Blame view

SRC/shield_conductor_and_transfer_impedance_model_builder.F90 28.5 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! PROGRAM shield_conductor_and_transfer_impedance_model_builder
!
! NAME
!     shield_conductor_and_transfer_impedance_model_builder
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     Calculate the transfer impedance and conductor impedance of a shield 
!     based on the geometrical and electrical properties of the braid forming
!     the shield. The calculations are based on the NLR theory presented in the Theory Manual
!
! Example input file:
!0.002           ! braid diameter, D (m)
!8               ! Number of carriers, C
!10              ! Number of wires in a carrier, N
!0.000025        ! diameter of a single wire, d (m)
!5E7             ! conductivity of wires (S/m)
!50.0            ! pitch angle of the braid (degrees)
!4               ! order of transfer impedance model
!log             ! frequency range type
!1E5   1E9  1000 ! fmin, fmax, number of frequencies
!
! COMMENTS
!     The braid equivalent thickness is calculated from the d.c. resistance of the braid and the braid conductivity
189467e4   Steve Greedy   First Public Release
55
!     See appendix 1 of the user guide for the theory 
886c558b   Steve Greedy   SACAMOS Public Re...
56
57
58
59
!
! HISTORY
!
!     started 22/08/2016 CJS 
189467e4   Steve Greedy   First Public Release
60
61
62
!     started 29/09/2017 CJS Include more rigorous hole inductance calculation
!                            using elliptic integrals 
!     11/10/2017 CJS special case for 0 order models to ensure that the d.c. resistance is correct
886c558b   Steve Greedy   SACAMOS Public Re...
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
!
PROGRAM shield_conductor_and_transfer_impedance_model_builder

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

! local variables

character(len=filename_length)    :: braid_name     ! name of the braid model
character(len=filename_length)    :: filename       ! filename for the braid model specification
    
logical        :: file_exists

real(dp) :: D                      ! braid diameter, D (m)
integer  :: C                      ! Number of carriers, C
integer  :: N                      ! Number of wires in a carrier, N
real(dp) :: dw                     ! diameter of a single wire, d (m)
real(dp) :: sigma                  ! conductivity of wires (S/m)
real(dp) :: alpha                  ! pitch angle of the braid (degrees)
integer  :: order                  ! order of transfer impedance and conductor impedance model

type(frequency_specification) :: frequency_data  ! frequency range data for transfer impedance and conductor impedance model

complex(dp),allocatable  :: Zd(:)      ! Frequency dependent diffusion impedance data
complex(dp),allocatable  :: Zt(:)      ! Frequency dependent transfer impedance data
complex(dp),allocatable  :: Zc(:)      ! Frequency dependent shield conductor impedance data
complex(dp)  :: Zt_fit       ! Vector fit model Frequency dependent transfer impedance data
complex(dp)  :: Zc_fit       ! Vector fit model Frequency dependent shield conductor impedance data

type(Sfilter)  :: Zd_filter      ! Frequency dependent diffusion impedance rational function model
type(Sfilter)  :: Zt_filter      ! Frequency dependent transfer impedance rational function model
type(Sfilter)  :: Zc_filter      ! Frequency dependent shield conductor impedance rational function model

complex(dp)              :: M          ! Total contribution originating from braid magnetic field leakage 
complex(dp)              :: M12        ! per-unit-length hole inductance 
complex(dp)              :: Mb         ! braid inductance
complex(dp)              :: Ms         ! skin inductance

real(dp)                 :: w          ! angular frequency

real(dp)    :: R0       ! d.c. resistance of shield
complex(dp) :: gamma    ! complex propagation constant in shield
real(dp)    :: delta    ! skin depth in shield
real(dp)    :: T        ! shield conductor thickness
real(dp)    :: lh       ! hole length
real(dp)    :: wh       ! hole width
real(dp)    :: S        ! hole area
real(dp)    :: req      ! equivalent hole radius

real(dp)    :: b       ! width between holes
real(dp)    :: hh      ! average height for braid inductance calculation
real(dp)    :: Dm      ! Mean diameter of braid for braid inductance calculation

real(dp)    :: v     ! Number of holes per unit length
real(dp)    :: gc    ! constant used in hole inductance calculation
real(dp)    :: F     ! Fill factor of braid
real(dp)    :: K     ! Optical coverage of braid
real(dp)    :: Ck    ! constant used in hole inductance calculation

189467e4   Steve Greedy   First Public Release
128
129
130
real(dp)    :: RT    ! transfer resistance in ZT=R+jwL model
real(dp)    :: LT    ! transfer inductance in ZT=R+jwL model

886c558b   Steve Greedy   SACAMOS Public Re...
131
132
133
134
135
136
137
! variables for intermediate quantities used in the calculations
real(dp)    :: P     
real(dp)    :: kappa 
complex(dp) :: sinh_gT  
complex(dp) :: cosh_gT
complex(dp) :: u
complex(dp) :: nu
189467e4   Steve Greedy   First Public Release
138
139
140
141
142
real(dp)    :: k1     ! factor used in Kley's model for braid inductance
real(dp)    :: mum    ! hole polarizability factor 
real(dp)    :: a      ! braid radius
real(dp)    :: e     
real(dp)        :: Th,CkT               ! attenuation factor
886c558b   Steve Greedy   SACAMOS Public Re...
143
144
145
146
147
148
149
150
151

integer        :: floop  ! frequency loop variable

integer        :: Zt_aorder,Zt_border  ! order of transfer impedance model

integer        :: i      

integer        :: ierr  ! integer to return error codes from file reads

189467e4   Steve Greedy   First Public Release
152
153
154
155
156
157
158
159
integer        :: model_type
integer,parameter :: NLR=1
integer,parameter :: Kley=2

! function types
real(dp)    :: Em       
real(dp)    :: Km       

886c558b   Steve Greedy   SACAMOS Public Re...
160
161
162
163
164
165
! START

! Open the input file describing the braid parameters
! This file could be created by the associated GUI or otherwise generated

  verbose=.TRUE.
189467e4   Steve Greedy   First Public Release
166
167
!  model_type=NLR
  model_type=Kley
886c558b   Steve Greedy   SACAMOS Public Re...
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

  program_name="shield_conductor_and_transfer_impedance_model_builder"
  run_status='Started'
  CALL write_program_status()
  
  CALL read_version()
    
  CALL write_license()

  write(*,*)'Enter the name of the shield braid specification data (without .braid_spec extension)'

  read(*,'(A)')braid_name
  filename=trim(braid_name)//braid_spec_file_extn

  inquire(file=trim(filename),exist=file_exists)
  if (.NOT.file_exists) then
    run_status='ERROR in shield_conductor_and_transfer_impedance_model_builder, Cannot find the file:'//trim(filename)
    CALL write_program_status()
    STOP 1
  end if 
  
! open and read the file
  
  OPEN(unit=braid_spec_file_unit,file=filename)

  if(verbose) write(*,*)'Opened file:',trim(filename)
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)D
  if (ierr.NE.0) then 
    run_status='ERROR reading shield diameter'
    CALL write_program_status()
    STOP 1
  end if
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)C
  if (ierr.NE.0) then 
    run_status='ERROR reading number of carriers'
    CALL write_program_status()
    STOP 1
  end if
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)N
  if (ierr.NE.0) then 
    run_status='ERROR reading number of number of wires in a carrier'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)dw
  if (ierr.NE.0) then 
    run_status='ERROR reading wire diameter'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)sigma
  if (ierr.NE.0) then 
    run_status='ERROR reading wire conductivity'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)alpha
  if (ierr.NE.0) then 
    run_status='ERROR reading pitch angle of the braid'
    CALL write_program_status()
    STOP 1
  end if
! convert alpha to radians
  alpha=alpha*pi/180d0
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)order
  if (ierr.NE.0) then 
    run_status='ERROR reading the model order for the transfer impedance and conductor impedance models'
    CALL write_program_status()
    STOP 1
  end if
  
  CALL read_and_set_up_frequency_specification(frequency_data,braid_spec_file_unit)

! close the file with the cable data
  CLOSE(unit=braid_spec_file_unit)
  
! Evaluate the shield transfer impedance and conductor impedance over the specified frequency range

  ALLOCATE(Zd(1:frequency_data%n_frequencies))
  ALLOCATE(Zt(1:frequency_data%n_frequencies))
  ALLOCATE(Zc(1:frequency_data%n_frequencies))

! Calculate the solution parameters which are frequency independent  

  gc=(2d0/pi)**(3d0/2d0)
  P=C*tan(alpha)/(2d0*pi*D)
  v=P*C
  F=N*C*dw/(2d0*pi*D*cos(alpha))   ! fill factor
  K=2d0*F-F*F   ! optical coverage
  
  lh=(1d0-F)*N*dw/(F*sin(alpha))
  wh=(1d0-F)*N*dw/(F*cos(alpha))
189467e4   Steve Greedy   First Public Release
267
268
269
270
271
272
273
  S=pi*wh*lh/4d0   ! hole area
  
  if (lh.GT.wh) then
    e=sqrt(1d0-(wh/lh)**2)
  else
    e=sqrt(1d0-(lh/wh)**2)
  end if
886c558b   Steve Greedy   SACAMOS Public Re...
274
  
189467e4   Steve Greedy   First Public Release
275
  write(*,*)lh,wh,e
886c558b   Steve Greedy   SACAMOS Public Re...
276
  
189467e4   Steve Greedy   First Public Release
277
278
279
  Dm=D+2d0*dw
!  b=(2d0*pi*Dm/C)*cos(alpha)-N*dw
  b=N*dw*(1d0-F)/F
886c558b   Steve Greedy   SACAMOS Public Re...
280
281

! Calculate an equivalent shield thickness from R0, D and sigma
189467e4   Steve Greedy   First Public Release
282
283
  
    R0=4d0/(pi*dw*dw*N*C*sigma*cos(alpha))    ! d.c. resistance. equation 5.63 of D1
886c558b   Steve Greedy   SACAMOS Public Re...
284

189467e4   Steve Greedy   First Public Release
285
286
287
288
289
290
291
    T=1d0/(2d0*pi*sigma*(D/2d0)*R0)

  if (model_type.EQ.NLR) then
  
! Chimney effect stuff
    req=sqrt(S/pi)
    kappa=1.84d0/req  
886c558b   Steve Greedy   SACAMOS Public Re...
292
  
189467e4   Steve Greedy   First Public Release
293
    Ck=0.875d0*exp(-kappa*T)
886c558b   Steve Greedy   SACAMOS Public Re...
294

189467e4   Steve Greedy   First Public Release
295
296
297
298
299
    if (b.GT.dw) then
      hh=2d0*dw/(1d0+b/dw)
    else
      hh=dw
    end if
886c558b   Steve Greedy   SACAMOS Public Re...
300
301
302
    
! Hole inductance term  ! equation 5.82 of D1
        
189467e4   Steve Greedy   First Public Release
303
    M12=1.08D0*gc*(pi*mu0/(6d0*C))*((1d0-K)**(3d0/2d0))*(2d0-cos(alpha))*Ck
886c558b   Steve Greedy   SACAMOS Public Re...
304
305
306
    
! Braid inductance term
    
189467e4   Steve Greedy   First Public Release
307
    Mb=-mu0*(hh/(4d0*pi*Dm))*(1d0-(tan(alpha))**2)
886c558b   Steve Greedy   SACAMOS Public Re...
308
309
310
    
! Skin inductance term. Assumed to be zero here.

189467e4   Steve Greedy   First Public Release
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    Ms=0d0

  else if (model_type.EQ.Kley) then
   
! Chimney effect stuff

! Tesche eqn 9.51
    a=D/2d0+dw
    Th=9.6d0*F* ((K*K*dw/(2d0*a))**0.33333)
    Ck=0.875*exp(-Th)  
    
! Hole inductance term  !
        
    M12=(pi*4.0*pi*1E-7/(6.0*C))*((1.0-K)**(1.5))*e*e/(Em(e)-(1.0-e*e)*Km(e))*Ck    
    
! Braid inductance term
    hh=dw
    k1=(pi/4d0)/(0.6667D0*F*cos(alpha)+pi/10d0)
    
    Mb=-mu0*(hh/(4d0*pi*Dm))*(0.22d0/(F*cos(alpha)))*cos(2d0*k1*alpha) ! OK NLR and Tesche(9.54)
        
! Skin inductance term. Assumed to be zero here.

    Ms=0d0 

  end if
886c558b   Steve Greedy   SACAMOS Public Re...
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

! Total field leakage contributions

  M=M12+Mb+Ms
  
  if (verbose) then
   
    write(*,*)'braid circummference, cb=',pi*D
    write(*,*)'C=',C,' Number of carriers'
    write(*,*)'N=',N,' Number of conductors in each carrier'
    write(*,*)'W=',N*dw,' Width of each carrier'
    write(*,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
    write(*,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
    write(*,*)'P=',P
    write(*,*)'v=',v,'  Number of holes per unit length in braid'
    write(*,*)'F=',F,'  Fill factor'
    write(*,*)'K=',K,'  Optical coverage'
    write(*,*)'l=',lh,'  hole length'
    write(*,*)'w=',wh,'  hole width'
    write(*,*)'S=',S, '  hole area'
189467e4   Steve Greedy   First Public Release
357
358
359
360
361
362
    if (model_type.EQ.NLR) then
      write(*,*)'req=',req,'  hole equivalent radius'
      write(*,*)'k=',kappa,'  hole cutoff k value'
    else if (model_type.EQ.Kley) then
      write(*,*)'Th=',Th,'  hole attenuation factor'
    end if
886c558b   Steve Greedy   SACAMOS Public Re...
363
364
365
366
367
368
369
370
371
372
373
374
    write(*,*)'Ck=',Ck,'  hole inductance factor'
    
    write(*,*)'Ro',R0,'  braid d.c. resistance'
    write(*,*)'T ',T,'  braid equivalent thickness'
    write(*,*)'mean braid diameter, Dm=',Dm
    write(*,*)'Width between holes,  b=',b
    write(*,*)'Average height for braid inductance,  hh=',hh
    
    write(*,*)'M12=',M12,' Hole inductance'
    write(*,*)'Mb =',Mb,' Braid inductance'
    write(*,*)'Ms=',Ms,' Skin inductance'
    write(*,*)'M=',M,' Total transfer inductance'
189467e4   Steve Greedy   First Public Release
375
     
886c558b   Steve Greedy   SACAMOS Public Re...
376
377
  end if ! verbose
  
189467e4   Steve Greedy   First Public Release
378
379
  CALL plot_braid_figure(C,N,dw,alpha,D,braid_name)
  
886c558b   Steve Greedy   SACAMOS Public Re...
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
  open(unit=83,file='Zt_Zc.dat')
  
  do floop=1,frequency_data%n_frequencies
  
    w=2d0*pi*frequency_data%freq_list(floop)

! Diffusion impedance term
    delta=sqrt(2d0/(w*mu0*sigma))             ! skin depth in conductor
    gamma=cmplx(1d0,1d0)/cmplx(delta)         ! complex propagation constant in shield
        
    sinh_gT=(exp(gamma*T)-exp(-gamma*T))/(2d0,0d0)
    cosh_gT=(exp(gamma*T)+exp(-gamma*T))/(2d0,0d0)
    
    Zd(floop)=R0*gamma*T/sinh_gT      ! equation 5.62 of D1
    
! Terms for calculation in Schelkunoff's notation
    nu=j*w*mu0/gamma
    u=t*sqrt(2d0*sigma*w*mu0)

! Transfer impedance is the sum of the diffusion impedance and the transfer inductance
    Zt(floop)=Zd(floop)+j*w*M
    
! Conductor impedance term
    Zc(floop)=R0*gamma*T*cosh_gT/sinh_gT
    
    write(83,8000)frequency_data%freq_list(floop),real(Zt(floop)),aimag(Zt(floop)),real(Zc(floop)),aimag(Zc(floop))
8000 format(5ES16.6)

189467e4   Steve Greedy   First Public Release
408
409
410
411
412
413
    if (floop.EQ.frequency_data%n_frequencies) then
! work out the R+jwL model
      RT=R0
      LT=aimag(Zt(floop))/w
    end if

886c558b   Steve Greedy   SACAMOS Public Re...
414
415
416
  end do ! next frequency
  
  close(unit=83)
189467e4   Steve Greedy   First Public Release
417
418
419
420
421
422
423
424
425
  
  write(*,*)'________________________________________________________________'
  write(*,*)''
  write(*,*)'ZT=RT+jwLT model:'
  write(*,*)'RT=',RT,' ohms/m'
  write(*,*)'LT=',LT,' H/m'
  write(*,*)'________________________________________________________________'
  write(*,*)''
  
886c558b   Steve Greedy   SACAMOS Public Re...
426
427
428
429
430

! Create a rational function model of the transfer impedance data in two stages
! First, create a rational function model of the frequency dependent diffusion impedance
! Then add the transfer inductance term jwM

189467e4   Steve Greedy   First Public Release
431
! calculate_Sfilter with border=aorder+1 and with fit_type=0 i.e. Zd->0 as f-> infinity
886c558b   Steve Greedy   SACAMOS Public Re...
432
433

  if (verbose) write(*,*)'Calculate_Sfilter for diffusion impedance, Zd'
189467e4   Steve Greedy   First Public Release
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
  
  if (order.NE.0) then
  
    CALL Calculate_Sfilter(Zd,frequency_data%freq_list,frequency_data%n_frequencies,   &
                           Zd_filter,order,1,0) ! call with fit_type=0
                           
  else
  
! for a zero order model, return the d.c. resistance of the sheild
    Zd_filter=allocate_Sfilter(0,0)
    Zd_filter%wnorm=1d0
    Zd_filter%a%coeff(0)=R0
    Zd_filter%b%coeff(0)=1d0
    
  end if
886c558b   Steve Greedy   SACAMOS Public Re...
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
  
! Add the transfer inductance term to the diffusion impedance filter i.e. Zt=Zd+j*w*M

  Zt_aorder=max(Zd_filter%a%order,Zd_filter%b%order+1)
  Zt_border=Zd_filter%b%order
  
  Zt_filter=allocate_Sfilter(Zt_aorder,Zt_border)
  
  Zt_filter%wnorm=Zd_filter%wnorm
  if (verbose) write(*,*)'Zt_filter%wnorm=',Zt_filter%wnorm
  
! copy a coefficients from Zd_filter to Zt_filter

  do i=0,Zd_filter%a%order
    Zt_filter%a%coeff(i)=Zd_filter%a%coeff(i)
  end do
  
! copy b coefficients from Zd_filter to Zt_filter

  do i=0,Zd_filter%b%order
    Zt_filter%b%coeff(i)=Zd_filter%b%coeff(i)
  end do

! add the jwM term  

  do i=0,Zd_filter%b%order
    Zt_filter%a%coeff(i+1)=Zt_filter%a%coeff(i+1)+(M*Zt_filter%wnorm)*Zd_filter%b%coeff(i)
  end do
  
! Create a rational function model of the shield conductor impedance data

! call calculate_Sfilter with border=aorder and with fit_type=0
  if (verbose) write(*,*)'Calculate_Sfilter for surface impedance, Zc'
189467e4   Steve Greedy   First Public Release
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
  
  if (order.NE.0) then
  
    CALL Calculate_Sfilter(Zc,frequency_data%freq_list,frequency_data%n_frequencies,  &
                           Zc_filter,order,0,0) ! call with fit_type=0
                           
  else
  
! for a zero order model, return the d.c. resistance of the sheild
    Zc_filter=allocate_Sfilter(0,0)
    Zc_filter%wnorm=1d0
    Zc_filter%a%coeff(0)=R0
    Zc_filter%b%coeff(0)=1d0
    
  end if
886c558b   Steve Greedy   SACAMOS Public Re...
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

! Write vector fit models to file
  open(unit=84,file='Zt_fit.fout')
  open(unit=85,file='Zc_fit.fout')
  do floop=1,frequency_data%n_frequencies
  
    Zt_fit=evaluate_Sfilter_frequency_response(Zt_filter,frequency_data%freq_list(floop))
    Zc_fit=evaluate_Sfilter_frequency_response(Zc_filter,frequency_data%freq_list(floop))
    
    write(84,8000)frequency_data%freq_list(floop),real(Zt_fit),aimag(Zt_fit)
    write(85,8000)frequency_data%freq_list(floop),real(Zc_fit),aimag(Zc_fit)
    
  end do
  
  close(unit=84)
  close(unit=85)

! Open a file for the shield model
  
  filename=trim(braid_name)//shield_model_file_extn
  open(unit=shield_model_file_unit,file=filename)

! Write the shield equivalent thickness and conductivity 

  write(shield_model_file_unit,*)D/2d0,' # Parameter Shield radius (m)'
  write(shield_model_file_unit,*)T,    ' # Parameter Equivalent shield thickness (m)'
  write(shield_model_file_unit,*)sigma,' # Parameter Shield conductivity (S/m)'

! Write the transfer impedance model to the shield model file

189467e4   Steve Greedy   First Public Release
527
  write(shield_model_file_unit,*)' '
886c558b   Steve Greedy   SACAMOS Public Re...
528
  write(shield_model_file_unit,*)'# Transfer impedance model'
189467e4   Steve Greedy   First Public Release
529
530
  write(shield_model_file_unit,*)' '
  
886c558b   Steve Greedy   SACAMOS Public Re...
531
532
533
534
  CALL Write_Sfilter(Zt_filter,shield_model_file_unit)

! Write the shield conductor model to the shield model file

189467e4   Steve Greedy   First Public Release
535
536
537
538
  write(shield_model_file_unit,*)' '
  write(shield_model_file_unit,*)'# Conductor surface impedance model'
  write(shield_model_file_unit,*)' '
  
886c558b   Steve Greedy   SACAMOS Public Re...
539
  CALL Write_Sfilter(Zc_filter,shield_model_file_unit)
189467e4   Steve Greedy   First Public Release
540
541
  
  write(shield_model_file_unit,*)' '
886c558b   Steve Greedy   SACAMOS Public Re...
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

! Write the solution parameters to the shield model file  
   
  write(shield_model_file_unit,*)'# Shield parameters used in the shield model calculation'
  write(shield_model_file_unit,*)'braid circummference, cb=',pi*D
  write(shield_model_file_unit,*)'C=',C,' Number of carriers'
  write(shield_model_file_unit,*)'N=',N,' Number of conductors in each carrier'
  write(shield_model_file_unit,*)'W=',N*dw,' Width of each carrier'
  write(shield_model_file_unit,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
  write(shield_model_file_unit,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
  write(shield_model_file_unit,*)'P=',P
  write(shield_model_file_unit,*)'v=',v,'  Number of holes per unit length in braid'
  write(shield_model_file_unit,*)'F=',F,'  Fill factor'
  write(shield_model_file_unit,*)'K=',K,'  Optical coverage'
  write(shield_model_file_unit,*)'l=',lh,'  hole length'
  write(shield_model_file_unit,*)'w=',wh,'  hole width'
  write(shield_model_file_unit,*)'S=',S, '  hole area'
189467e4   Steve Greedy   First Public Release
559
560
561
562
563
564
  if (model_type.EQ.NLR) then
    write(shield_model_file_unit,*)'req=',req,'  hole equivalent radius'
    write(shield_model_file_unit,*)'k=',kappa,'  hole cutoff k value'
  else if (model_type.EQ.Kley) then
    write(shield_model_file_unit,*)'Th=',Th,'  hole attenuation factor'
  end if
886c558b   Steve Greedy   SACAMOS Public Re...
565
  write(shield_model_file_unit,*)'Ck=',Ck,'  hole inductance factor'
886c558b   Steve Greedy   SACAMOS Public Re...
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
  write(shield_model_file_unit,*)'Ro',R0,'  braid d.c. resistance'
  write(shield_model_file_unit,*)'T ',T,'  braid equivalent thickness'
  write(shield_model_file_unit,*)'mean braid diameter, Dm=',Dm
  write(shield_model_file_unit,*)'Width between holes,  b=',b
  write(shield_model_file_unit,*)'Average height for braid inductance,  hh=',hh
  
  write(shield_model_file_unit,*)'M12=',M12,' Hole inductance'
  write(shield_model_file_unit,*)'Mb =',Mb,' Braid inductance'
  write(shield_model_file_unit,*)'Ms=',Ms,' Skin inductance'
  write(shield_model_file_unit,*)'M=',M,' Total transfer inductance'

! Close the shield model file

  close(unit=shield_model_file_unit)

! deallocate memory and finish up
  DEALLOCATE(Zd)
  DEALLOCATE(Zt)
  DEALLOCATE(Zc)

  run_status='Finished_Correctly'
  CALL write_program_status()
  
END PROGRAM shield_conductor_and_transfer_impedance_model_builder

189467e4   Steve Greedy   First Public Release
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
real(dp) FUNCTION Em(m)

USE type_specifications

IMPLICIT NONE

! Elliptic integral approximation, see Abramowitz and Stegun 17.3.35

real(dp) m

real(dp),parameter :: a1=0.4630151
real(dp),parameter :: a2=0.1077812
real(dp),parameter :: b1=0.2452727
real(dp),parameter :: b2=0.0412496
real(dp) m1

! START

if ((m.LT.0.0).OR.(m.GT.1.0)) then
  write(*,*)'Error: m out of range 0<m<1 in Em(m)'
  write(*,*)'m=',m
  STOP
end if

m1=1.0-m
Em=1.0+a1*m1+a2*m1*m1+(b1*m1+b2*m1*m1)*log(1.0/m1)

END

real(dp) FUNCTION Km(m)

USE type_specifications

IMPLICIT NONE

! Elliptic integral approximation, see Abramowitz and Stegun 17.3.33

real(dp) m

real(dp),parameter :: a0=1.3862944
real(dp),parameter :: a1=0.1119723
real(dp),parameter :: a2=0.0725296
real(dp),parameter :: b0=0.5
real(dp),parameter :: b1=0.1213478
real(dp),parameter :: b2=0.0288729
real(dp) m1

! START

if ((m.LT.0.0).OR.(m.GT.1.0)) then
  write(*,*)'Error: m out of range 0<m<1 in Km(m)'
  write(*,*)'m=',m
  STOP
end if

m1=1.0-m
Km=a0+a1*m1+a2*m1*m1+(b0+b1*m1+b2*m1*m1)*log(1.0/m1)

END
!
! ____________________________________________________________
!
!
SUBROUTINE plot_braid_figure(C,N,dw,alpha,D,braid_name)

USE type_specifications
USE general_module
USE constants

IMPLICIT NONE

! variables passed to subroutine

integer  :: N                      ! Number of wires in a carrier, N
integer  :: C                      ! Number of carriers, C
real(dp) :: dw                     ! diameter of a single wire, d (m)
real(dp) :: alpha                  ! pitch angle of the braid (degrees)
real(dp) :: D                      ! braid diameter, D (m)
character(len=filename_length)    :: braid_name     ! name of the braid model

! local variables

real(dp) :: lx,ly

real(dp) :: dwx,dwy,dydx

real(dp) :: dyc

real(dp) :: x,y
real(dp) :: x1,y1
real(dp) :: x2,y2
real(dp) :: dy,dx

real(dp) :: wC,tC,tH,yH,tW
real(dp) :: l1,l2,l3,l4

real(dp) :: ax,ay,ox,l,ox_C

integer :: i,ii

! START

ly=pi*D   ! extent of the circumferential direction
if (alpha.NE.0d0) then
  lx=ly/tan(alpha)
  lx=max(lx,1.62d0*ly)
else
  lx=1.62d0*ly
end if

dwy=dw/cos(alpha)
dwx=dw/sin(alpha)
dydx=tan(alpha)

dyc=ly/(C/2d0)

wC=N*dw    ! width of a carrier
tC=wC/sin(2d0*alpha)

tW=dw/sin(2d0*alpha)! width of a conductor

yH=dyc-wC/cos(alpha)
tH=yH/(2d0*sin(alpha))

l1=3d0*tH+2d0*tC
l2=tC
l3=tH
l4=tC

ax=-cos(alpha)              ! gradient of start point line
ay=sin(alpha)
ox=dyc/tan(alpha)   ! offset along x

write(*,*)'ly=',ly
write(*,*)'space for each carrier in circumferential direction (dyc)',dyc

write(*,*)'carrier overlap length   ',tC
write(*,*)'conductor overlap length ',tW
write(*,*)'hole width               ',yH
write(*,*)'hole edge length         ',tH
write(*,*)'offset along x           ',ox

open(unit=local_file_unit,file='braid_figure.dat')

!GOTO 1234

! WIRES GOING IN FIRST DIRECTION (UP IN FIGURE)
! loop over carriers

do ii=0,C/2-1
  
! plot a single carrier

  do i=0,N    ! the number of lines to plot is N+1

! calculate the first end point of the line

    l=i*tW
    x1=0d0+ax*l-ii*ox
    y1=0d0+ay*l
            
    CALL write_braid_line(x1,y1,dydx,lx,ly,l1,l2,l3,l4,local_file_unit)
            
  end do  ! next line (wire in carrier)

end do ! next carrier

! WIRES GOING IN SECOND DIRECTION (DOWN IN FIGURE)

1234 CONTINUE

dydx=-tan(alpha)
ax=-cos(alpha)              ! gradient of start point line
ay=-sin(alpha)

! loop over carriers

do ii=0,C/2-1
  
  ox_C=-3d0*ox
  if (mod(ii,4).EQ.1) then
    ox_C=-2d0*ox
  else if (mod(ii,4).EQ.2) then
    ox_C=-1d0*ox
  else if (mod(ii,4).EQ.3) then
    ox_C=-0d0*ox
  end if

! plot a single carrier

  do i=0,N    ! the number of lines to plot is N+1

! calculate the first end point of the line
    
    l=i*tW
    x1=0d0+ax*l-ii*ox-ox/2d0
    y1=ly+ay*l+dyc/2d0
            
    CALL write_braid_line(x1,y1,dydx,lx,ly,l1,l2,l3,l4,local_file_unit)
            
  end do  ! next line (wire in carrier)

end do ! next carrier

close(unit=local_file_unit)

! write a file to plot the braid figure
open(unit=local_file_unit,file='plot_braid.plt')

write(local_file_unit,'(A,A,A)')'set title "',trim(braid_name),'"'
write(local_file_unit,'(A)')'set xlabel "Longitudinal direction"'
write(local_file_unit,'(A)')'set ylabel "Circumferential"'
write(local_file_unit,'(A)')'plot "braid_figure.dat" u 1:2 w l'
write(local_file_unit,'(A)')'pause -1'

close(unit=local_file_unit)


END SUBROUTINE plot_braid_figure
!
! ____________________________________________________________
!
!
SUBROUTINE write_braid_line(x,y,m,lx,ly,l1,l2,l3,l4,unit)

USE type_specifications

IMPLICIT NONE

real(dp),intent(IN) :: x,y      ! point on the line
real(dp),intent(IN) :: m        ! gradient
real(dp),intent(IN) :: lx       ! xlimit
real(dp),intent(IN) :: ly       ! ylimit
real(dp),intent(IN) :: l1       ! length1
real(dp),intent(IN) :: l2       ! length2
real(dp),intent(IN) :: l3       ! length3
real(dp),intent(IN) :: l4       ! length4
integer,intent(IN)  :: unit

! local variables

real(dp) :: d1       
real(dp) :: d2       
logical :: line_end

! START

  d1=0d0   ! start of line

10 CONTINUE

  d2=d1+l1
  
!  write(*,*)'Write braid line'
!  write(*,*)x,y
!  write(*,*)d1,d2
  
  CALL write_braid_line_l(x,y,m,lx,ly,d1,d2,line_end,unit)
  if (line_end) RETURN
  
  d1=d2+l2  ! allow blank space l1 to l2
  d2=d1+l3
  
!  write(*,*)'Write braid line'
!  write(*,*)x,y
!  write(*,*)d1,d2
 
  CALL write_braid_line_l(x,y,m,lx,ly,d1,d2,line_end,unit)
  if (line_end) RETURN
  
  d1=d2+l4  ! allow blank space l3 to l4
  
  GOTO 10


  RETURN

END SUBROUTINE write_braid_line
!
! ____________________________________________________________
!
!
SUBROUTINE write_braid_line_l(x0,y0,m,lx,ly,l1,l2,line_end,unit)

USE type_specifications

IMPLICIT NONE

real(dp),intent(IN) :: x0,y0    ! intial point on the line
real(dp),intent(IN) :: m        ! gradient
real(dp),intent(IN) :: lx       ! xlimit
real(dp),intent(IN) :: ly       ! ylimit
real(dp),intent(IN) :: l1       ! length1
real(dp),intent(IN) :: l2       ! length2
integer,intent(IN)  :: unit
logical,intent(OUT) :: line_end    ! flag the end of the line

! local variables

real(dp) :: c          ! constant for line equation1
real(dp) :: ax,ay      ! constants for parametric line equation
real(dp) :: x1,y1      ! first point on the line segment
real(dp) :: x2,y2      ! second point on the line segment
real(dp) :: l_line     ! length of line segment
real(dp) :: l_segment  ! length of split line segment

integer :: i

! START

  line_end=.FALSE.
  
! get the equation of the line in the form y=mx+c
  c=y0-m*x0
  
! get the parametric equation of the line in the form x=x+ax*l, y=y+ay*l
  ax=sqrt(1d0/(1d0+m*m))
  ay=m*ax

! calculate the first end point of the line 
  x1=x0+ax*l1
  y1=y0+ay*l1
  
! return if both ends of the line are outsude the range[0:lx] 
  if (x1.GT.lx) then
    line_end=.TRUE.
    RETURN
  end if
  x2=x0+ax*l2
  if (x2.LT.0d0) then
    RETURN
  end if

! the first point x value may be less than zero so move along the line to x1=0

  if (x1.LT.0d0) then
    c=y1-m*x1
    x1=0d0
    y1=m*x1+c
  end if

! the first point may be out of the y plotting range so move it back in
! by adding (subtracting) an integer times the period ly
  if (y1.GT.0d0) then
    i=INT(y1/ly)
  else
    i=INT(y1/ly)-1
  end if
  y1=y1-i*ly
  
! we now have an initial point inside the plotting region

! calculate the second end point relative to the first end point
  x2=x0+ax*l2
  y2=y0+ay*l2
  y2=y2-i*ly       ! subtract the same number of periods in y as the first point
    
! limit the line to lx 
  if (x2.GT.lx) then
    c=y2-m*x2
    x2=lx
    y2=m*x2+c
    line_end=.TRUE.
  end if

  l_line=sqrt( (x2-x1)**2+(y2-y1)**2 )   ! length of the line to be plotted
  
! write the first point
  write(unit,'(2ES16.4)')x1,y1
    
  if ( (y2.LE.ly).AND.(y2.GE.0d0) ) then

! write second point of line
    write(unit,'(2ES16.4)')x2,y2
    write(unit,*)
    
  else if (y2.GT.ly) then
    
    y2=ly
    c=y1-m*x1
    x2=(y2-c)/m     
    l_segment=sqrt( (x2-x1)**2+(y2-y1)**2 )
       
! write second point of split line
    write(unit,*)'# split line, point 1, l_segment=',l_segment
    write(unit,'(2ES16.4)')x2,y2
    write(unit,*)
      
    x1=x2
    y1=y2-ly
! calculate the second end point relative to the new starting point
    x2=x1+ax*(l_line-l_segment)
    y2=y1+ay*(l_line-l_segment)
    write(unit,*)'# split line, point 2,3'
    write(unit,'(2ES16.4)')x1,y1
    write(unit,'(2ES16.4)')x2,y2
    write(unit,*)
      
  else if (y2.LT.0d0) then
    
    y2=0d0
    c=y1-m*x1
    x2=(y2-c)/m      
    l_segment=sqrt( (x2-x1)**2+(y2-y1)**2 )
    
! write second point of split line
    write(unit,*)'# -split line, point 1, l_segment=',l_segment
    write(unit,'(2ES16.4)')x2,y2
    write(unit,*)
      
    x1=x2
    y1=y2+ly
! calculate the second end point relative to the first end point
    x2=x1+ax*(l_line-l_segment)
    y2=y1+ay*(l_line-l_segment)
    write(unit,*)'# -split line, point 2,3'
    write(unit,'(2ES16.4)')x1,y1
    write(unit,'(2ES16.4)')x2,y2
    write(unit,*)
      
  end if
        
  RETURN

END SUBROUTINE write_braid_line_l
886c558b   Steve Greedy   SACAMOS Public Re...