Blame view

SRC/MTL_ANALYTIC_SOLUTION/modal_decomposition.F90 25.6 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
!
fe64b32b   Chris Smartt   Update file heade...
2
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
886c558b   Steve Greedy   SACAMOS Public Re...
3
4
5
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
fe64b32b   Chris Smartt   Update file heade...
6
! Copyright (C) 2016-2018 University of Nottingham
886c558b   Steve Greedy   SACAMOS Public Re...
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
fe64b32b   Chris Smartt   Update file heade...
28
!
886c558b   Steve Greedy   SACAMOS Public Re...
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
! File Contents:
! SUBROUTINE modal_decomposition_global
! SUBROUTINE modal_decomposition_global_ZY
! SUBROUTINE calc_eigenvectors
! SUBROUTINE test_decomposition
!
! NAME
!     modal_decomposition_global
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine calculates the modal decomposition for the global YZ product
!     The theory is in the Theory Manual_Section 3.3 however there is more detailed discussion in 
!     C. R. Paul,'Analasys of Multiconductor transmission lines,' 
!     
! COMMENTS
!     In practice we operate on the domain based YZ product as it seems to be numerically
!     better in the case of degenerate eigenvalues, then we transform the eigenvector matrix
!     with the domain decomposition matrix MII to give TI. The eigenvaluse are unchanged. 
! i.e.(V_domain)=[MV] (V_global), (I_domain)=[MI] (I_global) 
!     (V_domain)=[Z_domain] (I_domain), (I_domain)=[Y_domain](V_domain)
!     (V_global)=[Z_global] (I_global), (I_global)=[Y_global](V_global)
!     if [TI] diagonalises [Y_global][Z_global] i.e. [Y_global][Z_global]=[TI][gammasqr][TI^-1]
!     and [MPI]diagonalises [Y_domain][Z_domain] i.e. [Y_domain][Z_domain] = [MPI][gammasqr][MPI^-1] then
!     [TI]=[MI^-1][MPI]
!
!     There were originally problems if the system was highly degenerate....
!     This problem has been fudged by applying a small perturbation to the diagonal elements of 
!     the YZ product. Maybe we need to assess the impact of this on mode identificaton for 
!     the propagation correction?
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     April 2016 CJS. Use impedance and admittance matrices for frequency dependent model
!     May 2016 CJS. Attempt to improve the reliability of the solution for degenerate modes (problem with spacewire model)
!     8/5/2017         CJS: Include references to Theory_Manual
!
SUBROUTINE modal_decomposition_global(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                               Y,Z,TI,TII,TV,TVI,GAMMA_C,GAMMA_SQR,gamma_r,D,sqrtDI,ZC,YC,Zm,Ym,Zmd,Ymd)

USE type_specifications
USE general_module
USE constants
USE eispack
USE maths

IMPLICIT NONE

! variables passed to the subroutine

integer,intent(IN)         :: dim                ! dimension of matrix system

complex(dp),intent(IN)     :: Z_domain(dim,dim)  ! domain based impedance matrix
complex(dp),intent(IN)     :: Y_domain(dim,dim)  ! domain based admittance matrix

complex(dp),intent(IN)     :: MV(dim,dim)        ! domain voltage decomposition matrix
complex(dp),intent(IN)     :: MVI(dim,dim)       ! inverse domain voltage decomposition matrix
complex(dp),intent(IN)     :: MI(dim,dim)        ! domain current decomposition matrix
complex(dp),intent(IN)     :: MII(dim,dim)       ! inverse domain current decomposition matrix

complex(dp)     :: Z(dim,dim)     ! glabal based impedance matrix
complex(dp)     :: Y(dim,dim)     ! glabal based admittance matrix

complex(dp)     :: GAMMA_SQR(dim)  ! diagonal matrix elements in YZ/ ZY diagonalisation 

complex(dp)     :: TV(dim,dim)     ! modal decomposition matrix            [Z][Y]=[TV][GAMMA_SQR][TVI]
complex(dp)     :: TVI(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: TI(dim,dim)     ! modal decomposition matrix            [Y][Z]=[TI][GAMMA_SQR][TII]
complex(dp)     :: TII(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: Zm(dim,dim)     ! modal characteristic impedance matrix
complex(dp)     :: Ym(dim,dim)     ! modal characteristic admittance matrix
complex(dp)     :: Zmd(dim)        ! modal characteristic impedance list
complex(dp)     :: Ymd(dim)        ! modal characteristic impedance list

complex(dp)     :: GAMMA_C(dim)    ! complex square root of GAMMA_SQR
real(dp)        :: gamma_r(dim)    ! real part of the complex square root of GAMMA_SQR
complex(dp)     :: D(dim,dim)      ! full matrix with GAMMA_C elements on the diagonal
complex(dp)     :: sqrtDI(dim,dim) ! full matrix with 1/sqrt(GAMMA_C) elements on the diagonal

complex(dp)     :: ZC(dim,dim)     ! Characteristic impedance matrix
complex(dp)     :: YC(dim,dim)     ! Characteristic admittance matrix

! local variables

complex(dp)     :: YZ(dim,dim)   ! YZ matrix product to be diagonalised

! temposrary matrices used in the calculations
complex(dp)     :: T1(dim,dim)
complex(dp)     :: T2(dim,dim)

complex(dp)     :: YDZD(dim,dim)
complex(dp)     :: MPI(dim,dim)
complex(dp)     :: TM1(dim,dim)

real(dp)        :: condition_number   ! matrix condition number

! loop variables
integer    :: row,col

! error code for matrix inverse calculation
integer :: ierr

! START
 
! Calculate the product ofthe transmission line impedance (Z) and admittance (Y) matrices

  if(verbose) write(*,*)'CALLED modal_decomposition_global'

  YZ=matmul(Y,Z)
  YDZD=matmul(Y_domain,Z_domain)
  
! perform a modal decomposition on the YZ product Theory_Manual_Eqn 2.36
! using eispack routines to calculate the eigenvalues and eigenvectors of the YZ

! Perturb the diagonal elements very slightly to eliminate the 
! problem with finding all the eigenvectors corresponding to degenerate eigenvalues.
! The perturbation is very small compared with the approximations applied to obtain the 
! original L and C matrices... See Theory_Manual_Section 2.3.1

  do row=1,dim
    YDZD(row,row)=YDZD(row,row)*(1d0+1D-8*row)
  end do
 
! calculate the eigenvectors and eigenvalues of YDZD
  CALL calc_eigenvectors(YDZD,GAMMA_SQR,MPI,dim) 
  
! Calculate the modal decomposition matrix for the global based currents.
  TI=matmul(MII,MPI)
         
  GAMMA_C(:)=sqrt(GAMMA_SQR(:))

  if(verbose) write(*,*)'Invert TI'

  ierr=1   ! set ierr=1 on input to matrix inverse to cause the program to return here if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TI,dim,TII,dim,ierr)
  
  if (ierr.NE.0) then
! we have a singular matrix here 
    run_status='ERROR in modal_decomposition_global. Singular matrix'
    CALL write_program_status()
    STOP 1
  end if
  
  if(verbose) write(*,*)'Done: Invert TI'
  
  GAMMA_SQR(:)=GAMMA_C(:)*GAMMA_C
  gamma_r(:)=sqrt(-dble(GAMMA_SQR(:)))    ! real part of gamma

! get the diagonal matrix with diagonal elements gamma, and its inverse

  D(:,:)=0d0
  sqrtDI(:,:)=0d0
  do row=1,dim
    D(row,row)=GAMMA_C(row)*GAMMA_C(row)
    sqrtDI(row,row)=1d0/GAMMA_C(row)
  end do

! Calculate the voltage transformation matrices based on Theory_Manual_Eqn 2.37
! noting that the transpose of the inverse of a matrix is equal to the inverse of the transpose of a matrix

  TV=transpose(TII)
  
  if(verbose) write(*,*)'Invert TV'
  
  ierr=1   ! set ierr=1 on input to matrix inverse to cause the program to return here if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TV,dim,TVI,dim,ierr)
  
  if (ierr.NE.0) then
! we have a singular matrix here 
    run_status='ERROR in modal_decomposition_global. Singular matrix'
    CALL write_program_status()
    STOP 1
  end if
  if(verbose) write(*,*)'Done: Invert TV'

! Calculate the characteristic impedance matrix Theory_Manual_Eqn 2.41
  T1=matmul(sqrtDI,TII)
  T2=matmul(TI,T1)
  ZC=matmul(Z,T2)
  
  if(verbose) write(*,*)'Invert ZC'
  ierr=1   ! set ierr=1 on input to matrix inverse to cause the program to return here if we have a singular matrix
  
  CALL cinvert_Gauss_Jordan(ZC,dim,YC,dim,ierr)
  
  if (ierr.NE.0) then
! we have a singular matrix here 
    run_status='ERROR in modal_decomposition_global. Singular matrix'
    CALL write_program_status()
    STOP 1
  end if
  if(verbose) write(*,*)'Done: Invert ZC'
  
! Calculate the modal impedance matrix
  T1=matmul(Z,TI)
  Zm=matmul(TVI,T1)

! Calculate the modal admittance matrix
  T1=matmul(Y,TV)
  Ym=matmul(TII,T1)

! Calculate Modal impedance
  do row=1,dim
    Zmd(row)=Zm(row,row)
    Ymd(row)=Ym(row,row)
  end do
  
  if (verbose) then
  
    write(*,*)'Modal decomposition of Global matrix YZ:'
    CALL write_cmatrix_re(YZ,dim,0)
  
    do col=1,dim
    
      write(*,*)
      write(*,*)'Modal decomposition: Mode number',col
      write(*,*)
      write(*,*)'Eigenvalue',GAMMA_SQR(col)
      write(*,*)
      write(*,*)'Eigenvector'
  
      do row=1,dim
        write(*,*)row,TI(row,col)
      end do
  
    end do
    
    CALL c_condition_number(TI,dim,condition_number,dim) 

    write(*,*)'Condition number of TI matrix =',condition_number
    
    CALL test_decomposition(YZ,GAMMA_SQR,TI,dim)
      
  end if
  
  RETURN

END SUBROUTINE modal_decomposition_global
!
! NAME
!     modal_decomposition_global_ZY
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine calculates the modal decomposition for the global ZY product
!     
! COMMENTS
!     Adapted from modal_decomposition_global
!
! HISTORY
!
!     started 7/12/2015 CJS: STAGE_1 developments
!     April 2016 CJS. Use impedance and admittance matrices for frequency dependent model
!     May 2016 CJS. Attempt to improve the reliability of the solution for degenerate modes (problem with spacewire model)
!     21/4/2017 CJS Adapted from modal_decomposition_global
!
SUBROUTINE modal_decomposition_global_ZY(dim,Z_domain,Y_domain,MV,MVI,MI,MII, &
                               Y,Z,TI,TII,TV,TVI,GAMMA_C,GAMMA_SQR,gamma_r,D,sqrtDI,ZC,YC,Zm,Ym,Zmd,Ymd)

USE type_specifications
USE general_module
USE constants
USE eispack
USE maths

IMPLICIT NONE

! variables passed to the subroutine

integer,intent(IN)         :: dim                ! dimension of matrix system

complex(dp),intent(IN)     :: Z_domain(dim,dim)  ! domain based impedance matrix
complex(dp),intent(IN)     :: Y_domain(dim,dim)  ! domain based admittance matrix

complex(dp),intent(IN)     :: MV(dim,dim)        ! domain voltage decomposition matrix
complex(dp),intent(IN)     :: MVI(dim,dim)       ! inverse domain voltage decomposition matrix
complex(dp),intent(IN)     :: MI(dim,dim)        ! domain current decomposition matrix
complex(dp),intent(IN)     :: MII(dim,dim)       ! inverse domain current decomposition matrix

complex(dp)     :: Z(dim,dim)     ! glabal based impedance matrix
complex(dp)     :: Y(dim,dim)     ! glabal based admittance matrix

complex(dp)     :: GAMMA_SQR(dim)  ! diagonal matrix elements in YZ/ ZY diagonalisation 

complex(dp)     :: TV(dim,dim)     ! modal decomposition matrix            [Z][Y]=[TV][GAMMA_SQR][TVI]
complex(dp)     :: TVI(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: TI(dim,dim)     ! modal decomposition matrix            [Y][Z]=[TI][GAMMA_SQR][TII]
complex(dp)     :: TII(dim,dim)    ! inverse modal decomposition matrix 

complex(dp)     :: Zm(dim,dim)     ! modal characteristic impedance matrix
complex(dp)     :: Ym(dim,dim)     ! modal characteristic admittance matrix
complex(dp)     :: Zmd(dim)        ! modal characteristic impedance list
complex(dp)     :: Ymd(dim)        ! modal characteristic impedance list

complex(dp)     :: GAMMA_C(dim)    ! complex square root of GAMMA_SQR
real(dp)        :: gamma_r(dim)    ! real part of the complex square root of GAMMA_SQR
complex(dp)     :: D(dim,dim)      ! full matrix with GAMMA_C elements on the diagonal
complex(dp)     :: sqrtDI(dim,dim) ! full matrix with 1/sqrt(GAMMA_C) elements on the diagonal

complex(dp)     :: ZC(dim,dim)     ! Characteristic impedance matrix
complex(dp)     :: YC(dim,dim)     ! Characteristic admittance matrix

! local variables

complex(dp)     :: ZY(dim,dim)   ! YZ matrix product to be diagonalised

! temposrary matrices used in the calculations
complex(dp)     :: T1(dim,dim)
complex(dp)     :: T2(dim,dim)

complex(dp)     :: ZDYD(dim,dim)
complex(dp)     :: MPI(dim,dim)
complex(dp)     :: TM1(dim,dim)

real(dp)        :: condition_number   ! matrix condition number

! loop variables
integer    :: row,col

! error code for matrix inverse calculation
integer :: ierr

! START
 
! Calculate the product ofthe transmission line admittance (Y) and impedance (Z) matrices

  if(verbose) write(*,*)'CALLED modal_decomposition_global_ZY'

  ZY=matmul(Z,Y)
  ZDYD=matmul(Z_domain,Y_domain)
  
! perform a modal decomposition on the ZY product (equation 2.8)
! using eispack routines to calculate the eigenvalues and eigenvectors of the ZY
! In practice we operate on the domain based ZY product as it seems to be numerically
! better in the case of degenerate eigenvalues, then we transform the eigenvector matrix
! with the domain decomposition matrix MVI to give TV The eigenvaluse are unchanged. 
! i.e.(V_domain)=[MV] (V_global), (I_domain)=[MI] (I_global) 
!     (V_domain)=[Z_domain] (I_domain), (I_domain)=[Y_domain](V_domain)
!     (V_global)=[Z_global] (I_global), (I_global)=[Y_global](V_global)
!     if [TV] diagonalises [Z_global][Y_global] i.e. [Z_global][Y_global]=[TV][gammasqr][TV^-1]
!     and [MPI]diagonalises [D_domain][Y_domain] i.e. [Z_domain][Y_domain] = [MPI][gammasqr][MPI^-1] then
!     [TV]=[MV^-1][MPI]

! Perturb the diagonal elements very slightly to eliminate the 
! problem with finding all the eigenvectors corresponding to degenerate eigenvalues.
! The perturbation is very small compared with the approximations applied to obtain the 
! original L and C matrices... See Theory_Manual_Section 2.3.1

  do row=1,dim
    ZDYD(row,row)=ZDYD(row,row)*(1d0+1D-8*row)
  end do
 
! calculate the eigenvectors and eigenvalues of YDZD
  CALL calc_eigenvectors(ZDYD,GAMMA_SQR,MPI,dim) 

  TV=matmul(MVI,MPI)
         
  GAMMA_C(:)=sqrt(GAMMA_SQR(:))

  if(verbose) write(*,*)'Invert TV'

  ierr=1   ! set ierr=1 on input to matrix inverse to cause the program to return here if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TV,dim,TVI,dim,ierr)
  
  if (ierr.NE.0) then
! we have a singular matrix here 
    run_status='ERROR in modal_decomposition_global_ZY. Singular matrix'
    CALL write_program_status()
    STOP 1
  end if
  
  if(verbose) write(*,*)'Done: Invert TV'
  
  GAMMA_SQR(:)=GAMMA_C(:)*GAMMA_C
  gamma_r(:)=sqrt(-dble(GAMMA_SQR(:)))

! get the diagonal matrix 

  D(:,:)=0d0
  sqrtDI(:,:)=0d0
  do row=1,dim
    D(row,row)=GAMMA_C(row)*GAMMA_C(row)
    sqrtDI(row,row)=1d0/GAMMA_C(row)
  end do

! Calculate the voltage transformation matrices based on Theory_Manual_Eqn 2.37

  TII=transpose(TV)
  
  if(verbose) write(*,*)'Invert TII'
  
  ierr=1   ! set ierr=1 on input to matrix inverse to cause the program to return here if we have a singular matrix
  CALL cinvert_Gauss_Jordan(TII,dim,TI,dim,ierr)
  
  if (ierr.NE.0) then
! we have a singular matrix here 
    run_status='ERROR in modal_decomposition_global_ZY. Singular matrix'
    CALL write_program_status()
    STOP 1
  end if
  if(verbose) write(*,*)'Done: Invert TII'

! Calculate the characteristic impedance matrix Zc=Tv gamma^-1 TVI Z (derived in a mannaer similar to Theory_Manual_Eqn 2.41)
  T1=matmul(sqrtDI,TVI)
  T2=matmul(TV,T1)
  ZC=matmul(T2,Z)
  
  if(verbose) write(*,*)'Invert ZC'
  ierr=1   ! set ierr=1 on input to matrix inverse to cause the program to return here if we have a singular matrix
  CALL cinvert_Gauss_Jordan(ZC,dim,YC,dim,ierr)
  if (ierr.NE.0) then
! we have a singular matrix here 
    run_status='ERROR in modal_decomposition_global_ZY. Singular matrix'
    CALL write_program_status()
    STOP 1
  end if
  if(verbose) write(*,*)'Done: Invert ZC'
  
! Calculate the modal impedance matrix
  T1=matmul(Z,TI)
  Zm=matmul(TVI,T1)

! Calculate the modal admittance matrix
  T1=matmul(Y,TV)
  Ym=matmul(TII,T1)

! Calculate Modal impedance
  do row=1,dim
    Zmd(row)=Zm(row,row)
    Ymd(row)=Ym(row,row)
  end do
  
  if (verbose) then
  
    write(*,*)'Modal decomposition of Global matrix ZY:'
    CALL write_cmatrix_re(ZY,dim,0)
  
    do col=1,dim
    
      write(*,*)
      write(*,*)'Modal decomposition: Mode number',col
      write(*,*)
      write(*,*)'Eigenvalue',GAMMA_SQR(col)
      write(*,*)
      write(*,*)'Eigenvector'
  
      do row=1,dim
        write(*,*)row,TV(row,col)
      end do
  
    end do
    
    CALL c_condition_number(TV,dim,condition_number,dim) 

    write(*,*)'Condition number of TV matrix =',condition_number
    
    CALL test_decomposition(ZY,GAMMA_SQR,TV,dim)
      
  end if
  
  RETURN

END SUBROUTINE modal_decomposition_global_ZY
!
! NAME SUBROUTINE calc_eigenvectors
!
! wrapper for the eispack codes cg and rg
!
! DESCRIPTION
!     Calculate the eigenvalues and eigenvectors of a general complex matrix.
!     We automatically detect if the system is real and use SUBROUTINE rg from eispack
!     otherwise we use SUBROUTINE cg from eispack
!     A small perturbation is applied to the matrix to prevent a problem with degenerate
!     systems where the eispack subroutine would occasionally return the same eigenvector 
!     for more than one of the degenerate eigenvalues (i.e. the diagonalised system
!     would be singular which causes problems in the subsequent analysis.)
!     
! COMMENTS
!     Order the eigenvalues (and eigenvectors) with largest first. 
!
! HISTORY
!
!     17/06/2016 CJS. Use the eispack routine rg for real matrices to try and improve robustness
!
SUBROUTINE calc_eigenvectors(M,gamma,P,dim)

USE type_specifications
USE general_module
USE eispack
USE maths

IMPLICIT NONE

integer,intent(IN)         :: dim        ! matrix dimension
complex(dp),intent(IN)     :: M(dim,dim) ! input matrix 
complex(dp),intent(OUT)    :: gamma(dim) ! vector of eigenvalues to be returned
complex(dp),intent(OUT)    :: P(dim,dim) ! matrix of eigenvectors to be returned, eigenvectors in columns

! local variables

complex(dp)     :: lambda
complex(dp)    :: AML(dim,dim)

complex(dp) c1,c2
complex(dp) x1,x2

! EISPACK variables (see eispack routines rg,cg for their meanings)
integer(i4)  n

real(dp) :: ai(dim,dim)
real(dp) :: ar(dim,dim)
integer(i4) :: ierr
integer(i4)::  matz
real(dp) :: wi(dim)
real(dp) :: wr(dim)
real(dp) :: zi(dim,dim)
real(dp) :: zr(dim,dim)
  
! normalisation variables
real(dp) norm

real(dp) max_value
integer row,col
  
complex(dp) :: largest_element
real(dp)    :: mag_largest_element

! variables for testing whether we have a real or complex system
real(dp) :: max_re,max_im,re_test

! variables for sorting eigenvalues and eigenvectors

real(dp)    :: min_eigenvalue
integer     :: min_pos
complex(dp) :: swap
complex(dp) :: vswap(1:dim)

! condition number calculation
real(dp) :: condition_number

! eigenvalue loop variable
integer :: ie
  
! START

! copy variables into the format required for EISPACK subroutines
n=dim

ar(:,:)=dble(M(:,:))
ai(:,:)=aimag(M(:,:))

! test to see whether we have a real matrix

max_re=0d0
max_im=0d0

do row=1,dim
  do col=1,dim
    max_re=max(abs(ar(row,col)),max_re)
    max_im=max(abs(ai(row,col)),max_im)
  end do
end do

if (max_im.GT.0d0) then
  re_test=max_re/max_im
else
! maximum imaginary part is equal to zero so use the real eigen solver from eispack
  re_test=1d13
end if

matz=1 ! eigenvalues and eigenvectors required

! call the eispack routine

if (re_test.GT.1D12) then   ! This tolerance should be set in constants
! Assume that this is a real problem so call the EISPACK routine for real matrices

  CALL rg ( n, ar, wr, wi, matz, zr, ierr )

  if (ierr.NE.0) then
    run_status='ERROR in eispack routine rg called from calc_eigenvectors'
    CALL write_program_status()
    STOP 1
  end if
  
  gamma(:)=cmplx( wr(:),wi(:), dp )

! assemble the complex eigenvector matrix. See header for eispack subroutine cg for explanation  
  ie=1
  do while (ie.LE.dim)
    if (wi(ie).NE.0d0) then
! complex eigenvalue

      P(1:dim,ie)  =cmplx( zr(1:dim,ie), zr(1:dim,ie+1), dp )
      P(1:dim,ie+1)=cmplx( zr(1:dim,ie),-zr(1:dim,ie+1), dp )
      ie=ie+2

    else
! real eigenvalue    

      P(1:dim,ie)=cmplx( zr(1:dim,ie),0d0, dp )
      ie=ie+1

    end if
  
 end do ! next eigenvector
  
else
! Assume that we have a complex problem so call the EISPACK routine for the general complex form 

  CALL cg ( n, ar, ai, wr, wi, matz, zr, zi, ierr )

  if (ierr.NE.0) then
    run_status='ERROR in eispack routine cg called from calc_eigenvectors'
    CALL write_program_status()
    STOP 1
  end if
  
  gamma(:)=cmplx( wr(:),wi(:), dp )

  P(:,:)=cmplx( zr(:,:),zi(:,:), dp )

end if  ! real or complex problem

! multiply the eigenvectors such that the largest element is real and positive

do col=1,dim

  mag_largest_element=0d0
  
  do row=1,dim
    if (abs(P(row,col)).GT.mag_largest_element) then
      mag_largest_element=abs(P(row,col))
      largest_element=P(row,col)
    end if
  end do
  
  do row=1,dim
    P(row,col)=P(row,col)/largest_element
  end do
  
end do 

! normalise the eigenvectors to a length of 1
do col=1,dim

  norm=0d0
  
  do row=1,dim
    norm=norm+abs(P(row,col))**2
  end do
  
  norm=sqrt(norm)
  
  do row=1,dim
    P(row,col)=P(row,col)/norm
  end do
  
end do 

! At this stage we have all the eigenvalues and eigenvectors though the order is uncertain

! Put the eigenvalues and the corresponding eigenvectors into order of magnitude, smallest first
! This corresponds to the process for the lossless homogeneous case in SUBROUTINE modal_decomposition_LC

do ie=1,dim-1

  min_eigenvalue=abs(gamma(ie))
  min_pos=ie
  
  do row=ie+1,dim
  
    if (abs(gamma(row)).LT.min_eigenvalue) then
! this eigenvalue is the smallest so far
    
      min_eigenvalue=abs(gamma(row))
      min_pos=row
   
    end if
    
    if (min_pos.NE.ie) then
! swap the eigenvalue and eigenvector into the ie-th position
    
      swap=gamma(ie)
      gamma(ie)=gamma(min_pos)
      gamma(min_pos)=swap
      
      vswap(1:dim)=P(1:dim,ie)
      P(1:dim,ie)=P(1:dim,min_pos)
      P(1:dim,min_pos)=vswap(1:dim)
      
    end if ! we need to swap the eigenvalue and eigenvector position
    
  end do ! next eigenvalue to check

end do ! next eigenvalue to put in order
 
RETURN

END SUBROUTINE calc_eigenvectors
!
! NAME SUBROUTINE test_decomposition
!
! DESCRIPTION
!    check the results of a modal decomposition to see whether it is accurate...
! Checks are:
!     1. [Pinverse][M][P]=[gamma]
!     2. evaluate [M](x)-gamma (x) and calculate the maximum residual over all of the eigenvalues,(x)
!     3. evaluate [P][gamma][PI]-[M] and check the error
!
! COMMENTS
!     
!
! HISTORY
!
!     
!
SUBROUTINE test_decomposition(M,gamma,P,dim)

USE type_specifications
USE eispack
USE maths

IMPLICIT NONE

integer,intent(IN)        :: dim        ! matrix dimension
complex(dp),intent(IN)    :: M(dim,dim) ! input matrix 
complex(dp),intent(IN)    :: gamma(dim) ! vector of eigenvalues to be returned
complex(dp),intent(IN)    :: P(dim,dim) ! matrix of eigenvectors to be returned, eigenvectors in columns

! Local variables

complex(dp)    :: gamma2(dim,dim)
complex(dp)    :: PI(dim,dim)

complex(dp)    :: T1(dim,dim)
complex(dp)    :: PH(dim,dim)
complex(dp)    :: PgammaPI(dim,dim)

complex(dp)    :: x(dim),M_x(dim),gamma_x(dim)

real(dp)       :: norm
real(dp)       :: diag_diff
real(dp)       :: err
real(dp)       :: max_off_diag
real(dp)       :: max_residual
real(dp)       :: residual

complex(dp)    :: v1v2

integer        :: row,col,eigenvalue,e1,e2
integer        :: n_eigenvectors
integer        :: ierr
! START

  write(*,*)'Test modal decomposition'
  
  ierr=0
  CALL cinvert_Gauss_Jordan(P,dim,PI,dim,ierr)

  T1=matmul(PI,M)
  gamma2=matmul(t1,P)
  
! check the difference between gamma and gamma2

  norm=0d0
  diag_diff=0d0
  
  do row=1,dim
    norm=norm+abs(gamma(row))**2
    diag_diff=diag_diff+abs(gamma(row)-gamma2(row,row))**2
  end do
  
  norm=sqrt(norm)
  diag_diff=diag_diff/norm

  max_off_diag=0d0
  
  do row=1,dim
    do col=1,dim
    
      if (row.NE.col) then
        max_off_diag=max( max_off_diag,ABS(gamma2(row,col)) )
      end if
      
    end do
  end do
  
! evaluate [M](x)-gamma (x) and calculate the maximum residual over all of the eigenvalues

  max_residual=0d0
  
  do eigenvalue=1,dim
  
    x(1:dim)=P(1:dim,eigenvalue)
    
    M_x=matmul(M,x)
    gamma_x(:)=gamma(eigenvalue)*x(:)
      
    residual=0d0
    do row=1,dim
      residual=residual+abs(M_x(row)-gamma_x(row))**2
    end do
    residual=sqrt(residual)/norm
    max_residual=max(residual,max_residual)
    
  end do
  
! evaluate PgammaPI-M and check the error

  T1=matmul(P,gamma2)
  PgammaPI=matmul(T1,PI)
  
  err=0d0
  norm=0d0
  
  do row=1,dim
    do col=1,dim
    
      err=err+abs(M(row,col)-PgammaPI(row,col))
      norm=norm+abs(M(row,col))**2
      
    end do
  end do
  
  err=err/sqrt(norm)
  
  Write(*,8100)'Diagonalisation check: diag_diff=',diag_diff,' max_off_diag=',&
             max_off_diag,' max_residual=',max_residual,' max_error=',err
8100 format(A,ES12.4,A,ES12.4,A,ES12.4,A,ES12.4)
  
  
    write(*,*)'M'
    CALL write_cmatrix(M,dim,0)
  
    write(*,*)'P'
    CALL write_cmatrix(P,dim,0)
    
    write(*,*)'Gamma'
    do row=1,dim
      write(*,*)row,gamma(row),abs(gamma(row))
    end do
   
    write(*,*)'PI'
    CALL write_cmatrix(PI,dim,0)
    
    write(*,*)'PgammaPi'
    CALL write_cmatrix(PgammaPI,dim,0)
   
  RETURN
  
END SUBROUTINE test_decomposition