Blame view

SRC/PUL_PARAMETER_CALCULATION/PUL_parameter_module.F90 18 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! MODULE PUL_parameter_module
!   CONTAINS
!     SUBROUTINE allocate_and_reset_PUL_data
!     SUBROUTINE deallocate_PUL_data
!     FUNCTION point_is_inside
!     SUBROUTINE Z_Y_from_L_C
!     SUBROUTINE write_Dshape_gmsh
!
! plus the following in include files:
!Laplace.F90:        SUBROUTINE Laplace
!PUL_analytic.F90:   SUBROUTINE PUL_LC_calc_wide_separation_approximation
!PUL_analytic.F90:   SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
!PUL_analytic.F90:   SUBROUTINE calculate_height_over_ground_plane
!PUL_LC_Laplace.F90: SUBROUTINE PUL_LC_Laplace
!
! NAME
!     MODULE PUL_parameters
!
!     Data relating to the calculation of PUL_parameters
!     
! COMMENTS
!     
!
! HISTORY
!    started 25/11/2015 CJS
!    30/3/2016 CJS fix factor of 2 in mutual inductance of wires over ground plane
!    18_4_2016 CJS include calculation for conductors within a cylindrical shield for oversheild domains
!    5_7_2016 CJS include numerical Laplace solver for L,C,G in inhomogeneous regions
!
MODULE PUL_parameter_module

USE type_specifications
USE filter_module
USE frequency_spec
USE general_module

IMPLICIT NONE

! Main structure used to hold data for the per-unit-length parameter calculation
TYPE::PUL_type

  integer                     :: n_conductors    ! number of conductors
  
! conductor based arrays:
  integer,allocatable         :: shape(:)        ! holds a nuber which indicates the shape of the conductor
  real(dp),allocatable        :: r(:)            ! radius of a circular conductor
  real(dp),allocatable        :: x(:)            ! x coordinate of the centre of the cable to which this conductor belongs
  real(dp),allocatable        :: y(:)            ! y coordinate of the centre of the cable to which this conductor belongs
  real(dp),allocatable        :: o(:)            ! offset in the x direction of this conductor from the cable centre (x():),y(:) above) 
  real(dp),allocatable        :: rh(:)           ! height (y dimension) of rectangular conductor
  real(dp),allocatable        :: rw(:)           ! width1  (x dimension) of rectangular conductor/ Dshape
  real(dp),allocatable        :: rw2(:)          ! width2  (x dimension) of rectangular conductor/ Dshape
  real(dp),allocatable        :: rd(:)           ! radius of dielectric surrounding a circular conductor
  real(dp),allocatable        :: rdh(:)          ! height (y dimension) of rectangular dielectric around conductor
  real(dp),allocatable        :: rdw(:)          ! width  (x dimension) of rectangular dielectric around conductor
  real(dp),allocatable        :: rdo(:)          ! offset of dielectric in the x direction of this conductor from the cable centre
  real(dp),allocatable        :: rtheta(:)       ! rotation angle of conductor
  type(Sfilter),allocatable   :: epsr(:)         ! relative permittivity of dielecrtric surrounding the conductor
  
  logical             :: ground_plane_present    ! flag to indicate the presence of a ground plane
  real(dp)            :: ground_plane_angle      ! angle of ground plane normal from the x axis
  real(dp)            :: ground_plane_offset     ! ground plane offset
  
  logical             :: overshield_present      ! flag to indicate the presence of an overshield
  integer             :: overshield_shape        ! holds a nuber which indicates the shape of the opvershield 
  real(dp)            :: overshield_x            ! x coordinate of the centre of the overshield
  real(dp)            :: overshield_y            ! y coordinate of the centre of the overshield 
  real(dp)            :: overshield_r            ! radius of a circular overshield
  real(dp)            :: overshield_h            ! height (y dimension) of Dshape overshield
  real(dp)            :: overshield_w            ! width1 (x) parameter of Dshape overshield
  real(dp)            :: overshield_w2           ! width2 (x) parameter of Dshape overshield
  
  type(Sfilter)       :: epsr_background         ! relative permittivity of background dielecrtric (unually air)
    
  type(matrix)        :: L     ! inductance matrix
  type(matrix)        :: C     ! capacitance matrix
  type(matrix)        :: G     ! conductance matrix
  
  type(Sfilter_matrix):: Zfilter   ! frequency dependent impedance matrix
  type(Sfilter_matrix):: Yfilter   ! frequency dependent impedance matrix
  
  integer                       :: filter_fit_order  ! order for filter fitting for frequency dependent models
  type(frequency_specification) :: filter_fit_freq   ! frequency range for filter fitting for frequency dependent models
  
END TYPE PUL_type 

CONTAINS 

include "PUL_analytic.F90"

include "PUL_LC_Laplace.F90"

include "Laplace.F90"

! NAME
!     SUBROUTINE allocate_and_reset_PUL_data
!
!     allocate and reset per-unit-length calculation data
!     
! COMMENTS
!     
!
! HISTORY
!    started 10/10/2015 CJS
!

  SUBROUTINE allocate_and_reset_PUL_data(PUL,n_conductors)

  USE type_specifications
  USE general_module

  IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type),intent(OUT)   :: PUL
  integer,intent(IN)           :: n_conductors
  
! local variables

  integer :: i

! START

! allocate memory for PUL structure
  PUL%n_conductors=n_conductors
  ALLOCATE( PUL%shape( PUL%n_conductors) ) 
  ALLOCATE( PUL%x( PUL%n_conductors) ) 
  ALLOCATE( PUL%y( PUL%n_conductors) ) 
  ALLOCATE( PUL%r( PUL%n_conductors) ) 
  ALLOCATE( PUL%o( PUL%n_conductors) ) 
  ALLOCATE( PUL%rd( PUL%n_conductors) ) 
  ALLOCATE( PUL%rdw( PUL%n_conductors) ) 
  ALLOCATE( PUL%rdh( PUL%n_conductors) ) 
  ALLOCATE( PUL%rdo( PUL%n_conductors) ) 
  ALLOCATE( PUL%epsr( PUL%n_conductors) )     
  ALLOCATE( PUL%rh( PUL%n_conductors) ) 
  ALLOCATE( PUL%rw( PUL%n_conductors) ) 
  ALLOCATE( PUL%rw2( PUL%n_conductors) ) 
  ALLOCATE( PUL%rtheta( PUL%n_conductors) ) 
  
! reset all the elements of the PUL structure
  do i=1,PUL%n_conductors
  
    PUL%shape(i)=0
    PUL%x(i)=0d0 
    PUL%y(i)=0d0 
    PUL%r(i)=0d0 
    PUL%o(i)=0d0 
    PUL%rh(i)=0d0 
    PUL%rw(i)=0d0 
    PUL%rw2(i)=0d0 
    PUL%rd(i)=0d0 
    PUL%rdw(i)=0d0 
    PUL%rdh(i)=0d0 
    PUL%rdo(i)=0d0 
    PUL%rtheta(i)=0d0
    PUL%epsr(i)=1d0

  end do
  
  PUL%ground_plane_present=.FALSE.
  PUL%ground_plane_angle=0d0
  PUL%ground_plane_offset=0d0
  
  PUL%overshield_present=.FALSE.
  PUL%overshield_shape=circle    ! circle by default
  PUL%overshield_x=0d0
  PUL%overshield_y=0d0
  PUL%overshield_r=0d0
  PUL%overshield_w=0d0
  PUL%overshield_w2=0d0
  PUL%overshield_h=0d0
  
  PUL%epsr_background=1d0

  RETURN

  END SUBROUTINE allocate_and_reset_PUL_data

! NAME
!     SUBROUTINE deallocate_PUL_data
!
!     deallocate per-unit-length calculation data
!     
! COMMENTS
!     
!
! HISTORY
!    started 2/12/2015 CJS
!    5/6/2016 CJS include additional variables for numerical Laplace solution.
!

  SUBROUTINE deallocate_PUL_data(PUL)

  USE type_specifications
  USE general_module

  IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type),intent(INOUT)    :: PUL
  
! local variables

  integer :: i

! START

  if (allocated(PUL%shape )    ) DEALLOCATE( PUL%shape )
  if (allocated(PUL%x )    ) DEALLOCATE( PUL%x )
  if (allocated(PUL%y )    ) DEALLOCATE( PUL%y )
  if (allocated(PUL%r )    ) DEALLOCATE( PUL%r )
  if (allocated(PUL%o )    ) DEALLOCATE( PUL%o )
  if (allocated(PUL%rh )    ) DEALLOCATE( PUL%rh )
  if (allocated(PUL%rw )    ) DEALLOCATE( PUL%rw )
  if (allocated(PUL%rw2 )    ) DEALLOCATE( PUL%rw2 )
  if (allocated(PUL%rd )   ) DEALLOCATE( PUL%rd )
  if (allocated(PUL%rdw )   ) DEALLOCATE( PUL%rdw )
  if (allocated(PUL%rdh )   ) DEALLOCATE( PUL%rdh )
  if (allocated(PUL%rdo )   ) DEALLOCATE( PUL%rdo )
  if (allocated(PUL%rtheta )    ) DEALLOCATE( PUL%rtheta )
  
  if (allocated(PUL%epsr ) ) then
    do i=1,PUL%n_conductors
      CALL deallocate_Sfilter(PUL%epsr(i))
    end do
    DEALLOCATE( PUL%epsr )
  end if
  
  CALL deallocate_Sfilter(PUL%epsr_background)
  
  if (allocated(PUL%L%mat) ) DEALLOCATE( PUL%L%mat )
  if (allocated(PUL%C%mat) ) DEALLOCATE( PUL%C%mat )
  if (allocated(PUL%G%mat) ) DEALLOCATE( PUL%G%mat )
  
  CALL deallocate_Sfilter_matrix( PUL%Zfilter )
  CALL deallocate_Sfilter_matrix( PUL%Yfilter )

  RETURN

  END SUBROUTINE deallocate_PUL_data
 
! NAME
!     FUNCTION point_is_inside(xt,yt,shape_type,x,y,r,rh,rw,rtheta)
!
!     function to determine whether conductors are inside dielectrics - used to create region boundary
!     lists for mesh generation 
!     
! COMMENTS
!     
!
! HISTORY
!    started 6/10/2016 CJS
!
  
  logical FUNCTION point_is_inside(xt,yt,shape_type,x,y,r,rh,rw,ro,rtheta)
  
  real(dp),intent(IN) ::   xt           ! test point x
  real(dp),intent(IN) ::   yt           ! test point y
  integer,intent(IN)  ::   shape_type   ! holds a nuber which indicates the shape of the test object
  real(dp),intent(IN) ::   x            ! x coordinate of the centre of the test object
  real(dp),intent(IN) ::   y            ! y coordinate of the centre of the test object
  real(dp),intent(IN) ::   r            ! radius of cylindrical test object
  real(dp),intent(IN) ::   rh           ! height (y dimension) of rectangular test object
  real(dp),intent(IN) ::   rw           ! width  (x dimension) of  test object
  real(dp),intent(IN) ::   ro           ! offset in the x direction of this test object from the centre
  real(dp),intent(IN) ::   rtheta       ! rotation angle of test object
 
! local variables

  real(dp)::   d
  real(dp)::   xt_r,yt_r
  real(dp)::   xt_ro,yt_ro
  real(dp)::   xt_o,yt_o
  real(dp)::   dx,dy

! START
  
  if (shape_type.EQ.circle) then

! calculate the distance between the test point and the centre of the dielectric cylinder  
    d=sqrt((x-xt)**2+(y-yt)**2)
    
    if (d.LT.r) then
      point_is_inside=.TRUE.
    else
      point_is_inside=.FALSE.    
    end if
  
  else
! rectangular conductor

    write(*,*)'Test point',xt,yt
    
! apply the inverse of the offset to the shape i.e. move it into the shifted, un-rotated coordinate system of the rectangle
    xt_o=xt-x
    yt_o=yt-y
    
    write(*,*)'Offset on test point',xt_o,yt_o

! apply the inverse of the rotation to the test point i.e. move it into the un-rotated coordinate system of the rectangle
    xt_r= xt_o*cos(rtheta)+yt_o*sin(rtheta)
    yt_r=-xt_o*sin(rtheta)+yt_o*cos(rtheta)

    write(*,*)'Inverse rotation on test point',xt_r,yt_r
    
! apply the inverse of the offset to the shape i.e. move it into the shifted, un-rotated coordinate system of the rectangle
    xt_ro=xt_r-ro
    yt_ro=yt_r  

    write(*,*)'Offset Inverse rotation on test point',xt_ro,yt_ro
    
! xt_ro,yt_ro is the the distance from the transformed test point to the centre of the rectangle in x and y   
    
    dx=xt_ro
    dy=yt_ro
    
    write(*,*)'dielectric centre point',x,y,' offset',ro,' angle',rtheta
    write(*,*)'dx',dx,' rw/2',rw/2d0
    write(*,*)'dy',dy,' rh/2',rh/2d0
    
    if ( (abs(dx).LT.rw/2d0).AND.(abs(dy).LT.rh/2d0) ) then
      point_is_inside=.TRUE.
      write(*,*)'POINT IS INSIDE'
    else
      point_is_inside=.FALSE.    
      write(*,*)'POINT IS OUTSIDE'
    end if
   
  end if
  
  
  END FUNCTION point_is_inside
!
! NAME
!     SUBROUTINE Z_Y_from_L_C(unit)
!
!     calculate frequency dependent impedance and admittance (filter function) matrices 
!     for inductance and capacitance matrices with frequency independent properties
!     Z=jwL  Y=jwC
!
! COMMENTS
!     
!
! HISTORY
!    started 2/12/2015 CJS
!

  SUBROUTINE Z_Y_from_L_C(L,C,Z,Y)

  USE type_specifications
  USE general_module
  USE maths
  USE filter_module

  IMPLICIT NONE

! variables passed to subroutine

  type(matrix),intent(IN)    :: L
  type(matrix),intent(IN)    :: C
  
  type(Sfilter_matrix),intent(OUT)    :: Z
  type(Sfilter_matrix),intent(OUT)    :: Y

! local variables

  integer :: dim
  integer :: row,col
  type(Sfilter) :: jw

! START

  jw=jwA_filter(1d0)

! Impedance matrix
  dim=L%dim
  Z%dim=dim
  if (.NOT.ALLOCATED(Z%sfilter_mat)) ALLOCATE(Z%sfilter_mat(dim,dim))
  do row=1,dim
    do col=1,dim
      Z%sfilter_mat(row,col)=L%mat(row,col)*jw
    end do
  end do
  
! Capacitance matrix
  dim=C%dim
  Y%dim=dim
  if (.NOT.ALLOCATED(Y%sfilter_mat)) ALLOCATE(Y%sfilter_mat(dim,dim))
  do row=1,dim
    do col=1,dim
      Y%sfilter_mat(row,col)=C%mat(row,col)*jw
    end do
  end do
  
! Deallocate work filter
  CALL deallocate_Sfilter(jw)
  
  RETURN
  
  END SUBROUTINE Z_Y_from_L_C
!
! NAME
!     SUBROUTINE write_Dshape_gmsh
!
!     write the points required for a Dshape connector shell model in gmsh
!     
! COMMENTS
!     
!
! HISTORY
!    started 15/11/2016 CJS
!

  SUBROUTINE write_Dshape_gmsh(x,y,w_in,w2_in,h_in,r,ox,theta,dl,point,number,unit)

  USE type_specifications
  USE general_module

  IMPLICIT NONE

! variables passed to subroutine
  
  real(dp),intent(IN) :: x      ! x coordinate of the centre of the Dshape
  real(dp),intent(IN) :: y      ! y coordinate of the centre of the Dshape
  real(dp),intent(IN) :: w_in   ! width1 (x dimension) of the Dshape
  real(dp),intent(IN) :: w2_in  ! width2 (x dimension) of the Dshape
  real(dp),intent(IN) :: h_in   ! height (x dimension) of the Dshape
  real(dp),intent(IN) :: r      ! radius of curves in Dshape
  real(dp),intent(IN) :: ox     ! x offset
  real(dp),intent(IN) :: theta  ! rotation angle of Dshape
  real(dp),intent(IN) :: dl     ! edge length for the line segments making up the Dshape

  integer,intent(INOUT)        :: point  ! point counter
  integer,intent(IN)           :: number ! number of the Dshape - used as a label in the gmsh file
  integer,intent(IN)           :: unit   ! unit to write to
  
! local variables

  real(dp) :: w1,w2,h
  
  real(dp) :: vx,vy
  real(dp) :: voxl,voyl
  real(dp) :: norm

  real(dp) :: xt,yt
  real(dp) :: xp,yp

  integer :: i

! START

      w1=w_in/2d0-r
      w2=w2_in/2d0-r
      h=h_in/2d0-r

! vector from top left conductor to bottem left conductor      
      vx=w1-w2
      vy=-2d0*h

! perpendicular vector to -x edge
      norm=sqrt(vx*vx+vy*vy)
      voxl=vy*r/norm
      voyl=-vx*r/norm

      write(unit,*)' // Dshape ',number
      point=point+1

! POINT 1      ! top right
      xt=w1+ox
      yt=h+r
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 2      ! top left
      xt=-w1+ox
      yt=h+r
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 3      ! top left centre
      xt=-w1+ox
      yt=h
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 4      ! top left edge
      xt=-w1+ox+voxl
      yt=h+voyl
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 5      ! bottom left edge
      xt=-w2+ox+voxl
      yt=-h+voyl
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 6      ! bottom left centre
      xt=-w2+ox
      yt=-h
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
       
! POINT 7      ! bottom left
      xt=-w2+ox
      yt=-(h+r)
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
       
! POINT 8      ! bottom right
      xt=w2+ox
      yt=-(h+r)
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 9      ! bottom right centre
      xt=w2+ox
      yt=-h
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 10      ! bottom right edge
      xt=w2+ox-voxl
      yt=-h+voyl
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 11      ! top right edge
      xt=w1+ox-voxl
      yt=h+voyl
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'
      point=point+1
      
! POINT 12      ! top right centre
      xt=w1+ox
      yt=h
      xp=x+xt*cos(theta)-yt*sin(theta)
      yp=y+xt*sin(theta)+yt*cos(theta)
      write(unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl,' };'

  RETURN

  END SUBROUTINE write_Dshape_gmsh
  
END MODULE PUL_parameter_module