Blame view

SRC/NETWORK_SYNTHESIS/include_pole_residue_test_functions.F90 3.69 KB
189467e4   Steve Greedy   First Public Release
1
!
fe64b32b   Chris Smartt   Update file heade...
2
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
189467e4   Steve Greedy   First Public Release
3
4
5
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
fe64b32b   Chris Smartt   Update file heade...
6
! Copyright (C) 2016-2018 University of Nottingham
189467e4   Steve Greedy   First Public Release
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
fe64b32b   Chris Smartt   Update file heade...
28
!
189467e4   Steve Greedy   First Public Release
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
! FILE CONTAINS:
! FUNCTION conjugate_pair
! FUNCTION imaginary_pair
! FUNCTION complex_pair
!
!
! NAME
!     conjugate_pair
!
! DESCRIPTION
!      Test whether the two complex numbers a and b are a complex conjugate pair
!
! HISTORY
!
!     started 15/09/2017 CJS
!

FUNCTION conjugate_pair(a,b) RESULT(res)

USE type_specifications
USE constants

IMPLICIT NONE

! argument types
  complex(dp),intent(IN) :: a,b
! Result type
  logical                :: res
  
!local variables

  complex(dp) :: diff
  real(dp) :: mag_diff,mag1,mag2

! function definition

! Test whether (a*-b)/(|a|+|b|) is zero (very small) 

  mag1=abs(a)
  mag2=abs(b)
  diff=conjg(a)-b     
  mag_diff=abs(diff)
  
  if ( (mag_diff/(mag1+mag2)).GT.zero_test_small) then
    res=.FALSE.
  else
    res=.TRUE.
  end if
  
END FUNCTION conjugate_pair
!
! NAME
!     imaginary_pair
!
! DESCRIPTION
!      Test whether the two complex numbers a and b are an imaginary pair
!      It is assumed that a and b are a complex conjugate pair
!
! HISTORY
!
!     started 15/09/2017 CJS
!

FUNCTION imaginary_pair(a,b) RESULT(res)

USE type_specifications
USE constants

IMPLICIT NONE

! argument types
  complex(dp),intent(IN) :: a,b
! Result type
  logical                :: res
  
! local variables

  complex(dp) :: sum
  real(dp) :: mag_sum,mag1,mag2

! function definition

! Test whether the real part of (a*+b)/(|a|+|b|) is zero (very small) 

  mag1=abs(a)
  mag2=abs(b)
  sum=conjg(a)+b     
  mag_sum=abs(real(sum))
  
  if ( (mag_sum/(mag1+mag2)).GT.zero_test_small) then
    res=.FALSE.
  else
    res=.TRUE.
  end if
  
END FUNCTION imaginary_pair
!
! NAME
!     complex_pair
!
! DESCRIPTION
!      Test whether the two complex numbers a and b are a complex pair
!      i.e. the real parts of a and b are not zero
!      It is assumed that a and b are a complex conjugate pair
!
! HISTORY
!
!     started 15/09/2017 CJS
!


FUNCTION complex_pair(a,b) RESULT(res)

USE type_specifications
USE constants

IMPLICIT NONE

! argument types
  complex(dp),intent(IN) :: a,b
! Result type
  logical                :: res
  
! local variables

  complex(dp) :: sum
  real(dp) :: mag_sum,mag1,mag2

! function definition

! Test whether the real part of (a*+b)/(|a|+|b|) is greater than zero (something very small) 

  mag1=abs(a)
  mag2=abs(b)
  sum=conjg(a)+b     
  mag_sum=abs(real(sum))
  
  if ( (mag_sum/(mag1+mag2)).LT.zero_test_small) then
    res=.FALSE.
  else
    res=.TRUE.
  end if
  
END FUNCTION complex_pair