha_L(i)=alpha_L(i)+( Ez*Tdxyk(k)*length + (Ex*xk+Ey*yk)*(Tdi(i)-Tdz) )*TI(k,i) end do ! next conductor end do ! next mode if (ground_plane_present) then ! See Theory_Manual_Section 3.7.2 ! the alpha terms are doubled alpha_0(:)=2d0*alpha_0(:) alpha_L(:)=2d0*alpha_L(:) end if if (.NOT.verbose) RETURN write(*,*)'calculate_incident_field_sources' write(*,*)'ex=',ex write(*,*)'ey=',ey write(*,*)'ez=',ez write(*,*)'kx=',kx write(*,*)'ky=',ky write(*,*)'kz=',kz write(*,*)'rvx=',rvx write(*,*)'rvy=',rvy write(*,*)'rvz=',rvz write(*,*)'Tdz=',Tdz RETURN END SUBROUTINE calculate_incident_field_sources ! ! NAME ! calculate_ZT_incident_field_sources ! ! DESCRIPTION ! calculate the controlled sources for Spice modelling of transient incident field illumination ! of shielded cables (Xie's model), method of characterisitcs based solution ! ! ! COMMENTS ! Refer to Theory_Manual_Section 3.8 ! ! ! HISTORY ! ! started 3/10/2016 CJS ! 8/5/2017 CJS: Include references to Theory_Manual ! ! SUBROUTINE calculate_ZT_incident_field_sources(xcoord,ycoord,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, & length,n_modes,shield_conductor,TI,Tdi,Tdz,c1,c2,c1b) USE type_specifications USE constants USE general_module IMPLICIT NONE ! variables passed to subroutine integer,intent(IN) :: n_modes ! input: number of modes in the illuminated domain real(dp),intent(IN) :: xcoord(n_modes+1),ycoord(n_modes+1) ! input: centre coordinates of conductors real(dp),intent(IN) :: Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! input: incident field specification logical,intent(IN) :: ground_plane_present ! input: flag indicating the presence of a ground plane real(dp),intent(IN) :: ground_plane_x,ground_plane_y ! input: x and y coordinates of a point on the ground plane real(dp),intent(IN) :: ground_plane_theta ! input: angle of the ground plane from the x axis real(dp),intent(IN) :: length ! input: length of transmission line integer,intent(IN) :: shield_conductor ! input: the number of the shield conductor real(dp),intent(IN) :: TI(n_modes,n_modes) ! input: mode decomposition matrix real(dp),intent(IN) :: Tdi(n_modes) ! input: mode delays real(dp),intent(OUT) :: c1(n_modes),c2(n_modes),c1b(n_modes) ! output: constants for controlled sources in shielded domains real(dp),intent(OUT) :: Tdz ! output: incident field delay time ! local variables integer :: n_conductors real(dp) :: xk,yk real(dp) :: rvx,rvy,rvz real(dp) :: Tx(n_modes),dk,kw_rx,kw_ry,kw_r,vw_r real(dp) :: vi real(dp) :: Tsum ! loop variables integer :: i,k ! START if(verbose) write(*,*)'CALLED: calculate_ZT_incident_field_sources' n_conductors=n_modes+1 if(verbose) then write(*,*)'n_modes=',n_modes write(*,*)'shield_conductor=',shield_conductor end if ! Zero the coefficients initially c1(:)=0d0 c2(:)=0d0 c1b(:)=0d0 if (Eamplitude.eq.0d0) then ! there is no incident field so return zero constants return end if ! calculate 1/velocity in each direction (avoids divide by zeros using reciprocal values) ! obtained from Theory_Manual_Eqn 3.136 rvx=kx/c0 rvy=ky/c0 rvz=kz/c0 Tdz=length*rvz ! loop over all conductors except the reference conductor do k=1,n_conductors-1 ! Assume that the final (reference) conductor lies at the origin of the xy plane ! and calculate the vector xk,yk from the reference conductor to conductor k. ! If there is a ground plane then calculate the vector to the closest point on the ground plane ! i.e. in the y direction since the ground plane is along the x axis. if (ground_plane_present) then ! only the height over the ground plane matters so set x coordinate to zero and y is the height over ground xk=0d0 else xk=xcoord(k)-xcoord(n_modes+1) end if yk=ycoord(k)-ycoord(n_modes+1) ! distance from this conductor to the reference conductor dk=sqrt(xk*xk+yk*yk) ! unit vector from this conductor to the reference conductor kw_rx=xk/dk kw_ry=yk/dk ! project the k vector along this direction kw_r=kx*kw_rx+ky*kw_ry ! reciprocal velocity in this direction vw_r=kw_r/c0 ! Tx definition in Xie paper - see also Theory_Manual_Section 3.8 comment in the text below equation 3.198 ! where here we have generalised to allow for general conductor offsets in the x-y plane of the bundle Tx(k)=length*vw_r end do ! Calculate C1(i), C2(i) , C1b(i) where i is the source domain mode. ! We only have contributions relating to the shield conductor whose transfer impedance we are ! including in the model. ! loop over modes, i in the source domain do i=1,n_modes ! loop over all conductors except the reference conductor do k=1,n_conductors-1 ! Again, assume that the final (reference) conductor lies at the origin of the xy plane ! and calculate the vector xk,yk from the reference conductor to conductor k. ! If there is a ground plane then calculate the vector to the closest point on the ground plane ! i.e. in the y direction since the ground plane is along the x axis. if (ground_plane_present) then xk=0d0 else xk=xcoord(k)-xcoord(n_modes+1) end if yk=ycoord(k)-ycoord(n_modes+1) dk=sqrt(xk*xk+yk*yk) ! note c1,c2 are used to calculate the response of mode i due to excitations on all conductors, k ! hence the summation with over k with coefficients TI(k,i) ! See the two coefficients for the delayed incident field in Theory_Manual_Eqn 3.195 to 3.198 c1(i)=c1(i)+dk*length*(-Ez*Tx(k) +(Ex*xk/dk+Ey*yk/dk)*(Tdz-Tdi(i)) )*TI(k,i) c2(i)=c2(i)+dk*length*(-Ez*Tx(k) +(Ex*xk/dk+Ey*yk/dk)*(Tdz+Tdi(i)) )*TI(k,i) ! C1b is for the special case when Tdz=Tdi, see the last paragraph in Theory_Manual_Section 3.8.3 c1b(i)=c1b(i)+dk*length*( Ex*xk/dk+Ey*yk/dk )*TI(k,i) end do ! next conductor end do ! next mode if (ground_plane_present) then ! See Theory_Manual_Section 3.7.2 ! the alpha terms are doubled c1(:)=2d0*c1(:) c2(:)=2d0*c2(:) c1b(:)=2d0*c1b(:) end if if (.NOT.verbose) RETURN write(*,*)'calculate_incident_field_sources' write(*,*)'ex=',ex write(*,*)'ey=',ey write(*,*)'ez=',ez write(*,*)'kx=',kx write(*,*)'ky=',ky write(*,*)'kz=',kz write(*,*)'rvx=',rvx write(*,*)'rvy=',rvy write(*,*)'rvz=',rvz write(*,*)'Tdz=',Tdz ! loop over conductors do k=1,n_modes xk=xcoord(k)-xcoord(n_modes+1) yk=ycoord(k)-ycoord(n_modes+1) ! distance from this conductor to the reference conductor dk=sqrt(xk*xk+yk*yk) ! unit vector from this conductor to the reference conductor kw_rx=xk/dk kw_ry=yk/dk ! project the k vector along this direction kw_r=kx*kw_rx+ky*kw_ry write(*,*)'conductor ',k write(*,*)'xk',xk write(*,*)'yk',yk write(*,*)'dk=',dk write(*,*)'kw_rx=',kw_rx write(*,*)'kw_ry=',kw_ry write(*,*)'kw_r=',kw_r write(*,*)'Tx=',Tx(k) end do ! loop over modes, i do i=1,n_modes write(*,*)'mode ',i write(*,*)'Tdi=',Tdi(i) write(*,*)'Tdi(i)+Tdz=',Tdi(i)+Tdz write(*,*)'c1=',c1(i) write(*,*)'c2=',c2(i) write(*,*)'c1b=',c1b(i) end do RETURN END SUBROUTINE calculate_ZT_incident_field_sources ! ! NAME ! calc_incident_field_values ! ! DESCRIPTION ! given coordinates in space and frequency calculate the incident E and H field component values ! ! COMMENTS ! ! ! HISTORY ! ! started 29/04/2015 CJS ! 8/5/2017 CJS: Include references to Theory_Manual ! ! SUBROUTINE calc_incident_field_FD_values(x,y,z,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value) USE type_specifications USE constants IMPLICIT NONE complex(dp),intent(IN) :: Eamplitude ! E field amplitude real(dp),intent(IN) :: Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! Cartesian components of field and propgation vector real(dp),intent(IN) :: x,y,z ! coordinates in 3D space of field evaluation point real(dp),intent(IN) :: f ! frequency complex(dp),intent(OUT) :: Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value ! output cartesian field values ! local variables real(dp) :: w ! angular frequency complex(dp) :: phase ! phase at field evaluation point ! START ! Theory_Manual_Eqn 3.140 w=2d0*pi*f phase=exp( -j*(w/c0)*( kx*x+ky*y+kz*z ) ) Ex_value=Eamplitude*Ex*phase Ey_value=Eamplitude*Ey*phase Ez_value=Eamplitude*Ez*phase ! Theory_Manual_Eqn 3.140 and 3.142 Hx_value=Eamplitude*Hx*phase Hy_value=Eamplitude*Hy*phase Hz_value=Eamplitude*Hz*phase RETURN END SUBROUTINE calc_incident_field_FD_values ! ! NAME ! calc_incident_field_FD_values_GP ! ! DESCRIPTION ! given coordinates in space and frequency calculate the incident E and H field component values ! with a ground plane present ! The ground plane is assumed to lie along the x axis ! ! COMMENTS ! ! ! HISTORY ! ! started 28/06/2016 CJS ! ! SUBROUTINE calc_incident_field_FD_values_GP(x,y,z,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value) USE type_specifications USE constants IMPLICIT NONE complex(dp),intent(IN) :: Eamplitude ! E field amplitude real(dp),intent(IN) :: Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! Cartesian components of field and propgation vector real(dp),intent(IN) :: x,y,z ! coordinates in 3D space of field evaluation point real(dp),intent(IN) :: f ! frequency complex(dp),intent(OUT) :: Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value ! output cartesian field values ! local variables real(dp) :: w ! angular frequency complex(dp) :: phase ! phase at field evaluation point ! START w=2d0*pi*f ! Theory_Manual_Eqn 3.140 with the addition of a reflected plane wave from the ground plane (y=0 plane) ! in which ky_reflected=-ky_incident and ! Ex_reflected=-Ex_incident, Ez_reflected=-Ez_incident, Hy_reflected=-Hy_incident ! Incident plane wave phase=exp( -j*(w/c0)*( kx*x+ky*y+kz*z ) ) Ex_value=Eamplitude*Ex*phase Ey_value=Eamplitude*Ey*phase Ez_value=Eamplitude*Ez*phase Hx_value=Eamplitude*Hx*phase Hy_value=Eamplitude*Hy*phase Hz_value=Eamplitude*Hz*phase ! Add reflected plane wave phase=exp( -j*(w/c0)*(kx*x-ky*y+kz*z ) ) Ex_value=Ex_value-Eamplitude*Ex*phase Ey_value=Ey_value+Eamplitude*Ey*phase Ez_value=Ez_value-Eamplitude*Ez*phase Hx_value=Hx_value+Eamplitude*Hx*phase Hy_value=Hy_value-Eamplitude*Hy*phase Hz_value=Hz_value+Eamplitude*Hz*phase RETURN END SUBROUTINE calc_incident_field_FD_values_GP ! ! NAME ! calculate_lumped_incident_field_sources ! ! DESCRIPTION ! calculate the lumped sources at z=l due to incident field excitation ! ! ! COMMENTS ! The code is based on Theory_Manual_Section 2.4 ! Detailed discussions and derivations are found in ! C.R. Paul, "Analysis of Multiconductor Transmission Lines" 1st edition, section 7.2.1. ! ! The sources are calculated by numerical integration ! ! HISTORY ! ! started 29/04/2015 CJS ESA Spice cable modelling, Phase 1 ! 8/5/2017 CJS: Include references to Theory_Manual ! ! SUBROUTINE calculate_lumped_incident_field_sources(xcoord,ycoord,is_shielded,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & ground_plane_present,length,f,VFT,IFT,dim, & T,TI,Y,Z,ZC,YC,GAMMA_C) USE type_specifications USE constants USE maths IMPLICIT NONE integer,intent(IN) :: dim ! matrix system dimension real(dp),intent(IN) :: xcoord(dim+1),ycoord(dim+1) ! note that we need the reference conductor position in space logical,intent(IN) :: is_shielded(dim) ! flag to indicated shielded conductors complex(dp),intent(IN) :: Eamplitude ! incident field amplitude real(dp),intent(IN) :: Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! incident field cartesian field components and propagation vector real(dp),intent(IN) :: length ! transmission line length real(dp),intent(IN) :: f ! frequency logical,intent(IN) :: ground_plane_present ! flag to indicate the presence of a ground plane complex(dp),intent(IN) :: T(dim,dim) ! modal decomposition matrix complex(dp),intent(IN) :: TI(dim,dim) ! modal decomposition matrix (inverse of [T]) complex(dp),intent(IN) :: Y(dim,dim) ! global admittance matrix complex(dp),intent(IN) :: Z(dim,dim) ! global impedance matrix complex(dp),intent(IN) :: ZC(dim,dim) ! characteristic impedance matrix complex(dp),intent(IN) :: YC(dim,dim) ! characteristic admittance matrix complex(dp),intent(IN) :: GAMMA_C(dim) ! modal propagation constants complex(dp),intent(OUT) :: VFT(dim),IFT(dim) ! incident field voltage and current sources ! local variables real(dp) :: xp,yp,zp real(dp) :: vx,vy,norm real(dp) :: w,lambda real(dp) :: dz ! space step for numerical integration integer :: nz,zloop ! loop variables for integration along the transmission line ! Cartesian field values on a conductor complex(dp) :: Ex_c,Ey_c,Ez_c complex(dp) :: Hx_c,Hy_c,Hz_c ! Cartesian field values on the reference conductor complex(dp) :: Ex_r,Ey_r,Ez_r complex(dp) :: Hx_r,Hy_r,Hz_r ! Temporary matrices for calculating the chain parameter matrices complex(dp) :: M1(dim,dim),YI(dim,dim) complex(dp) :: sinh_gamma_z(dim,dim) complex(dp) :: cosh_gamma_z(dim,dim) complex(dp) :: TSTI(dim,dim),TCTI(dim,dim) ! chain parameter matrix elements complex(dp) :: PHI_11(dim,dim) complex(dp) :: PHI_12(dim,dim) complex(dp) :: PHI_21(dim,dim) complex(dp) :: PHI_22(dim,dim) !temporary vectors used in the calculations complex(dp) :: VF1(dim),VF2(dim),VF3(dim),VF(dim),IF1(dim),IF(dim) complex(dp) :: TV1(dim),TV2(dim),TV3(dim),TV4(dim) ! error code for matrix inverse integer :: ierr ! loop variables integer :: conductor integer :: i ! START IFT(:)=(0d0,0d0) VFT(:)=(0d0,0d0) if (Eamplitude.eq.0d0) then ! there is no incident field so return with zero value source terms return end if ! calculate angular frequency(rad/s) and wavelength(m) w=2d0*pi*f lambda=c0/f ierr=0 ! exit on error with the matrix inverse CALL cinvert_Gauss_Jordan(Y,dim,YI,dim,ierr) dz=lambda/20d0 ! space step for numerical integration nz=NINT(length/dz) ! ensure a minimum number of integration points if (nz.LT.10) nz=10 dz=length/nz ! calculate source integrals ! loop over the transmission line length do zloop=1,nz zp=(zloop-1)*dz+dz/2d0 ! z coordinate at the current point. We assume the integrand is uniform over intervals, dz. ! Calculate the chain parameter matrices for the current z value Theory_Manual_Eqns 2.58 sinh_gamma_z(:,:)=(0d0,0d0) cosh_gamma_z(:,:)=(0d0,0d0) do i=1,dim cosh_gamma_z(i,i)=0.5d0*( exp( GAMMA_C(i)*(length-zp) )+exp( -GAMMA_C(i)*(length-zp) ) ) sinh_gamma_z(i,i)=0.5d0*( exp( GAMMA_C(i)*(length-zp) )-exp( -GAMMA_C(i)*(length-zp) ) ) end do M1=matmul(T,cosh_gamma_z) TCTI=matmul(M1,TI) M1=matmul(T,sinh_gamma_z) TSTI=matmul(M1,TI) ! Phi11 M1=matmul(YI,TCTI) PHI_11=matmul(M1,Y) ! Phi12 M1=matmul(ZC,TSTI) PHI_12=-M1 ! Phi21 M1=matmul(TSTI,YC) PHI_21=-M1 ! Phi22 PHI_22=TCTI ! loop over conductors (other than the reference) do conductor=1,dim ! calculate the cartesian field values at the current conductor and the reference conductor if (.NOT.ground_plane_present) then ! get the field values at the reference conductor i.e. the (dim+1)th conductor xp=xcoord(dim+1) yp=ycoord(dim+1) CALL calc_incident_field_FD_values(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz, & kx,ky,kz,Ex_r,Ey_r,Ez_r,Hx_r,Hy_r,Hz_r) ! get the field values at the conductor xp=xcoord(conductor) yp=ycoord(conductor) CALL calc_incident_field_FD_values(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz, & kx,ky,kz,Ex_c,Ey_c,Ez_c,Hx_c,Hy_c,Hz_c) ! calculate a vector from the reference to the conductor vx=xp-xcoord(dim+1) vy=yp-ycoord(dim+1) else ! get the field values at the reference conductor i.e. the (dim+1)th conductor ! under the conductor we are interested in xp=xcoord(dim+1) ! The 'reference' is at the origin when a ground plane is present yp=ycoord(dim+1) CALL calc_incident_field_FD_values_GP(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & Ex_r,Ey_r,Ez_r,Hx_r,Hy_r,Hz_r) ! get the field values at the conductor xp=xcoord(conductor) yp=ycoord(conductor) CALL calc_incident_field_FD_values_GP(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, & Ex_c,Ey_c,Ez_c,Hx_c,Hy_c,Hz_c) ! calculate a vector from the reference to the conductor vx=xp-xcoord(dim+1) ! Made the vector consistent with the field evaluation points 16/8/2016 vy=yp-ycoord(dim+1) ! The 'reference' is at the origin when a ground plane is present end if ! the first part is due to the z component of the E field VF1(conductor)=(Ez_c-Ez_r) ! C. Paul, equation 7.24(e), Ez contribution ! Theory_Manual_Eqn 2.53(second term) using 2.54 ! the second part is due to the z derivative of the incident field integrated from the reference to conductor ! note the field is assumed to be linearly varying between its endpoint values in the integration VF2(conductor)=j*(w/c0)*kz*(0.5d0*(Ex_c+Ex_r)*vx+0.5d0*(Ey_c+Ey_r)*vy) ! C. Paul, equation 7.24(e), Et contribution, Theory_Manual_Eqn 2.53, first term ! An alternative is the time derivative of the B field integrated from reference to conductor ! VF3(conductor)=j*w*mu0*(-0.5d0*(Hx_c+Hx_r)*vy+0.5d0*(Hy_c+Hy_r)*vx) ! C. Paul, equation 7.24(c), B.dA contribution (H field form) ! the IF source term is due to the incident field integrated from the reference to conductor ! note the field is assumed to be linearly varying between its endpoint values in the integration ! this needs to be pre-multiplied by G+jwC but this happens later... ! C. Paul, equation 7.24(d), Et contribution, Theory_Manual_Eqn 2.55 using a linear interpolation of the field ! between the reference conductor and the conductor k. IF1(conductor)=-(0.5d0*(Ex_c+Ex_r)*vx+0.5d0*(Ey_c+Ey_r)*vy) end do ! next conductor VF(:)=VF1(:)+VF2(:) ! E field form ! VF(:)=VF3(:) ! H field form ! multiply IF1 by Y, the MTL admittance matrix (G+jwC) ! Theory_Manual_Eqn 2.56 transformed to the time domain IF=matmul(Y,IF1) ! Special process for shielded conductors - set IF to zero do conductor=1,dim if (is_shielded(conductor)) then ! set the current sources to zero, note that voltage sources must remain even for shielded conductors. ! Note also that provided shielded cables are centred on their respective shield then this step should ! not be necessary due to the structure of the [Y] matrix and (IF)=[Y](IF1) IF(conductor)=(0d0,0d0) end if end do ! next conductor ! add the contribution to the integration in Theory_Manual_Eqns 2.60 ! C. Paul, equation 7.29b,7.29c TV1=matmul(PHI_11,VF) TV2=matmul(PHI_12,IF) TV3=matmul(PHI_21,VF) TV4=matmul(PHI_22,IF) ! Add contribution to the integral over z assuming constant value of integrand over this section, dz do conductor=1,dim VFT(conductor)=VFT(conductor)+dz*(TV1(conductor)+TV2(conductor)) IFT(conductor)=IFT(conductor)+dz*(TV3(conductor)+TV4(conductor)) end do end do ! next z value END SUBROUTINE calculate_lumped_incident_field_sources