Blame view

SRC/MTL_ANALYTIC_SOLUTION/incident_field_excitation.F90 29.8 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! SUBROUTINE calc_incident_field_components
! SUBROUTINE calculate_incident_field_sources
! SUBROUTINE calculate_ZT_incident_field_sources
! SUBROUTINE calc_incident_field_FD_values
! SUBROUTINE calc_incident_field_FD_values_GP
! SUBROUTINE calculate_lumped_incident_field_sources
!
! NAME
!     calc_incident_field_components
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     This subroutine calculates the cartesian components of the incident field
!     excitation and the propagation (k) vector from the inputs which are in
!     a spherical coordinate system ! #FIGURE_REFERENCE_REQUIRED
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 13/6/2016 CJS: STAGE_6 developments
!     8/5/2017         CJS: Include references to Theory_Manual
!
SUBROUTINE calc_incident_field_components(Ktheta,Kphi,Etheta,Ephi, &
                                          Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz)                                  

USE type_specifications
USE general_module
USE constants
USE eispack
USE maths

IMPLICIT NONE

! variables passed to the subroutine

real(dp),intent(IN)    :: ktheta        ! theta component of k vector
real(dp),intent(IN)    :: kphi          ! phi component of k vector
real(dp),intent(IN)    :: etheta        ! theta component of E field polarisation vector
real(dp),intent(IN)    :: ephi          ! phi component of E field polarisation vector

! Cartesian field components
real(dp),intent(OUT)   :: Ex
real(dp),intent(OUT)   :: Ey
real(dp),intent(OUT)   :: Ez
real(dp),intent(OUT)   :: Hx
real(dp),intent(OUT)   :: Hy
real(dp),intent(OUT)   :: Hz

! Cartesian propagation vector components
real(dp),intent(OUT)   :: kx
real(dp),intent(OUT)   :: ky
real(dp),intent(OUT)   :: kz  

! local variables

real(dp)    :: r,theta,phi

real(dp)    :: x,y,z

real(dp)    :: dxdt,dxdp
real(dp)    :: dydt,dydp
real(dp)    :: dzdt,dzdp
real(dp)    :: vx,vy,vz
real(dp)    :: norm

! START

! calculate unit length incident wave vector Theory_Manual_Eqn 3.135

  r=1d0
  theta=Ktheta
  phi=Kphi
    
  kx=r*sin(theta)*cos(phi)
  ky=r*sin(theta)*sin(phi)
  kz=r*cos(theta)
    
! Calculate cartesian unit vectors in the theta and phi directions.   Theory_Manual_Eqn 3.137, 3.138
    
  dxdt= r*cos(theta)*cos(phi)
  dxdp=-r*sin(phi)
  dydt= r*cos(theta)*sin(phi)
  dydp= r*cos(phi)
  dzdt=-r*sin(theta)
  dzdp=0d0

! Calculate the cartesian E field vector from the sum of Etheta and Ephi contributions.  Theory_Manual_Eqn 3.139
  vx=Etheta*dxdt+Ephi*dxdp
  vy=Etheta*dydt+Ephi*dydp
  vz=Etheta*dzdt+Ephi*dzdp

! Normalise the E field vector to a length of 1    
  norm=sqrt(vx*vx+vy*vy+vz*vz)
    
  if (norm.eq.0d0) then
    if (verbose) then
      write(*,*)'Error calculating incident field data'
      write(*,8000)'E vector(theta)=',dxdt,dydt,dzdt
      write(*,8000)'E vector(phi)=',dxdp,dydp,dzdp
      write(*,8000)'E vector=',Etheta,Ephi
    end if
    run_status='ERROR in calc_incident_field_components: Zero length incident E field vector'
    CALL write_program_status()
    STOP 1
  end if

  Ex=vx/norm
  Ey=vy/norm
  Ez=vz/norm   
     
! H = (K x E)/Z0.  Theory_Manual_Eqn 3.142

  Hx=(ky*Ez-kz*Ey)/Z0
  Hy=(kz*Ex-kx*Ez)/Z0
  Hz=(kx*Ey-ky*Ex)/Z0
  
  if (verbose) then
  
    write(*,*)'Incident_field_components:'
    write(*,8000)'K=',kx,ky,kz
    write(*,8000)'E=',Ex,Ey,Ez
    write(*,8000)'H=',Hx,Hy,Hz

8000 format(A,3E16.6)
  end if
    
  RETURN

END SUBROUTINE calc_incident_field_components
! 
! NAME
!     calculate_incident_field_sources
!
! DESCRIPTION
!     calculate constants required to determine the controlled sources 
!     for Spice models of transient incident field illumination using the
!     method of characterisitcs based solution
!     
!
! COMMENTS
!     Refer to Theory_Manual_Section 3.7
!     Also discussed in more depth in C.R. Paul, "Analysis of Multiconductor Transmission Lines" 
!     1st edition, section 7.3.2 
! 
!
! HISTORY
!
!     started 16/06/2016 CJS
!     28/6/2016 CJS :Include the presence of a ground plane if required.
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE calculate_incident_field_sources(xcoord,ycoord,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,                   &
                                            ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, &
                                            length,n_modes,TI,Tdi,Tdz,alpha_0,alpha_L)
USE type_specifications
USE constants
USE general_module

IMPLICIT NONE

! variables passed to subroutine

integer,intent(IN)   :: n_modes                               ! input: number of modes in the illuminated domain
real(dp),intent(IN)  :: xcoord(n_modes+1),ycoord(n_modes+1)   ! input: centre coordinates of conductors
real(dp),intent(IN)  :: Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! input: incident field specification
logical ,intent(IN)  :: ground_plane_present                  ! input: flag indicating the presence of a ground plane
real(dp),intent(IN)  :: ground_plane_x,ground_plane_y         ! input: x and y coordinates of a point on the ground plane
real(dp),intent(IN)  :: ground_plane_theta                    ! input: angle of the ground plane from the x axis
real(dp),intent(IN)  :: length                                ! input: length of transmission line
real(dp),intent(IN)  :: TI(n_modes,n_modes)                   ! input: mode decomposition matrix
real(dp),intent(IN)  :: Tdi(n_modes)                          ! input: mode delays
real(dp),intent(OUT)  :: alpha_0(n_modes),alpha_L(n_modes)    ! output: constants for controlled sources at z=0 and z=L
real(dp),intent(OUT)  :: Tdz                                  ! output: incident field delay time


! local variables

integer  :: n_conductors

real(dp) :: xk,yk
real(dp) :: rvx,rvy,rvz
real(dp) :: Tdxyk(n_modes)         

real(dp) :: vi

integer :: i,k

! START
  
  n_conductors=n_modes+1

  alpha_0(:)=0d0
  alpha_L(:)=0d0

  if (Eamplitude.eq.0d0) then  ! there is no incident field so return zero constants
    return
  end if

! calculate 1/velocity in each direction (avoids divide by zeros using reciprocal values)
! obtained from Theory_Manual_Eqn 3.136
  rvx=kx/c0
  rvy=ky/c0
  rvz=kz/c0

! Time delay in Z direction
  Tdz=length*rvz
  
! loop over all conductors except the reference conductor

  do k=1,n_conductors-1
    
! Assume that the final (reference) conductor lies at the origin of the xy plane
! and calculate the vector xk,yk from the reference conductor to conductor k.
! If there is a ground plane then calculate the vector to the closest point on the ground plane
! i.e. in the y direction since the ground plane is along the x axis.

    if (ground_plane_present) then
      xk=0d0
    else
      xk=xcoord(k)-xcoord(n_modes+1)
    end if
    yk=ycoord(k)-ycoord(n_modes+1)
    

! work out the delay propagating from this conductor to the reference      
    Tdxyk(k)=xk*rvx+yk*rvy
        
  end do
  
! loop over modes, i

  do i=1,n_modes
      
! loop over all conductors except the reference conductor

    do k=1,n_conductors-1
    
! Again, assume that the final (reference) conductor lies at the origin of the xy plane
! and calculate the vector xk,yk from the reference conductor to conductor k.
! If there is a ground plane then calculate the vector to the closest point on the ground plane
! i.e. in the y direction since the ground plane is along the x axis.
      
      if (ground_plane_present) then
! only the height over the ground plane matters so set x coordinate to zero and y is the height over ground
        xk=0d0
      else
        xk=xcoord(k)-xcoord(n_modes+1)
      end if
      
      yk=ycoord(k)-ycoord(n_modes+1)

! note alpha_0,alpha_L are used to calculate the response of mode i due to excitations on all conductors, k
! hence the summation with over k with coefficients TI(k,i)
! Theory_Manual_Eqn 3.167
      
      alpha_0(i)=alpha_0(i)+( Ez*Tdxyk(k)*length - (Ex*xk+Ey*yk)*(Tdi(i)+Tdz) )*TI(k,i)  ! note, TI(k,i) = TI(conductor,mode)
      alpha_L(i)=alpha_L(i)+( Ez*Tdxyk(k)*length + (Ex*xk+Ey*yk)*(Tdi(i)-Tdz) )*TI(k,i) 
               
    end do ! next conductor
  
  end do ! next mode
  
  if (ground_plane_present) then ! See Theory_Manual_Section 3.7.2
! the alpha terms are doubled
    alpha_0(:)=2d0*alpha_0(:)
    alpha_L(:)=2d0*alpha_L(:)
  end if
  
  
  if (.NOT.verbose) RETURN
  
  write(*,*)'calculate_incident_field_sources'
  write(*,*)'ex=',ex
  write(*,*)'ey=',ey
  write(*,*)'ez=',ez
  write(*,*)'kx=',kx
  write(*,*)'ky=',ky
  write(*,*)'kz=',kz
  write(*,*)'rvx=',rvx
  write(*,*)'rvy=',rvy
  write(*,*)'rvz=',rvz
  
  write(*,*)'Tdz=',Tdz
   
  RETURN
   
END SUBROUTINE calculate_incident_field_sources
! 
! NAME
!     calculate_ZT_incident_field_sources
!
! DESCRIPTION
!     calculate the controlled sources for Spice modelling of transient incident field illumination 
!     of shielded cables (Xie's model), method of characterisitcs based solution
!     
!
! COMMENTS
!     Refer to Theory_Manual_Section 3.8
!
!
! HISTORY
!
!     started 3/10/2016 CJS 
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE calculate_ZT_incident_field_sources(xcoord,ycoord,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz,                   &
                                              ground_plane_present,ground_plane_x,ground_plane_y,ground_plane_theta, &
                                              length,n_modes,shield_conductor,TI,Tdi,Tdz,c1,c2,c1b)
USE type_specifications
USE constants
USE general_module

IMPLICIT NONE

! variables passed to subroutine

integer,intent(IN)   :: n_modes                               ! input: number of modes in the illuminated domain
real(dp),intent(IN)  :: xcoord(n_modes+1),ycoord(n_modes+1)   ! input: centre coordinates of conductors
real(dp),intent(IN)  :: Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz ! input: incident field specification
logical,intent(IN)   :: ground_plane_present                  ! input: flag indicating the presence of a ground plane
real(dp),intent(IN)  :: ground_plane_x,ground_plane_y         ! input: x and y coordinates of a point on the ground plane
real(dp),intent(IN)  :: ground_plane_theta                    ! input: angle of the ground plane from the x axis
real(dp),intent(IN)  :: length                                ! input: length of transmission line
integer,intent(IN)   :: shield_conductor                      ! input: the number of the shield conductor
real(dp),intent(IN)  :: TI(n_modes,n_modes)                   ! input: mode decomposition matrix
real(dp),intent(IN)  :: Tdi(n_modes)                          ! input: mode delays
real(dp),intent(OUT)  :: c1(n_modes),c2(n_modes),c1b(n_modes) ! output: constants for controlled sources in shielded domains
real(dp),intent(OUT)  :: Tdz                                  ! output: incident field delay time

! local variables

integer  :: n_conductors

real(dp) :: xk,yk
real(dp) :: rvx,rvy,rvz

real(dp) :: Tx(n_modes),dk,kw_rx,kw_ry,kw_r,vw_r  

real(dp) :: vi

real(dp) :: Tsum

! loop variables
integer :: i,k

! START

  if(verbose) write(*,*)'CALLED: calculate_ZT_incident_field_sources'
  
  n_conductors=n_modes+1
 
  if(verbose) then
    write(*,*)'n_modes=',n_modes
    write(*,*)'shield_conductor=',shield_conductor
  end if

! Zero the coefficients initially 
  c1(:)=0d0
  c2(:)=0d0
  c1b(:)=0d0

  if (Eamplitude.eq.0d0) then  ! there is no incident field so return zero constants
    return
  end if

! calculate 1/velocity in each direction (avoids divide by zeros using reciprocal values)
! obtained from Theory_Manual_Eqn 3.136
  rvx=kx/c0
  rvy=ky/c0
  rvz=kz/c0

  Tdz=length*rvz
  
! loop over all conductors except the reference conductor

  do k=1,n_conductors-1
    
! Assume that the final (reference) conductor lies at the origin of the xy plane
! and calculate the vector xk,yk from the reference conductor to conductor k.
! If there is a ground plane then calculate the vector to the closest point on the ground plane
! i.e. in the y direction since the ground plane is along the x axis.

    if (ground_plane_present) then
! only the height over the ground plane matters so set x coordinate to zero and y is the height over ground
      xk=0d0
    else
      xk=xcoord(k)-xcoord(n_modes+1)
    end if
    yk=ycoord(k)-ycoord(n_modes+1)
        
! distance from this conductor to the reference conductor
    dk=sqrt(xk*xk+yk*yk)
    
! unit vector from this conductor to the reference conductor
    kw_rx=xk/dk
    kw_ry=yk/dk
    
! project the k vector along this direction
    kw_r=kx*kw_rx+ky*kw_ry
    
! reciprocal velocity in this direction
    vw_r=kw_r/c0
    
! Tx definition in Xie paper - see also Theory_Manual_Section 3.8 comment in the text below equation 3.198
! where here we have generalised to allow for general conductor offsets in the x-y plane of the bundle
    Tx(k)=length*vw_r  
    
  end do
  
! Calculate C1(i), C2(i) , C1b(i) where i is the source domain mode.
! We only have contributions relating to the shield conductor whose transfer impedance we are 
! including in the model. 

! loop over modes, i in the source domain

  do i=1,n_modes
    
! loop over all conductors except the reference conductor

    do k=1,n_conductors-1
    
    
! Again, assume that the final (reference) conductor lies at the origin of the xy plane
! and calculate the vector xk,yk from the reference conductor to conductor k.
! If there is a ground plane then calculate the vector to the closest point on the ground plane
! i.e. in the y direction since the ground plane is along the x axis.
      if (ground_plane_present) then
        xk=0d0
      else
        xk=xcoord(k)-xcoord(n_modes+1)
      end if
    
      yk=ycoord(k)-ycoord(n_modes+1)
    
      dk=sqrt(xk*xk+yk*yk)

! note c1,c2 are used to calculate the response of mode i due to excitations on all conductors, k
! hence the summation with over k with coefficients TI(k,i)
! See the two coefficients for the delayed incident field in Theory_Manual_Eqn 3.195 to 3.198
    
      c1(i)=c1(i)+dk*length*(-Ez*Tx(k) +(Ex*xk/dk+Ey*yk/dk)*(Tdz-Tdi(i)) )*TI(k,i) 
      c2(i)=c2(i)+dk*length*(-Ez*Tx(k) +(Ex*xk/dk+Ey*yk/dk)*(Tdz+Tdi(i)) )*TI(k,i) 

! C1b is for the special case when Tdz=Tdi, see the last paragraph in Theory_Manual_Section 3.8.3
      c1b(i)=c1b(i)+dk*length*( Ex*xk/dk+Ey*yk/dk )*TI(k,i) 
       
    end do ! next conductor
          
  end do ! next mode
  
  if (ground_plane_present) then  ! See Theory_Manual_Section 3.7.2
! the alpha terms are doubled
    c1(:)=2d0*c1(:)         
    c2(:)=2d0*c2(:)
    c1b(:)=2d0*c1b(:)         
  end if
  
  
  if (.NOT.verbose) RETURN
  
  write(*,*)'calculate_incident_field_sources'
  write(*,*)'ex=',ex
  write(*,*)'ey=',ey
  write(*,*)'ez=',ez
  write(*,*)'kx=',kx
  write(*,*)'ky=',ky
  write(*,*)'kz=',kz
  write(*,*)'rvx=',rvx
  write(*,*)'rvy=',rvy
  write(*,*)'rvz=',rvz
  
  write(*,*)'Tdz=',Tdz
  
! loop over conductors

  do k=1,n_modes
  
    xk=xcoord(k)-xcoord(n_modes+1)
    yk=ycoord(k)-ycoord(n_modes+1)
    
! distance from this conductor to the reference conductor
    dk=sqrt(xk*xk+yk*yk)
    
! unit vector from this conductor to the reference conductor
    kw_rx=xk/dk
    kw_ry=yk/dk
    
! project the k vector along this direction
    kw_r=kx*kw_rx+ky*kw_ry
          
    write(*,*)'conductor ',k
    write(*,*)'xk',xk
    write(*,*)'yk',yk
    write(*,*)'dk=',dk
    write(*,*)'kw_rx=',kw_rx
    write(*,*)'kw_ry=',kw_ry
    write(*,*)'kw_r=',kw_r
    write(*,*)'Tx=',Tx(k)
    
  end do
  
! loop over modes, i

  do i=1,n_modes
   
    write(*,*)'mode ',i
    write(*,*)'Tdi=',Tdi(i)
    write(*,*)'Tdi(i)+Tdz=',Tdi(i)+Tdz
    write(*,*)'c1=',c1(i)
    write(*,*)'c2=',c2(i)
    write(*,*)'c1b=',c1b(i)
   
  end do 
  
  RETURN
   
END SUBROUTINE calculate_ZT_incident_field_sources
!
! NAME
!     calc_incident_field_values
!
! DESCRIPTION
!     given coordinates in space and frequency calculate the incident E and H field component values
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 29/04/2015 CJS
!     8/5/2017           CJS: Include references to Theory_Manual
!
!
SUBROUTINE calc_incident_field_FD_values(x,y,z,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, &
                                         Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value)

USE type_specifications
USE constants

IMPLICIT NONE

complex(dp),intent(IN) :: Eamplitude                    ! E field amplitude
real(dp),intent(IN)    :: Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz    ! Cartesian components of field and propgation vector
real(dp),intent(IN)    :: x,y,z                         ! coordinates in 3D space of field evaluation point
real(dp),intent(IN)    :: f                             ! frequency

complex(dp),intent(OUT) :: Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value  ! output cartesian field values

! local variables

real(dp) :: w            ! angular frequency

complex(dp) :: phase     ! phase at field evaluation point

! START

! Theory_Manual_Eqn 3.140

w=2d0*pi*f

phase=exp( -j*(w/c0)*( kx*x+ky*y+kz*z ) )

Ex_value=Eamplitude*Ex*phase
Ey_value=Eamplitude*Ey*phase
Ez_value=Eamplitude*Ez*phase

! Theory_Manual_Eqn 3.140 and 3.142

Hx_value=Eamplitude*Hx*phase
Hy_value=Eamplitude*Hy*phase
Hz_value=Eamplitude*Hz*phase

RETURN

END SUBROUTINE calc_incident_field_FD_values
!
! NAME
!     calc_incident_field_FD_values_GP
!
! DESCRIPTION
!     given coordinates in space and frequency calculate the incident E and H field component values
!     with a ground plane present
!     The ground plane is assumed to lie along the x axis
!
! COMMENTS
!     
!
! HISTORY
!
!     started 28/06/2016 CJS
!
!
SUBROUTINE calc_incident_field_FD_values_GP(x,y,z,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, &
                                         Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value)

USE type_specifications
USE constants

IMPLICIT NONE

complex(dp),intent(IN) :: Eamplitude                    ! E field amplitude
real(dp),intent(IN)    :: Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz    ! Cartesian components of field and propgation vector
real(dp),intent(IN)    :: x,y,z                         ! coordinates in 3D space of field evaluation point
real(dp),intent(IN)    :: f                             ! frequency

complex(dp),intent(OUT) :: Ex_value,Ey_value,Ez_value,Hx_value,Hy_value,Hz_value  ! output cartesian field values

! local variables

real(dp) :: w            ! angular frequency

complex(dp) :: phase     ! phase at field evaluation point

! START

w=2d0*pi*f

! Theory_Manual_Eqn 3.140 with the addition of a reflected plane wave from the ground plane (y=0 plane)
! in which ky_reflected=-ky_incident and
! Ex_reflected=-Ex_incident,  Ez_reflected=-Ez_incident,  Hy_reflected=-Hy_incident

! Incident plane wave
phase=exp( -j*(w/c0)*( kx*x+ky*y+kz*z ) )

Ex_value=Eamplitude*Ex*phase
Ey_value=Eamplitude*Ey*phase
Ez_value=Eamplitude*Ez*phase

Hx_value=Eamplitude*Hx*phase
Hy_value=Eamplitude*Hy*phase
Hz_value=Eamplitude*Hz*phase

! Add reflected plane wave
phase=exp( -j*(w/c0)*(kx*x-ky*y+kz*z ) )

Ex_value=Ex_value-Eamplitude*Ex*phase
Ey_value=Ey_value+Eamplitude*Ey*phase
Ez_value=Ez_value-Eamplitude*Ez*phase

Hx_value=Hx_value+Eamplitude*Hx*phase
Hy_value=Hy_value-Eamplitude*Hy*phase
Hz_value=Hz_value+Eamplitude*Hz*phase

RETURN

END SUBROUTINE calc_incident_field_FD_values_GP
! 
! NAME
!     calculate_lumped_incident_field_sources
!
! DESCRIPTION
!     calculate the lumped sources at z=l due to incident field excitation
!     
!
! COMMENTS
!     The code is based on Theory_Manual_Section 2.4
!     Detailed discussions and derivations are found in 
!     C.R. Paul, "Analysis of Multiconductor Transmission Lines" 1st edition, section 7.2.1. 
!     
!     The sources are calculated by numerical integration
!    
! HISTORY
!
!     started 29/04/2015 CJS ESA Spice cable modelling, Phase 1 
!     8/5/2017           CJS: Include references to Theory_Manual
!
!
SUBROUTINE calculate_lumped_incident_field_sources(xcoord,ycoord,is_shielded,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, &
                                                   ground_plane_present,length,f,VFT,IFT,dim,  &
                                                   T,TI,Y,Z,ZC,YC,GAMMA_C)

USE type_specifications
USE constants
USE maths

IMPLICIT NONE
integer,intent(IN)     :: dim                              ! matrix system dimension
real(dp),intent(IN)    :: xcoord(dim+1),ycoord(dim+1)      ! note that we need the reference conductor position in space
logical,intent(IN)     :: is_shielded(dim)                 ! flag to indicated shielded conductors
complex(dp),intent(IN) :: Eamplitude                       ! incident field amplitude
real(dp),intent(IN)    :: Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz       ! incident field cartesian field components and propagation vector
real(dp),intent(IN)    :: length                           ! transmission line length 
real(dp),intent(IN)    :: f                                ! frequency
logical,intent(IN)     :: ground_plane_present             ! flag to indicate the presence of a ground plane
complex(dp),intent(IN) :: T(dim,dim)                       ! modal decomposition matrix
complex(dp),intent(IN) :: TI(dim,dim)                      ! modal decomposition matrix (inverse of [T])
complex(dp),intent(IN) :: Y(dim,dim)                       ! global admittance matrix
complex(dp),intent(IN) :: Z(dim,dim)                       ! global impedance matrix 
complex(dp),intent(IN) :: ZC(dim,dim)                      ! characteristic impedance matrix
complex(dp),intent(IN) :: YC(dim,dim)                      ! characteristic admittance matrix
complex(dp),intent(IN) :: GAMMA_C(dim)                     ! modal propagation constants

complex(dp),intent(OUT) :: VFT(dim),IFT(dim)               ! incident field voltage and current sources

! local variables

real(dp) :: xp,yp,zp
real(dp) :: vx,vy,norm

real(dp) :: w,lambda

real(dp) :: dz          ! space step for numerical integration
integer  :: nz,zloop    ! loop variables for integration along the transmission line

! Cartesian field values on a conductor
complex(dp) :: Ex_c,Ey_c,Ez_c
complex(dp) :: Hx_c,Hy_c,Hz_c

! Cartesian field values on the reference conductor
complex(dp) :: Ex_r,Ey_r,Ez_r
complex(dp) :: Hx_r,Hy_r,Hz_r

! Temporary matrices for calculating the chain parameter matrices
complex(dp) :: M1(dim,dim),YI(dim,dim)
complex(dp) :: sinh_gamma_z(dim,dim)
complex(dp) :: cosh_gamma_z(dim,dim)
complex(dp) :: TSTI(dim,dim),TCTI(dim,dim)

! chain parameter matrix elements
complex(dp) :: PHI_11(dim,dim)
complex(dp) :: PHI_12(dim,dim)
complex(dp) :: PHI_21(dim,dim)
complex(dp) :: PHI_22(dim,dim)

!temporary vectors used in the calculations
complex(dp) :: VF1(dim),VF2(dim),VF3(dim),VF(dim),IF1(dim),IF(dim)
complex(dp) :: TV1(dim),TV2(dim),TV3(dim),TV4(dim)

! error code for matrix inverse 
integer :: ierr   

! loop variables
integer :: conductor
integer :: i

! START

  IFT(:)=(0d0,0d0)
  VFT(:)=(0d0,0d0)

  if (Eamplitude.eq.0d0) then   ! there is no incident field so return with zero value source terms
    return
  end if

! calculate angular frequency(rad/s) and wavelength(m)
  w=2d0*pi*f
  lambda=c0/f
  
  ierr=0      ! exit on error with the matrix inverse
  CALL cinvert_Gauss_Jordan(Y,dim,YI,dim,ierr)
  
  dz=lambda/20d0   ! space step for numerical integration
  nz=NINT(length/dz)
  
! ensure a minimum number of integration points
  if (nz.LT.10) nz=10
  dz=length/nz
  
! calculate source integrals   
   
! loop over the transmission line length
  do zloop=1,nz
  
    zp=(zloop-1)*dz+dz/2d0    ! z coordinate at the current point. We assume the integrand is uniform over intervals, dz.
    
! Calculate the chain parameter matrices for the current z value Theory_Manual_Eqns 2.58

    sinh_gamma_z(:,:)=(0d0,0d0)
    cosh_gamma_z(:,:)=(0d0,0d0)

    do i=1,dim
      cosh_gamma_z(i,i)=0.5d0*( exp(  GAMMA_C(i)*(length-zp) )+exp( -GAMMA_C(i)*(length-zp) ) )
      sinh_gamma_z(i,i)=0.5d0*( exp(  GAMMA_C(i)*(length-zp) )-exp( -GAMMA_C(i)*(length-zp) ) )
    end do
       
    M1=matmul(T,cosh_gamma_z)
    TCTI=matmul(M1,TI)

    M1=matmul(T,sinh_gamma_z)
    TSTI=matmul(M1,TI)   

! Phi11
    M1=matmul(YI,TCTI)
    PHI_11=matmul(M1,Y)
    
! Phi12
    M1=matmul(ZC,TSTI)
    PHI_12=-M1
    
! Phi21
    M1=matmul(TSTI,YC)
    PHI_21=-M1
      
! Phi22
    PHI_22=TCTI  
            
! loop over conductors (other than the reference)
    do conductor=1,dim
          
! calculate the cartesian field values at the current conductor and the reference conductor
          
      if (.NOT.ground_plane_present) then
                                           
! get the field values at the reference conductor i.e. the (dim+1)th conductor 
        xp=xcoord(dim+1)
        yp=ycoord(dim+1)
    
        CALL calc_incident_field_FD_values(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz, &
                                           kx,ky,kz,Ex_r,Ey_r,Ez_r,Hx_r,Hy_r,Hz_r)
      
! get the field values at the conductor 
        xp=xcoord(conductor)
        yp=ycoord(conductor)
      
        CALL calc_incident_field_FD_values(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz, &
                                           kx,ky,kz,Ex_c,Ey_c,Ez_c,Hx_c,Hy_c,Hz_c)
                                           
! calculate a vector from the reference to the conductor
        vx=xp-xcoord(dim+1)
        vy=yp-ycoord(dim+1)
                                           
      else
      
! get the field values at the reference conductor i.e. the (dim+1)th conductor 
! under the conductor we are interested in
        xp=xcoord(dim+1)     ! The 'reference' is at the origin when a ground plane is present 
        yp=ycoord(dim+1)
        CALL calc_incident_field_FD_values_GP(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, &
                                              Ex_r,Ey_r,Ez_r,Hx_r,Hy_r,Hz_r)
      
! get the field values at the conductor 
        xp=xcoord(conductor)
        yp=ycoord(conductor)
        CALL calc_incident_field_FD_values_GP(xp,yp,zp,f,Eamplitude,Ex,Ey,Ez,Hx,Hy,Hz,kx,ky,kz, &
                                              Ex_c,Ey_c,Ez_c,Hx_c,Hy_c,Hz_c)
                                                         
! calculate a vector from the reference to the conductor
        vx=xp-xcoord(dim+1)  ! Made the vector consistent with the field evaluation points 16/8/2016
        vy=yp-ycoord(dim+1)  ! The 'reference' is at the origin when a ground plane is present 
    
      end if
            
! the first part is due to the z component of the E field

      VF1(conductor)=(Ez_c-Ez_r)    ! C. Paul, equation 7.24(e), Ez contribution !  Theory_Manual_Eqn 2.53(second term) using 2.54
            
! the second part is due to the z derivative of the incident field integrated from the reference to conductor
! note the field is assumed to be linearly varying between its endpoint values in the integration

      VF2(conductor)=j*(w/c0)*kz*(0.5d0*(Ex_c+Ex_r)*vx+0.5d0*(Ey_c+Ey_r)*vy) ! C. Paul, equation 7.24(e), Et contribution, Theory_Manual_Eqn 2.53, first term
      
! An alternative is the time derivative of the B field integrated from reference to conductor
!      VF3(conductor)=j*w*mu0*(-0.5d0*(Hx_c+Hx_r)*vy+0.5d0*(Hy_c+Hy_r)*vx) ! C. Paul, equation 7.24(c), B.dA contribution (H field form) 
      
! the IF source term is due to the incident field integrated from the reference to conductor
! note the field is assumed to be linearly varying between its endpoint values in the integration
! this needs to be pre-multiplied by G+jwC but this happens later...
 ! C. Paul, equation 7.24(d), Et contribution, Theory_Manual_Eqn 2.55 using a linear interpolation of the field
 ! between the reference conductor and the conductor k.
       
      IF1(conductor)=-(0.5d0*(Ex_c+Ex_r)*vx+0.5d0*(Ey_c+Ey_r)*vy)
                                
    end do ! next conductor
    
    VF(:)=VF1(:)+VF2(:)  ! E field form
!     VF(:)=VF3(:)       ! H field form


! multiply IF1 by Y, the MTL admittance matrix (G+jwC) ! Theory_Manual_Eqn 2.56 transformed to the time domain
     IF=matmul(Y,IF1)

! Special process for shielded conductors - set IF to zero
    do conductor=1,dim
    
      if (is_shielded(conductor)) then
      
! set the current sources to zero, note that voltage sources must remain even for shielded conductors. 
! Note also that provided shielded cables are centred on their respective shield then this step should
! not be necessary due to the structure of the [Y] matrix and (IF)=[Y](IF1)
        
        IF(conductor)=(0d0,0d0)
        
       end if
                                
     end do ! next conductor
     
! add the contribution to the integration in Theory_Manual_Eqns 2.60
! C. Paul, equation 7.29b,7.29c      
     TV1=matmul(PHI_11,VF)
     TV2=matmul(PHI_12,IF)
    
     TV3=matmul(PHI_21,VF)
     TV4=matmul(PHI_22,IF)

! Add contribution to the integral over z assuming constant value of integrand over this section, dz
    do conductor=1,dim
      VFT(conductor)=VFT(conductor)+dz*(TV1(conductor)+TV2(conductor))  
      IFT(conductor)=IFT(conductor)+dz*(TV3(conductor)+TV4(conductor)) 
    end do
        
  end do ! next z value
    
END SUBROUTINE calculate_lumped_incident_field_sources