Blame view

SRC/GENERAL_MODULES/generate_shapes.F90 12.2 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! FILE CONTENTS:
!SUBROUTINE generate_circle_points
!SUBROUTINE generate_rectangle_points
!SUBROUTINE generate_Dshape_points
!SUBROUTINE generate_arc_points
!
!SUBROUTINE generate_circle_points
!
! NAME
!     SUBROUTINE generate_circle_points
!
! DESCRIPTION
!     write a circle with specified x,y centre and radius to file for plotting with gnuplot
!
!     
! COMMENTS
!     return the extent of the plotting area...
!
! HISTORY
!
!     started 10/05/2013 CJS
!
!
SUBROUTINE generate_circle_points(npts,shape_x,shape_y,x,y,r)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)
  real(dp),intent(IN)                :: x,y,r                 ! centre x and y coordinates and radius
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  real(dp) x4,y4
  
  integer :: loop
  
! START

! write the circle as four arcs

  x1=x
  y1=y+r
  
  x2=x-r
  y2=y
  
  x3=x
  y3=y-r
  
  x4=x+r
  y4=y

  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x1,y1,x2,y2)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x2,y2,x3,y3)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x3,y3,x4,y4)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x,y,x4,y4,x1,y1)
  
    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop
   
  RETURN
  
END SUBROUTINE generate_circle_points
!
!SUBROUTINE generate_rectangle_points
!
! NAME
!     SUBROUTINE generate_rectangle_points
!
! DESCRIPTION
!     write a rectangle with specified x,y centre, width, height and angle to file for plotting with gnuplot
!
!     
! COMMENTS
!     return the extent of the plotting area...
!
! HISTORY
!
!     started 23/9/2016 CJS
!
!
SUBROUTINE generate_rectangle_points(npts,shape_x,shape_y,x,y,theta,w,h)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)

  real(dp),intent(IN)    :: x,y,w,h,theta         ! centre x and y coordinates, width, height and angle of rectangle
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  real(dp) x4,y4
  real(dp) xt,yt
  
  integer :: loop
 
! START

! first point

  xt=w/2d0
  yt=h/2d0
  
! rotate then translate, note save the first point
  
  x1=x+xt*cos(theta)-yt*sin(theta)
  y1=y+xt*sin(theta)+yt*cos(theta)
  
! second point

  xt=-w/2d0
  yt=h/2d0
! rotate then translate 
  x2=x+xt*cos(theta)-yt*sin(theta)
  y2=y+xt*sin(theta)+yt*cos(theta)
  
! third point

  xt=-w/2d0
  yt=-h/2d0
! rotate then translate 
  x3=x+xt*cos(theta)-yt*sin(theta)
  y3=y+xt*sin(theta)+yt*cos(theta)
  
! fourth point

  xt=w/2d0
  yt=-h/2d0
! rotate then translate 
  x4=x+xt*cos(theta)-yt*sin(theta)
  y4=y+xt*sin(theta)+yt*cos(theta)
  
  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_line_points(npts,shape_x,shape_y,loop,x1,y1,x2,y2)
  
    CALL generate_line_points(npts,shape_x,shape_y,loop,x2,y2,x3,y3)
  
    CALL generate_line_points(npts,shape_x,shape_y,loop,x3,y3,x4,y4)
  
    CALL generate_line_points(npts,shape_x,shape_y,loop,x4,y4,x1,y1)
  
    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop
   
  RETURN
  
END SUBROUTINE generate_rectangle_points

!
! NAME
!     SUBROUTINE generate_Dshape_points
!
! DESCRIPTION
!     write a Dshape with specified x,y centre, width1, width2, conductor separation, shell offset and angle to file for plotting with gnuplot
!
!     
! COMMENTS
!     Also return the extent of the plotting area
!
! HISTORY
!
!     started 15/11/2016 CJS
!
!
SUBROUTINE generate_Dshape_points(npts,shape_x,shape_y,x,y,w1,w2,s,r,theta)
   
USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts
  real(dp),allocatable,intent(INOUT)  :: shape_x(:)
  real(dp),allocatable,intent(INOUT)  :: shape_y(:)

  real(dp),intent(IN)    :: x,y,w1,w2,s,r,theta  ! centre x and y coordinates, width1, width2, separation of wire rows, offset of D shapeand angle
  
! local variables  

  real(dp) x1,y1
  real(dp) x2,y2
  real(dp) x3,y3
  real(dp) x4,y4
  real(dp) x5,y5
  real(dp) x6,y6
  real(dp) x7,y7
  real(dp) x8,y8
  real(dp) x9,y9
  real(dp) x10,y10
  real(dp) x11,y11
  real(dp) x12,y12
  
  real(dp) xt,yt
  real(dp) vx,vy
  real(dp) voxl,voyl
  real(dp) norm
 
  integer :: loop
  
! START

! vector from top left conductor to bottem left conductor      
  vx=w1-w2
  vy=-2d0*s

! perpendicular vector to -x edge
  norm=sqrt(vx*vx+vy*vy)
  voxl=vy*r/norm
  voyl=-vx*r/norm

! POINT 1      ! top right
  xt=w1
  yt=s+r 
  x1=x+xt*cos(theta)-yt*sin(theta)
  y1=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 2      ! top left
  xt=-w1
  yt=s+r
  x2=x+xt*cos(theta)-yt*sin(theta)
  y2=y+xt*sin(theta)+yt*cos(theta)
       
! POINT 3      ! top left centre
  xt=-w1
  yt=s
  x3=x+xt*cos(theta)-yt*sin(theta)
  y3=y+xt*sin(theta)+yt*cos(theta)
     
! POINT 4      ! top left edge
  xt=-w1+voxl
  yt=s+voyl
  x4=x+xt*cos(theta)-yt*sin(theta)
  y4=y+xt*sin(theta)+yt*cos(theta)
        
! POINT 5      ! bottom left edge
  xt=-w2+voxl
  yt=-s+voyl
  x5=x+xt*cos(theta)-yt*sin(theta)
  y5=y+xt*sin(theta)+yt*cos(theta)  
      
! POINT 6      ! bottom left centre
  xt=-w2
  yt=-s
  x6=x+xt*cos(theta)-yt*sin(theta)
  y6=y+xt*sin(theta)+yt*cos(theta)
       
! POINT 7      ! bottom left
  xt=-w2
  yt=-(s+r)
  x7=x+xt*cos(theta)-yt*sin(theta)
  y7=y+xt*sin(theta)+yt*cos(theta)
         
! POINT 8      ! bottom right
  xt=w2
  yt=-(s+r)
  x8=x+xt*cos(theta)-yt*sin(theta)
  y8=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 9      ! bottom right centre
  xt=w2
  yt=-s
  x9=x+xt*cos(theta)-yt*sin(theta)
  y9=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 10      ! bottom right edge
  xt=w2-voxl
  yt=-s+voyl
  x10=x+xt*cos(theta)-yt*sin(theta)
  y10=y+xt*sin(theta)+yt*cos(theta)
      
! POINT 11      ! top right edge
  xt=w1-voxl
  yt=s+voyl
  x11=x+xt*cos(theta)-yt*sin(theta)
  y11=y+xt*sin(theta)+yt*cos(theta)
       
! POINT 12      ! top right centre
  xt=w1
  yt=s
  x12=x+xt*cos(theta)-yt*sin(theta)
  y12=y+xt*sin(theta)+yt*cos(theta)
     
  do loop=1,2  ! first pass to count the points, second pass to set the point coordinates
    
    npts=0
    
    CALL generate_line_points(npts,shape_x,shape_y,loop,x1,y1,x2,y2)
    
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x3,y3,x2,y2,x4,y4)

    CALL generate_line_points(npts,shape_x,shape_y,loop,x4,y4,x5,y5)
  
    CALL generate_arc_points(npts,shape_x,shape_y,loop,x6,y6,x5,y5,x7,y7)

    CALL generate_line_points(npts,shape_x,shape_y,loop,x7,y7,x8,y8)

    CALL generate_arc_points(npts,shape_x,shape_y,loop,x9,y9,x8,y8,x10,y10)

    CALL generate_line_points(npts,shape_x,shape_y,loop,x10,y10,x11,y11)

    CALL generate_arc_points(npts,shape_x,shape_y,loop,x12,y12,x11,y11,x1,y1)
   
    if (loop.EQ.1) then
      ALLOCATE( shape_x(1:npts) )
      ALLOCATE( shape_y(1:npts) )
    end if
  
  end do ! next loop

  RETURN
  
END SUBROUTINE generate_Dshape_points
!
! NAME
!     SUBROUTINE generate_arc_points
!
! DESCRIPTION
!     generate a set of points describing an arc
!     The arc is always in an anticlockwise direction.
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 20/4/2017 CJS
!
!
SUBROUTINE generate_arc_points(npts,shape_x,shape_y,loop,xc,yc,x1,y1,x2,y2)

USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts       ! point count
  real(dp),allocatable,intent(INOUT)  :: shape_x(:) ! x coordinate value list
  real(dp),allocatable,intent(INOUT)  :: shape_y(:) ! y coordinate value list
  
  integer,intent(IN)    :: loop                  ! loop indicator. If loop=1, just count the points, if loop=2 set the coordinate values

  real(dp),intent(IN)    :: xc,yc                ! centre coordinates
  real(dp),intent(IN)    :: x1,y1                ! arc end 1 coordinates
  real(dp),intent(IN)    :: x2,y2                ! arc end 2 coordinates
   
! local variables

  real(dp) :: r           ! arc radius
  real(dp) :: x,y         ! point coordinates
  real(dp) :: tmin        ! minimum angle
  real(dp) :: tmax        ! maximum angle
  real(dp) :: t           ! angle
  real(dp) :: dt          ! angle step
  integer  :: tloop       ! theta loop variable
  
  integer,parameter :: nt=40  ! number of points in an arc
   
! START
! calculate the radius
  r=sqrt((x1-xc)**2+(y1-yc)**2)

! calculate the angle of the first point from the x axis
  tmin=atan2(y1-yc,x1-xc)

! calculate the angle of the last point from the x axis
  tmax=atan2(y2-yc,x2-xc)

! ensure that tmax is greater than tmin i.e. the arc is in an anticlockwise direction  
  if (tmax.LT.tmin) tmax=tmax+2d0*pi
  
  dt=(tmax-tmin)/dble(nt)

! first point of the arc

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x1
    shape_y(npts)=y1
  end if

! write the interior points of the arc

! loop over theta    

  do tloop=1,nt-1
  
    t=tmin+dt*dble(tloop)

    x=xc+r*cos(t)
    y=yc+r*sin(t)
  
    npts=npts+1
    if (loop.EQ.2) then
      shape_x(npts)=x
      shape_y(npts)=y
    end if
  
  end do

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x2
    shape_y(npts)=y2
  end if
  
  RETURN

END SUBROUTINE generate_arc_points
!
! NAME
!     SUBROUTINE generate_line_points
!
! DESCRIPTION
!     generate a set of points describing a line
!  
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 20/4/2017 CJS
!
!
SUBROUTINE generate_line_points(npts,shape_x,shape_y,loop,x1,y1,x2,y2)

USE type_specifications
USE constants

IMPLICIT NONE

  integer,intent(OUT)                :: npts       ! point count
  real(dp),allocatable,intent(INOUT)  :: shape_x(:) ! x coordinate value list
  real(dp),allocatable,intent(INOUT)  :: shape_y(:) ! y coordinate value list
  
  integer,intent(IN)    :: loop                  ! loop indicator. If loop=1, just count the points, if loop=2 set the coordinate values

  real(dp),intent(IN)    :: x1,y1                ! line end 1 coordinates
  real(dp),intent(IN)    :: x2,y2                ! line end 2 coordinates
   
! local variables

  real(dp) :: x,y         ! point coordinates
  real(dp) :: t           ! normalised distance along line
  integer  :: tloop       ! loop variable
  
  integer,parameter :: nt=16  ! number of points in a line
   
! START

! first point of the line

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x1
    shape_y(npts)=y1
  end if

! write the interior points of the line

! loop over theta    

  do tloop=1,nt-1
  
    t=dble(tloop)/dble(nt)

    x=x1+(x2-x1)*t
    y=y1+(y2-y1)*t
  
    npts=npts+1
    if (loop.EQ.2) then
      shape_x(npts)=x
      shape_y(npts)=y
    end if
  
  end do

  npts=npts+1
  if (loop.EQ.2) then
    shape_x(npts)=x2
    shape_y(npts)=y2
  end if
  
  RETURN

END SUBROUTINE generate_line_points