Blame view

SRC/PUL_PARAMETER_CALCULATION/PUL_LC_Laplace.F90 42.8 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! 
!     SUBROUTINE PUL_LC_Laplace
!
! NAME
!     SUBROUTINE PUL_LC_Laplace
!
! DESCRIPTION
!     Wrapping subroutine to control the calculation of PUL_parameters by the Finite Element method
!     which is implemented in Laplace.F90
!
!     The finite element mesh is greated by the open source software gmsh: see http://gmsh.info/
!
!     The process is divided into the following stages:
! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)
! STAGE 2: Work out the numbers of conductors, points, lines, line loops and surfaces in the cross section geometry
! STAGE 3: Create the input file for the mesh generator, gmsh.
! STAGE 4: Call the mesh generator, gmsh
! STAGE 5: Call Laplace to calculate the L,C and G matrices, using the mesh that we have just generated
!     
! COMMENTS
!    This subroutine is never called in the case of a homogeneous frequency dependent dielectric region
!    If this were to change then the logic of how Laplace is called in stage 5 will have to change to 
!    take this into account.
!
! HISTORY
!    started 5/7/2016 CJS. 
!    add dielectric regions 13/7/2016 CJS. 
!    Consolidated ground_plane, overhsield and open_boundary subroutines into a single subroutine here 13/12/2016 CJS.
!
SUBROUTINE PUL_LC_Laplace(PUL,name,fit_order,freq_spec,domain)
!
USE type_specifications
USE constants
USE general_module
USE maths
USE filter_module
USE filter_module
USE Sfilter_fit_module
USE frequency_spec
!
IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type), intent(INOUT)            :: PUL        ! per-unit-length parameter calculation structure
  character(LEN=line_length),intent(IN)    :: name       ! string used as the base for filenames 
  integer, intent(IN)                      :: fit_order  ! filter fit_order for frequency dependent dielectrics
  type(frequency_specification),intent(IN) :: freq_spec  ! filter frequency range specification for frequency dependent dielectrics
  integer, intent(IN)                      :: domain     ! domain number used to label the mesh files
  
! parameters 
  integer,parameter :: inside =1 
  integer,parameter :: outside=2
 
! local variables

! flags to indicate the configuration
  logical :: ground_plane
  logical :: overshield
  logical :: open_boundary

! counters and loop limits which depend on the configuration required  
  integer :: end_conductor_loop
  integer :: end_conductor_to_dielectric_loop
  integer :: tot_n_boundaries_without_dielectric
  integer :: first_conductor_shape
 
! local variables

  character(LEN=filename_length) :: geom_filename            ! filename for the geometry - i.e. the input file for gmsh
  character(LEN=filename_length) :: mesh_filename            ! filename for the mesh     - i.e. the output file from gmsh

! temposrary strings used to construct filenames
  character(LEN=filename_length) :: string1,string2
  character(LEN=filename_length) :: temp_string
  character(LEN=filename_length) :: mesh_name

  real(dp) :: xmin,xmax,ymin,ymax    ! extent of bundle conductors
  real(dp) :: xc,yc                  ! centre of bundle conductors
  real(dp) :: rboundary              ! free space boundary radius

! variables required for generating the gmsh geometry input file: we may be able to simplify 
! things here as there is some overlap with the PUL structure
  integer,allocatable  :: shape_type(:)  ! holds a nuber which indicates the shape type
  real(dp),allocatable :: x(:)           ! x coordinate of the centre of the cable to which this shape belongs
  real(dp),allocatable :: y(:)           ! y coordinate of the centre of the cable to which this shape belongs
  real(dp),allocatable :: r(:)           ! radius of a circular shape or curve radius for a Dshape
  real(dp),allocatable :: rw(:)          ! width1  (x dimension) of rectangular/ Dshape
  real(dp),allocatable :: rw2(:)         ! width2  (x dimension) of rectangular/ Dshape
  real(dp),allocatable :: rh(:)          ! height (y dimension) of rectangular shape
  real(dp),allocatable :: ro(:)          ! offset in the x direction of this shape from the centre (x():),y(:) above)
  real(dp),allocatable :: rtheta(:)      ! rotation angle of conductor
  real(dp),allocatable :: dl(:)          ! edge length for the mesh on this shape
  logical,allocatable  :: conductor_has_dielectric(:) ! flag to indicate that a conductor has a dielectric around it
  
  complex(dp) :: epsr  ! relative permittivity value
  
  integer,allocatable  :: shape_to_region(:,:)     ! array which stores the inner and outer region numbers for each shape 
                                                   ! undefined regions (inside PEC or outside the outer boundary) are set to -1
  
  logical  :: first_surface_is_free_space_boundary ! flag to indicate properties on the first surface defined
  
! counters for conductors, points, lines etc. Should be self explanatory
  integer  :: n_conductors_without_ground_plane
  integer  :: tot_n_conductors,conductor
  integer  :: tot_n_boundaries
  integer  :: n_points,point
  integer  :: n_lines,line
  integer  :: n_line_loops,line_loop
  integer  :: n_surfaces,surface  
  integer  :: n_dielectric_regions,tot_n_dielectric_regions,dielectric_region
  integer  :: n_shapes,shape,conductor_shape
  integer  :: matrix_dimension
  
  complex(dp),allocatable :: dielectric_region_epsr(:)  ! list of the relative permittivity of each region

! temporary variables used in writing the geometry input file for gmsh  
  real(dp) :: rl,rt,rdl,rx1,rx2,ry1,ry2
  real(dp) :: xp,yp,xt,yt
  integer  :: p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12

  character(LEN=filename_length) :: command                  ! string used for the command which runs gmsh from the shell
  integer  :: gmsh_exit_stat     ! exit status from the shell command which runs gmsh.
    
  type(matrix)        :: mat1    ! temporary matrix
  type(matrix)        :: mat2    ! temporary matrix
  
! frequency dependent dielectric variables

  integer         :: floop               ! frequency loop variable
  real(dp)        :: f                   ! frequency
  
  type(matrix),allocatable   :: C_freq(:)    ! frequency dependent Capacitance matrices for each frequency of evaluation
  type(matrix),allocatable   :: G_freq(:)    ! frequency dependent Conductance matrices for each frequency of evaluation
  
  complex(dp),allocatable :: function_to_fit(:)    ! complex function to be fitted using Sfilter_fit

  logical :: dielectric_defined                ! flag to indicate whether there is a dielectric   
  logical :: frequency_dependent_dielectric    ! flag to indicate whether there is a frequency dependent dielectric
  
  integer  :: row,col            ! loop variables for matrix elements
  
  integer  :: i,ii               ! temporary loop variables

! START
  if (verbose) write(*,*)'CALLED: PUL_LC_Laplace'

! STAGE 1: work out the configuration for the calculation i.e. is there a ground plane, is the outer boundary free space or a conductor (overshield)

  ground_plane=.FALSE.
  overshield=.FALSE.
  open_boundary=.FALSE.

  if ((.NOT.PUL%overshield_present).AND.(.NOT.PUL%ground_plane_present)) then

! SOLUTION TYPE 1: NO OVERSHIELD, NO GROUND PLANE

    open_boundary=.TRUE.
    first_surface_is_free_space_boundary=.TRUE.
    end_conductor_loop=PUL%n_conductors
    end_conductor_to_dielectric_loop=PUL%n_conductors
    tot_n_boundaries_without_dielectric=PUL%n_conductors+1   ! add a free space boundary
    first_conductor_shape=2                    ! shape 1 is for the outer boundary
         
  else if ((.NOT.PUL%overshield_present).AND.(PUL%ground_plane_present)) then 

! SOLUTION TYPE 2:  NO OVERSHIELD, WITH GROUND PLANE

    ground_plane=.TRUE.
    first_surface_is_free_space_boundary=.TRUE.
    end_conductor_loop=PUL%n_conductors-1                    ! the ground plane is not included here - added separately
    end_conductor_to_dielectric_loop=PUL%n_conductors
    tot_n_boundaries_without_dielectric=PUL%n_conductors+1   ! add a free space boundary
    first_conductor_shape=2                    ! shape 1 is for the outer boundary

  else
  
! SOLUTION TYPE 3:  THERE IS AN OVERSHIELD WHICH FORMS THE OUTER BOUNDARY OF THE DOMAIN

    overshield=.TRUE.
    first_surface_is_free_space_boundary=.FALSE.
    end_conductor_loop=PUL%n_conductors-1
    end_conductor_to_dielectric_loop=PUL%n_conductors-1      ! overshield has no dielectric in the internal domain
    tot_n_boundaries_without_dielectric=PUL%n_conductors
    first_conductor_shape=1                    ! shape 1 is a conductor

  end if ! no overshield
  
  if (verbose) then
    write(*,*)'ground_plane:',ground_plane
    write(*,*)'open_boundary:',open_boundary
    write(*,*)'overshield:',overshield
    write(*,*)'first_surface_is_free_space_boundary:',first_surface_is_free_space_boundary
    write(*,*)'N_conductors:',PUL%n_conductors
    write(*,*)'end_conductor_loop:',end_conductor_loop
    write(*,*)'end_conductor_to_dielectric_loop:',end_conductor_to_dielectric_loop
    write(*,*)'tot_n_boundaries_without_dielectric:',tot_n_boundaries_without_dielectric
    write(*,*)'first_conductor_shape:',first_conductor_shape
  end if  ! verbose
  
! STAGE 2: Work out the numbers of conductors, points, lines, line loops and surfaces in the cross section geometry
  
  tot_n_conductors  = PUL%n_conductors        ! the conductor count includes the ground plane if present

! Count the dielectric regions: 
! Each dielectric region adds a boundary and another surface to mesh so work out whether a dielectric 
! is present for each conductor.
! A dielectric region is assumed to exist if the dielectric radius is larger than the conductor radius and
! the relative permittivity at d.c. is not equal to 1 or the permittivity model order is not equal to zero

  ALLOCATE ( conductor_has_dielectric(1:PUL%n_conductors) )
  
  n_dielectric_regions=0
  do conductor=1,end_conductor_loop           

! assume no dielectric initially          
    conductor_has_dielectric(conductor)=.FALSE.

! If the low freq permittivity is not 1.0 or the order of the filter model is not 0 then assume we have a dielectric
    dielectric_defined=.FALSE.
    
! check the low frequency value of epsr  
    epsr=PUL%epsr(conductor)%a%coeff(0)/PUL%epsr(conductor)%b%coeff(0)
    if ( abs(epsr-1d0).GT.small ) dielectric_defined=.TRUE.
    
! check the model order  
    if ( (PUL%epsr(conductor)%a%order.GT.0).OR. (PUL%epsr(conductor)%b%order.GT.0) ) dielectric_defined=.TRUE.

! for now use the high frequency limit of epsr  
    epsr=evaluate_Sfilter_high_frequency_limit(PUL%epsr(conductor))
    
    if (PUL%shape(conductor).EQ.circle) THEN

      if (  ( (PUL%rd(conductor)-PUL%r(conductor)).GT.small ).AND.( dielectric_defined )  ) then
        n_dielectric_regions= n_dielectric_regions+1
        conductor_has_dielectric(conductor)=.TRUE.
      end if
      
    else if (PUL%shape(conductor).EQ.rectangle) THEN
    
! include dielectric region if the dielectric is not air and there is a dielectric region surrounding the conductor    

      if (  ( dielectric_defined ).AND. ( ( PUL%rdw(conductor).GT.small ).AND.( PUL%rdw(conductor).GT.small ) )  ) then
        n_dielectric_regions= n_dielectric_regions+1
        conductor_has_dielectric(conductor)=.TRUE.
      end if   
    
    end if
    
  end do  ! next conductor
  
  tot_n_boundaries  = tot_n_boundaries_without_dielectric+n_dielectric_regions 
  tot_n_dielectric_regions = n_dielectric_regions+1                ! add a dielectric region for the 'free space' region
  
  n_points    = 5*tot_n_boundaries       ! Each region is enclosed by a shape, defined by 5 points
  n_lines     = 4*tot_n_boundaries       ! Each region is enclosed by a shape, defined by 4 lines
  n_line_loops=   tot_n_boundaries       ! Each region is enclosed by a shape, defined by a single line loop
  n_surfaces  =   n_dielectric_regions+1 ! Each dielectric region plus the free space region are a separate surface
  
  if (verbose) then
    write(*,*)'Number of dielectric regions   =',n_dielectric_regions
    write(*,*)'Total number of regions        =',tot_n_dielectric_regions
    write(*,*)'Total number of conductors     =',tot_n_conductors
    write(*,*)'Total number of boundaries     =',tot_n_boundaries
    write(*,*)'first_surface_is_free_space_boundary? ',first_surface_is_free_space_boundary
  end if

! STAGE 3: Create the input file for the mesh generator, gmsh.

! Allocate the memory required for all the boundaries in the cross section geometry
  n_shapes=tot_n_boundaries
  ALLOCATE( shape_type(1:n_shapes) )
  shape_type(1:n_shapes)=circle       ! set all boudaries to type circle initially
  ALLOCATE( x(1:n_shapes) )
  ALLOCATE( y(1:n_shapes) )
  ALLOCATE( r(1:n_shapes) )
  ALLOCATE( rw(1:n_shapes) )
  ALLOCATE( rw2(1:n_shapes) )
  ALLOCATE( rh(1:n_shapes) )
  ALLOCATE( ro(1:n_shapes) )   
  ALLOCATE( rtheta(1:n_shapes) )
  ALLOCATE( dl(1:n_shapes) )
  ALLOCATE( shape_to_region(1:n_shapes,1:2) )
  shape_to_region(1:n_shapes,1:2)=-1          ! set all regions to undefined initially
  
  ALLOCATE( dielectric_region_epsr(0:n_dielectric_regions) )
  
  if (.NOT.overshield) then 
  
! Set the position of the outer free space boundary. This is related to the size of the cable bundle enclosed
! by the Laplace_boundary_constant

! First get the extent of the bundle
    xmin=large
    xmax=-large
    ymin=large
    ymax=-large
  
    do i=1,end_conductor_loop            ! if the last conductor is the ground plane it is included in x/y,max/min calculation later
      if (PUL%shape(i).EQ.circle) then
    
        xmin=min(xmin,PUL%x(i)-PUL%r(i)+PUL%o(i))  
        xmax=max(xmax,PUL%x(i)+PUL%r(i)+PUL%o(i))  
        ymin=min(ymin,PUL%y(i)-PUL%r(i))
        ymax=max(ymax,PUL%y(i)+PUL%r(i))

      else if (PUL%shape(i).EQ.rectangle) then
    
        xmin=min(xmin,PUL%x(i)-PUL%rw(i)+PUL%o(i)) 
        xmax=max(xmax,PUL%x(i)+PUL%rw(i)+PUL%o(i)) 
        ymin=min(ymin,PUL%y(i)-PUL%rh(i))
        ymax=max(ymax,PUL%y(i)+PUL%rh(i))
      
      else if (PUL%shape(i).EQ.Dshape) then

!*** Does this have to take rotation into account ? *****
        xmin=min(xmin,PUL%x(i)-PUL%rw(i))
        xmax=max(xmax,PUL%x(i)+PUL%rw(i))
        ymin=min(ymin,PUL%y(i)-PUL%rh(i))
        ymax=max(ymax,PUL%y(i)+PUL%rh(i))

      else
        write(*,*)'Unknown shape type',PUL%shape(i)
      end if
    end do ! next conductor
     
    if (ground_plane) then 
! include the ground plane in the bundle sizing  
! here we assume that the ground plane is along the x axis.

      xmin=min(xmin,0d0)
      xmax=max(xmax,0d0)
      ymin=min(ymin,0d0)
      ymax=max(ymax,0d0)
           
    end if ! ground_plane
  
! Centre of conductor bundle 
    
    xc=(xmax+xmin)/2d0
    yc=(ymax+ymin)/2d0
  
  rboundary=max((xmax-xmin),(ymax-ymin))*Laplace_boundary_constant
  
    if (verbose) then
      write(*,*)'bundle xmin=',xmin,' bundle xmax=',xmax
      write(*,*)'bundle ymin=',ymin,' bundle ymax=',ymax
      write(*,*)'bundle centre=',xc,yc
      write(*,*)'boundary radius=',rboundary
    end if
  
! set the first shape information to relate to the outer boundary, this is a circle, centred on the bundle centre
! note that for the Laplace calculation the geometry will be shifted so that the origin is at xc,yc so the
! free space outer boundary is centred on the origin. This is required for the free space boundary condition in Laplace to work correctly.

    x(1)=xc
    y(1)=yc
    r(1)=rboundary
    rw(1)=0d0
    rw2(1)=0d0
    rh(1)=0d0
    ro(1)=0d0     
    rtheta(1)=0d0
    dl(1)=r(1)/(2*Laplace_surface_mesh_constant)
    shape_to_region(1,inside) =0      ! inside is the dielectric region
    shape_to_region(1,outside)=-1     ! no outside region
       
  else  ! there is an overshield specified so we do not need to offset the bundle to define a free space outer boundary
    
    xc=0d0
    yc=0d0
        
  end if ! overshield

  dielectric_region_epsr(0)= evaluate_Sfilter_high_frequency_limit(PUL%epsr_background) ! set material properties in region 0, the background region
  
! copy the conductor information from the PUL structure to the shape based structure

  do i=1,end_conductor_loop  ! all conductors except the ground plane if it exists
    shape=first_conductor_shape-1+i
    shape_type(shape)=PUL%shape(i)
    x(shape)=PUL%x(i)
    y(shape)=PUL%y(i)
    r(shape)=PUL%r(i)
    rw(shape)=PUL%rw(i)
    rw2(shape)=PUL%rw2(i)
    rh(shape)=PUL%rh(i)
    ro(shape)=PUL%o(i)  
    rtheta(shape)=PUL%rtheta(i)
    if (shape_type(shape).EQ.circle) then
      dl(shape)=r(shape)/Laplace_surface_mesh_constant
    else if (shape_type(shape).EQ.rectangle) then
      dl(shape)=min(rw(shape),rh(shape))/Laplace_surface_mesh_constant   
    else if (shape_type(shape).EQ.Dshape) then
      dl(shape)=r(shape)/(2D0*Laplace_surface_mesh_constant)
    else
      write(*,*)'Unknown shape type',shape_type(shape),' i=',i,' shape=',shape
    end if
  end do
  
  if (ground_plane) then ! Add the ground plane information
  
    shape=PUL%n_conductors+1   ! ground plane
    shape_type(shape)=rectangle    
  
    rl=rboundary*Laplace_ground_plane_ratio         ! width of the ground plane (x dimension)  see constants.F90 for parameter
    rt=rl*Laplace_ground_plane_thickness_ratio      ! height of the ground plane (y dimension)  see constants.F90 for parameter
    rdl=rt/2d0
    x(shape)=xc                           ! x centre of ground plane rectangle
    y(shape)=-rt                          ! y centre of ground plane rectangle
    r(shape)=0d0                          ! not used
    rw(shape)=rl*2d0                      ! x extent of the ground plane
    rw2(shape)=rw(shape)                  ! x extent of the ground plane
    rh(shape)=rt*2d0                      ! y extent of the ground plane
    ro(shape)=0d0                         ! no offset from centre
    rtheta(shape)=0d0                     ! always zero for ground plane
    dl(shape)=rdl                         ! this is the thickness of the ground plane
    shape_to_region(shape,inside)           =-1     !  no internal region 
    shape_to_region(shape,outside)          = 0     !  no dielectric so a free space region   
  
  else if (overshield) then ! Add the overshield conductor information 

    shape=PUL%n_conductors
    shape_type(shape)=PUL%overshield_shape
    x(shape)=PUL%overshield_x
    y(shape)=PUL%overshield_y
    r(shape)=PUL%overshield_r
    rw(shape)=PUL%overshield_w
    rw2(shape)=PUL%overshield_w2
    rh(shape)=PUL%overshield_h
    ro(shape)=0d0   
    rtheta(shape)=0d0
    dl(shape)=r(shape)/(2d0*Laplace_surface_mesh_constant)
    shape_to_region(shape,inside) = 0        ! inside the overshield is the free space region
  
  end if ! overshield
  
! loop over conductors copying the associated dielectric information from the PUL structure, 
! also associate shapes with regions

  dielectric_region=0
  
  do i=1,end_conductor_loop       ! exclude the ground plane if it exists as it has no dielectric region

    conductor_shape=first_conductor_shape-1+i   ! shape number for the conductor
    shape_to_region(conductor_shape,inside) =-1  ! conductors have no inner surface
    
    if (conductor_has_dielectric(i)) then
    
      dielectric_region=dielectric_region+1
      shape=shape+1                            ! create a new shape number for the dielectric
      shape_type(shape)=PUL%shape(i)           ! the dielectric is the same shape as the conductor 
      x(shape)=PUL%x(i)
      y(shape)=PUL%y(i)
      r(shape)=PUL%rd(i)
      rw(shape)=PUL%rdw(i)          
      rw2(shape)=PUL%rw2(i)         
      rh(shape)=PUL%rdh(i)          
      ro(shape)=PUL%rdo(i)          
      rtheta(shape)=PUL%rtheta(i)   
      
      if (shape_type(shape).EQ.circle) then                 
        dl(shape)=r(shape)/Laplace_surface_mesh_constant
      else if (shape_type(shape).EQ.rectangle) then
        dl(shape)=min(rw(shape),rh(shape))/Laplace_surface_mesh_constant   
      else if (shape_type(shape).EQ.Dshape) then
        dl(shape)=r(shape)/(2D0*Laplace_surface_mesh_constant)
      else
        write(*,*)'Unknown shape type',shape_type(shape)
      end if
      
      shape_to_region(shape,inside)            =dielectric_region
      shape_to_region(shape,outside)           =0                   ! free space region
      dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_high_frequency_limit(PUL%epsr(i))
      
    else
! no dielectric

      shape_to_region(conductor_shape,outside)           =0      !  no dielectric so a free space region 
      
    end if  ! this conductor has a dielectric or not
    
  end do    ! next conductor
  
! Work out which conductors are associated with which dielectrics 
  
  do i=1,end_conductor_loop       
  
    conductor_shape=first_conductor_shape-1+i   ! shape number for the conductor
    dielectric_region=0
    
! calculate the centre of the conductor (the test point)

! xp,yp is the coordinate of the centre of the conductor relative to the centre of the cable
    xp=ro(conductor_shape)
    yp=0d0

! rotate the cable about it's origin then translate to the cable position to give the final conductor position      
    xt=x(conductor_shape)+xp*cos(rtheta(conductor_shape))-yp*sin(rtheta(conductor_shape))
    yt=y(conductor_shape)+xp*sin(rtheta(conductor_shape))+yp*cos(rtheta(conductor_shape))
    
! loop over dielectrc shapes
    do shape=tot_n_boundaries_without_dielectric+1,tot_n_boundaries   
      dielectric_region=dielectric_region+1
      
! check whether the conductor is inside the dielectric
      if (point_is_inside(xt,yt,shape_type(shape),x(shape),y(shape),r(shape),rh(shape),rw(shape),ro(shape),rtheta(shape))) then
                          
        shape_to_region(conductor_shape,outside) =dielectric_region
       
        write(*,*)'Conductor ',i,' is inside dielectric',dielectric_region,'(shape',shape,'):'

      endif
      
    end do ! next dielectric shape
    
  end do ! next conductor
  
  
  if (verbose) then
    write(*,*)'      shape shape_type  x(shape)   y(shape)   r(shape)  rh(shape)  rw(shape) rtheta(shape) dl(shape)'
    do shape=1,n_shapes
      write(*,'(2I10,7F12.6)')shape,shape_type(shape),x(shape),y(shape),r(shape),rw(shape),rh(shape),rtheta(shape),dl(shape)
    end do
  end if

! Open a file for the gmsh geometry input data

  temp_string=trim(name)//'_geometry_domain_'
  CALL add_integer_to_string(temp_string,domain,geom_filename)
  geom_filename=trim(geom_filename)//gmsh_geometry_file_extn

  open (unit=gmsh_geometry_file_unit,file=trim(geom_filename))
  if (verbose) write(*,*)'Opened file:',trim(geom_filename)

! open a file for the boundary information  
  open(unit=boundary_file_unit,file=boundary_file_name)
  if (verbose) write(*,*)'Opened file:',boundary_file_name

! write the points required to define the each shape
    
! Translate all coordinates by (-xc,-yc) such that a free space outer boundary is centred at the origin
  point=0
  
  do i=1,n_shapes
    
    if (shape_type(i).EQ.circle) then
    
      write(gmsh_geometry_file_unit,*)' // circle ',i
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+ro(i),','     ,y(i)-yc,',',0.0,','     ,dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+ro(i),','     ,y(i)-yc-r(i),',',0.0,',',dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+ro(i)+r(i),',',y(i)-yc,',',0.0,','     ,dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+ro(i),','     ,y(i)-yc+r(i),',',0.0,',',dl(i),' };'
      point=point+1
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',x(i)-xc+ro(i)-r(i),',',y(i)-yc,',',0.0,','     ,dl(i),' };'
      
    else if (shape_type(i).EQ.rectangle) then

      write(gmsh_geometry_file_unit,*)' // rectangle ',i
      point=point+1
      
      xt=rw(i)/2d0+ro(i)
      yt=rh(i)/2d0
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl(i),' };'
      point=point+1
      
      xt=-rw(i)/2d0+ro(i)
      yt=rh(i)/2d0
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl(i),' };'
      point=point+1
      
      xt=-rw(i)/2d0+ro(i)
      yt=-rh(i)/2d0
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl(i),' };'
      point=point+1
      
      xt=rw(i)/2d0+ro(i)
      yt=-rh(i)/2d0
      xp=x(i)-xc+xt*cos(rtheta(i))-yt*sin(rtheta(i))
      yp=y(i)-yc+xt*sin(rtheta(i))+yt*cos(rtheta(i))
      write(gmsh_geometry_file_unit,*)'Point(',point,' ) = {',xp,',',yp,',',0.0,',',dl(i),' };'
      
    else if (shape_type(i).EQ.Dshape) then

      CALL write_Dshape_gmsh(x(i),y(i),rw(i),rw2(i),rh(i),r(i),ro(i),rtheta(i),dl(i),point,i,gmsh_geometry_file_unit)
    
    end if
    
  end do ! next shape
        
! write the boudary line segment definitions for each shape, these are constructed from the previously defined points

  write(gmsh_geometry_file_unit,*)' '
  
  point=0      ! initialise point counter
  line=0       ! initialise line counter
  
  do i=1,n_shapes
    
    if (shape_type(i).EQ.circle) then
    
      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
      p5=point+5
      
      write(gmsh_geometry_file_unit,*)' // circle ',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p2,',',p1,',',p3,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p3,',',p1,',',p4,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p4,',',p1,',',p5,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p5,',',p1,',',p2,' };'
      
      point=point+5
     
    else if (shape_type(i).EQ.rectangle) then

      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
     
      write(gmsh_geometry_file_unit,*)' // rectangle line segments ',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p1,',',p2,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p2,',',p3,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p3,',',p4,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p4,',',p1,' };'
      
      point=point+4
     
    else if (shape_type(i).EQ.Dshape) then

      p1=point+1
      p2=point+2
      p3=point+3
      p4=point+4
      p5=point+5
      p6=point+6
      p7=point+7
      p8=point+8
      p9=point+9
      p10=point+10
      p11=point+11
      p12=point+12
    
      write(gmsh_geometry_file_unit,*)' // Dshape line segments',i
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p1,',',p2,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p2,',',p3,',',p4,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p4,',',p5,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p5,',',p6,',',p7,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p7,',',p8,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p8,',',p9,',',p10,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Line(',line,' ) = {',p10,',',p11,' };'
      line=line+1
      write(gmsh_geometry_file_unit,*)'Circle(',line,' ) = {',p11,',',p12,',',p1,' };'
     
      point=point+12
  
    end if
    
  end do ! next shape

! write the number of boundary segments to the boundary file
  write(boundary_file_unit,*)line,'    # number of boundary segments'
  
! Create the closed boundary line loops for each shape, these are constructed from the preciously defined line segments.

  write(gmsh_geometry_file_unit,*)' '

  line_loop=0      ! initialise line_loop counter 
  line=0           ! reset the line counter to the first line
  do i=1,n_shapes
    
    line_loop=line_loop+1  
      
    if ( (shape_type(i).EQ.circle).OR.(shape_type(i).EQ.rectangle) ) then
      
      write(gmsh_geometry_file_unit,*)'Line Loop(',line_loop,' ) = {',line+1,',',line+2,',',line+3,',',line+4,' };'  
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,4
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
      
      line=line+4
      
    else if (shape_type(i).EQ.Dshape) then  
        
      write(gmsh_geometry_file_unit,*)'Line Loop(',line_loop,' ) = {',line+1,',',line+2,',',line+3,',',line+4,',',     &
                                                                      line+5,',',line+6,',',line+7,',',line+8,' };'  
      
! write the boundary segment and the boundary number to the boundary file
      do ii=1,8
        write(boundary_file_unit,*)line+ii,i,'  # boundary segment number and boundary number'
      end do
      
      line=line+8
        
    end if
        
  end do ! next shape
  
! Create the plane Surfaces, one for each dielectric region. Surfaces are defined by their boundling line loops
! Note that the order of the line loop specification is important for the orientation of the elements in the mesh

  write(gmsh_geometry_file_unit,*)' '

  surface=0     ! initialise surface counter 

! loop over the dielectric regions (including free space) as each one contributes a surface to be meshed.
  do dielectric_region=0,n_dielectric_regions   ! 0 is the free space region which always exists

    surface=surface+1
    
    string1='  Plane Surface('
    CALL add_integer_to_string(string1,surface,string2)
    string1=trim(string2)//') = {'

! for this surface, write a list of all the line loops bounding the surface
! in order to construct this list we loop over all shapes (line loops) 
! and check whether the inside or outside region of the line loop is associated with the current region
  
    if (surface.eq.1) then    
! order the line loops for the free space region outer boundary first

      if (overshield) then
! The overshield reference conductor should be the last conductor

        i=PUL%n_conductors
        if( (shape_to_region(i,inside).EQ.dielectric_region).OR. &
            (shape_to_region(i,outside).EQ.dielectric_region) )    then         
          CALL add_integer_to_string(string1,i,string2)
          string1=trim(string2)//', '        
        end if    
        
      end if ! overshield

      do i=1,n_shapes
        if ((.NOT.overshield).OR.(i.NE.PUL%n_conductors)) then
          if( (shape_to_region(i,inside).EQ.dielectric_region).OR. &
              (shape_to_region(i,outside).EQ.dielectric_region) )    then         
            CALL add_integer_to_string(string1,i,string2)
            string1=trim(string2)//', '        
          end if          
        end if          
      end do  ! next shape
      
    else
! dielectric boundaries are defined second so reverse the order of the loop for dielectric regions

      do i=n_shapes,1,-1
        if( (shape_to_region(i,inside).EQ.dielectric_region).OR. &
            (shape_to_region(i,outside).EQ.dielectric_region) )    then         
          CALL add_integer_to_string(string1,i,string2)
          string1=trim(string2)//', '        
        end if          
      end do
   
    end if

    string1=trim(string2)//'} '
    write(gmsh_geometry_file_unit,'(A,A)')trim(string1),' ;'

  end do ! next region (surface) to mesh

  write(gmsh_geometry_file_unit,*)' '

! Close the file for the gmsh input data
  close(gmsh_geometry_file_unit)
  if (verbose) write(*,*)'Closed file:',trim(geom_filename)

! close the boundary information file
  close(unit=boundary_file_unit)
  if (verbose) write(*,*)'Closed file:',boundary_file_name
  
! Dealllocate the local shape geometry data.
  
  if (allocated( shape_type ))  DEALLOCATE( shape_type )
  if (allocated( x ))  DEALLOCATE( x )
  if (allocated( y ))  DEALLOCATE( y )
  if (allocated( r ))  DEALLOCATE( r )
  if (allocated( rw ))  DEALLOCATE( rw )
  if (allocated( rw2 ))  DEALLOCATE( rw2 )
  if (allocated( rh ))  DEALLOCATE( rh )
  if (allocated( ro ))  DEALLOCATE( ro )
  if (allocated( rtheta ))  DEALLOCATE( rtheta )
  if (allocated( dl )) DEALLOCATE( dl )
  if (allocated( shape_to_region )) DEALLOCATE( shape_to_region )

! STAGE 4: Call the mesh generator, gmsh

  temp_string=trim(name)//'_mesh_domain_'
  CALL add_integer_to_string(temp_string,domain,mesh_filename)
  mesh_filename=trim(mesh_filename)//mesh_file_extn
  
  write(*,*)'CALLING gmsh for domain',domain
  command='gmsh -2 -o '//trim(mesh_filename)//' '//trim(geom_filename)
  CALL execute_command_line(command,EXITSTAT=gmsh_exit_stat)
  
! Check that the mesh generator finished correctly, if not exit and write the gmsh error code to the screen
  if (gmsh_exit_stat.NE.0) then
  
! gmsh returned with a non zdero exit code indicating an error
    write(run_status,*)'ERROR in PUL_LC_Laplace. gmsh exit status=',gmsh_exit_stat
    CALL write_program_status()
    STOP 1

  end if
  
! STAGE 5: Call Laplace to calculate the L,C and G matrices, using the mesh that we have just generated

! Work out the dimension of the per-unit-length matrices  

  matrix_dimension=PUL%n_conductors-1
  
  if (verbose) then
    write(*,*)'Number of conductors=',PUL%n_conductors
    write(*,*)'matrix dimension=',matrix_dimension
  end if
  
! check we have a valid system
  if (matrix_dimension.LT.1) then
    run_status='ERROR in PUL_LC_Laplace, Matrix dimension is less than 1 '
    CALL write_program_status()
    STOP 1
  end if
  
! work out if we have any frequency dependent dielectric
  frequency_dependent_dielectric=.FALSE.
  dielectric_region=0
  
  if ( (PUL%epsr_background%a%order.GT.0).OR. (PUL%epsr_background%b%order.GT.0) ) then
    frequency_dependent_dielectric=.TRUE.
  end if
      
! check the external dielectric first

  do i=1,end_conductor_loop    ! don't include the ground plane in the conductor loop for the dielectric region count
  
    write(*,*)'Check dielectric loop',i,' conductor has dielectric:',conductor_has_dielectric(i)
  
    if (conductor_has_dielectric(i)) then
    
      write(*,*)'aorder,border',PUL%epsr(i)%a%order,PUL%epsr(i)%b%order
    
      if ( (PUL%epsr(i)%a%order.GT.0).OR. (PUL%epsr(i)%b%order.GT.0) ) then
        frequency_dependent_dielectric=.TRUE.
      end if
      
    end if
  end do    ! next conductor
  
  if (verbose) write(*,*)'Frequency dependent dielectric:',frequency_dependent_dielectric
  
! Check for special case which is not currently used but could happen in future developments maybe...
  if ( (frequency_dependent_dielectric).AND.(n_dielectric_regions.EQ.0) ) then
    run_status='Error in PUL_LC_Laplace. Conductors are situated in a homogeneous frequency dependent dielectric'
    CALL write_program_status()
    STOP 1
  end if

! Allocate the per-unit-length matrices  
  PUL%L%dim=matrix_dimension
  ALLOCATE( PUL%L%mat(1:PUL%L%dim,1:PUL%L%dim) )
  PUL%C%dim=matrix_dimension
  ALLOCATE( PUL%C%mat(1:PUL%C%dim,1:PUL%C%dim) )
  PUL%G%dim=matrix_dimension
  ALLOCATE( PUL%G%mat(1:PUL%G%dim,1:PUL%G%dim) )

! Allocate the impedance and admittance filter matrices  
  PUL%Zfilter%dim=matrix_dimension
  ALLOCATE(PUL%Zfilter%sfilter_mat(1:PUL%Zfilter%dim,1:PUL%Zfilter%dim))
  PUL%Yfilter%dim=matrix_dimension
  ALLOCATE(PUL%Yfilter%sfilter_mat(1:PUL%Yfilter%dim,1:PUL%Yfilter%dim))

  if (verbose) write(*,*)'CALLING: Laplace'
  
  if (n_dielectric_regions.EQ.0) then
! no dielectrics so we can calculate L, C and G in the same solution

    f=1D0   ! arbitrary frequency here for lossless dielectric but a frequency must be set. The value will have no effect in this case.
    CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                 n_dielectric_regions,dielectric_region_epsr,f,PUL%L%mat,PUL%C%mat,PUL%G%mat,xc,yc)

! calculate the impedance and admittance filters for a frequency independent model

    CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
                 
  else
  
! there are dielectrics present

    ALLOCATE( mat1%mat(1:matrix_dimension,1:matrix_dimension) )
    mat1%dim=matrix_dimension
    ALLOCATE( mat2%mat(1:matrix_dimension,1:matrix_dimension) )
    mat2%dim=matrix_dimension
    
! Firstly solve using the 'high frequency' dielectric material properties

    dielectric_region=0
    do i=1,end_conductor_loop    ! don't include the ground plane in the dielectric region count
      if (conductor_has_dielectric(i)) then
        dielectric_region=dielectric_region+1         
        dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_high_frequency_limit(PUL%epsr(i))
      end if
    end do    ! next conductor
    
! call first with the dielectric materials and solve for C and G first
    f=1D0   ! arbitrary frequency here for lossless dielectric 
    CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                 n_dielectric_regions,dielectric_region_epsr,f,mat1%mat,PUL%C%mat,PUL%G%mat,xc,yc)
                 
! call second with all materials set to free space properties and solve for L

    dielectric_region_epsr(:)=(1d0,0d0)
    
    f=1D0   ! arbitrary frequency here for lossless dielectric 
    CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                 n_dielectric_regions,dielectric_region_epsr,f,PUL%L%mat,mat1%mat,mat2%mat,xc,yc)
                 
    if ((.NOT.frequency_dependent_dielectric).OR.(freq_spec%n_frequencies.EQ.1)) then             
    
 ! calculate the impedance and admittance filters

      CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
     
    else

! There are frequency dependent dielectrics present             
! Secondly we calculate the capacitance matrix at a number of frequencies before fitting filter functions
! to each of the frequency dependent admittance matrix entries.
    
! allocate the frequency dependent matrices
      ALLOCATE( C_freq(1:freq_spec%n_frequencies) )
      ALLOCATE( G_freq(1:freq_spec%n_frequencies) )

! loop over frequency    
      do floop=1,freq_spec%n_frequencies

! allocate the matrices for this frequency    
        ALLOCATE( C_freq(floop)%mat(1:matrix_dimension,1:matrix_dimension) )
        C_freq(floop)%dim=matrix_dimension
        ALLOCATE( G_freq(floop)%mat(1:matrix_dimension,1:matrix_dimension) )
        G_freq(floop)%dim=matrix_dimension

! evaluate the complex dielectric constant at the current frequency

        f=freq_spec%freq_list(floop)

! set material properties in region 0, the background region
        dielectric_region=0
        dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_frequency_response(PUL%epsr_background,f)
        
        do i=1,end_conductor_loop    ! don't include the ground plane in the dielectric region count
          if (conductor_has_dielectric(i)) then
            dielectric_region=dielectric_region+1         
            dielectric_region_epsr(dielectric_region)=evaluate_Sfilter_frequency_response(PUL%epsr(i),f)
          end if
        end do    ! next conductor

! solve for C and G matrices at this frequency
       
! call Laplace to solve for C and G at this frequency

        CALL Laplace(mesh_filename,matrix_dimension,first_surface_is_free_space_boundary,  &
                     n_dielectric_regions,dielectric_region_epsr,f,mat1%mat,C_freq(floop)%mat,G_freq(floop)%mat,xc,yc)
                                      
      end do ! next frequency

! we now have frequency domain C and G matrices.

! loop over the elements of C and G and calculate the Y matrix by filter fitting to Y=G(f)+jwC(f), and the Z matrix as jwL  
      ALLOCATE( function_to_fit(1:freq_spec%n_frequencies) )
    
      do row=1,matrix_dimension
        do col=row,matrix_dimension

! get the function values for this matrix element function_to_fit=G+jwC
          do floop=1,freq_spec%n_frequencies
            function_to_fit(floop)=G_freq(floop)%mat(row,col)+              &
                                   j*2d0*pi*freq_spec%freq_list(floop)*C_freq(floop)%mat(row,col)
          end do
        
! calculate the Yfilter matrix using the filter fitting process
! note aorder=border and no restrictions are put on the function

          CALL Calculate_Sfilter(function_to_fit,freq_spec%freq_list,freq_spec%n_frequencies,  &
                                 PUL%Yfilter%sfilter_mat(row,col),fit_order,0,0) 

! calcualte the Zfilter matrix as jwL
          PUL%Zfilter%sfilter_mat(row,col)=jwA_filter( PUL%L%mat(row,col) )
        
          if (col.NE.row) then
        
! make the matrix symmetrical
            PUL%Zfilter%sfilter_mat(col,row)=PUL%Zfilter%sfilter_mat(row,col)
            PUL%Yfilter%sfilter_mat(col,row)=PUL%Yfilter%sfilter_mat(row,col)

          end if
        
        end do ! next col
      
      end do ! next row
    
      DEALLOCATE( function_to_fit )

! deallocate the temporary matrices associated with the frequency dependent C and G matrices  
      do floop=1,freq_spec%n_frequencies

! allocate the matrices for this frequency    
        DEALLOCATE( C_freq(floop)%mat )
        DEALLOCATE( G_freq(floop)%mat )
      
      end do ! next frequency
    
      DEALLOCATE( C_freq )
      DEALLOCATE( G_freq )
    
    end if ! frequency dependent dielectric
                 
    DEALLOCATE( mat1%mat )
    DEALLOCATE( mat2%mat )  
    
  end if ! any dielectrics
    
  if (verbose) then
    write(*,*)'FINISHED: Laplace'
    write(*,*)'Inductance matrix, L'
    CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
    write(*,*)'Capacitance matrix, C'
    CALL dwrite_matrix(PUL%C%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
    write(*,*)'Conductance matrix, G'
    CALL dwrite_matrix(PUL%G%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)

  end if
  
  if (allocated( dielectric_region_epsr )) DEALLOCATE( dielectric_region_epsr )

  if (verbose) write(*,*)'FINISHED PUL_LC_Laplace'

END SUBROUTINE PUL_LC_Laplace