Blame view

SRC/PUL_PARAMETER_CALCULATION/PUL_analytic.F90 15.9 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! 
!     SUBROUTINE PUL_LC_calc_wide_separation_approximation
!     SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
!     SUBROUTINE calculate_height_over_ground_plane(x,y,theta,d,h)
!
! NAME
!     SUBROUTINE PUL_LC_calc_wide_separation_approximation
!
!     Calculation of PUL_parameters for cylindrical conductors in free space
!     using a wide separation approximation
!     The calculation allows the inclusion of a ground plane in the system of conductors
! 
! The calculation is based on the theory in the Theory Manual however more detailed analysis and derivations
! can be found in
! C.R.Paul, "Analysis of Multiconductor Transmission Lines" John Wiley and Sons 
!     
! COMMENTS
!     
!
! HISTORY
!    started 2/12/2015 CJS
!     8/5/2017         CJS: Include references to Theory_Manual
!

SUBROUTINE PUL_LC_calc_wide_separation_approximation(PUL)

  USE type_specifications
  USE constants
  USE general_module
  USE maths

  IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type),intent(INOUT)    :: PUL    ! per-unit-length parameter calculation structure
  
! local variables

  integer    :: nc                 ! number of conductors
  integer    :: matrix_dimension
  
  integer    :: row,col
  
  real(dp)    :: x_0,y_0       ! x and y of reference conductor
  real(dp)    :: x_row,y_row   ! x and y of row conductor
  real(dp)    :: x_col,y_col   ! x and y of col conductor
  
  real(dp)    :: d_row_0       ! distance from row conductor to reference conductor
  real(dp)    :: d_row_col     ! distance from row conductor to col conductor
  real(dp)    :: d_col_0       ! distance from col conductor to reference conductor
  
  real(dp)    :: r_row         ! radius of row conductor 
  real(dp)    :: r_col         ! radius of col conductor 
  real(dp)    :: r_0           ! radius of reference conductor
  
  real(dp)    :: h_row         ! height of row conductor above the ground plane
  real(dp)    :: h_col         ! height of col conductor above the ground plane
  
  integer :: ierr
  
! START

! Work out the dimension of the per-unit-length matrices  

  nc=PUL%n_conductors
  matrix_dimension=nc-1
  
  if (verbose) then
    write(*,*)'CALLED PUL_LC_calc_wide_separation_approximation'
    write(*,*)'Number of conductors=',nc
    write(*,*)'matrix dimension=',matrix_dimension
  end if
  
! check we have a valid system
  if (matrix_dimension.LT.1) then
    run_status='ERROR in PUL_LC_calc_wide_separation_approximation, Matrix dimension is less than 1'
    CALL write_program_status()
    STOP 1
  end if
  
! Allocate the per-unit-length matrices  
  PUL%L%dim=matrix_dimension
  ALLOCATE( PUL%L%mat(1:PUL%L%dim,1:PUL%L%dim) )
  PUL%C%dim=matrix_dimension
  ALLOCATE( PUL%C%mat(1:PUL%C%dim,1:PUL%C%dim) )
  PUL%G%dim=matrix_dimension
  ALLOCATE( PUL%G%mat(1:PUL%G%dim,1:PUL%G%dim) )

! Allocate the impedance and admittance filter matrices  
  PUL%Zfilter%dim=matrix_dimension
  ALLOCATE(PUL%Zfilter%sfilter_mat(1:PUL%Zfilter%dim,1:PUL%Zfilter%dim))
  PUL%Yfilter%dim=matrix_dimension
  ALLOCATE(PUL%Yfilter%sfilter_mat(1:PUL%Yfilter%dim,1:PUL%Yfilter%dim))

! Calculate the inductance matrix first

  if (PUL%ground_plane_present) then
  
    do row=1,nc-1
    
! calculate the diagonal element here    
      x_row=PUL%x(row)
      y_row=PUL%y(row)
      r_row=PUL%r(row)
      
      CALL calculate_height_over_ground_plane(x_row,y_row,r_row,    &
                                              PUL%ground_plane_angle,PUL%ground_plane_offset,h_row)
                                
      PUL%L%mat(row,row)=(mu0/(2d0*pi))*log(2d0*h_row/r_row)  ! Paul equation 3.66a  Theory_Manual_Eqn 2.24

      do col=row+1,nc-1
! calculate the off diagonal elements here    

        x_col=PUL%x(col)
        y_col=PUL%y(col)
        r_col=PUL%r(col)
        d_row_col=sqrt((x_row-x_col)**2+(y_row-y_col)**2)
      
        CALL calculate_height_over_ground_plane(x_col,y_col,r_col,   &
                                            PUL%ground_plane_angle,PUL%ground_plane_offset,h_col)

        PUL%L%mat(row,col)=(mu0/(4d0*pi))*log(1d0+4d0*h_row*h_col/(d_row_col**2))   ! C.R.Paul equation 3.66b  Theory_Manual_Eqn 2.25
    
! The matrix is symmetric so we can set L[col,row]=L[row,col]
        PUL%L%mat(col,row)=PUL%L%mat(row,col)
      
      end do ! next col
      
    end do ! next row
  
  else
! There is no ground plane so choose the last conductor specified as the reference
    
    x_0=PUL%x(nc)
    y_0=PUL%y(nc)
    r_0=PUL%r(nc)
  
    do row=1,nc-1
    
! calculate the diagonal element here    
      x_row=PUL%x(row)
      y_row=PUL%y(row)
      r_row=PUL%r(row)
      d_row_0=sqrt((x_row-x_0)**2+(y_row-y_0)**2)
      PUL%L%mat(row,row)=(mu0/(2d0*pi))*log(d_row_0**2/(r_0*r_row))  ! Paul equation 3.63a Theory_Manual_Eqn 2.21
    
      do col=row+1,nc-1
! calculate the off diagonal elements here    

        x_col=PUL%x(col)
        y_col=PUL%y(col)
        d_col_0=sqrt((x_col-x_0)**2+(y_col-y_0)**2)
        d_row_col=sqrt((x_row-x_col)**2+(y_row-y_col)**2)

        PUL%L%mat(row,col)=(mu0/(2d0*pi))*log(d_row_0*d_col_0/(d_row_col*r_0))   ! C.R.Paul equation 3.63b Theory_Manual_Eqn 2.22
    
! The matrix is symmetric so we can set L[col,row]=L[row,col]
        PUL%L%mat(col,row)=PUL%L%mat(row,col)
      
      end do ! next col
      
    end do ! next row
  
  end if
  
! The capacitance matrix is calculated as mu0*eps0*[L_inverse] ! Theory_Manual_Eqn 2.23
  
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL dinvert_Gauss_Jordan(PUL%L%mat,matrix_dimension,PUL%C%mat,matrix_dimension,ierr)
  
  PUL%C%mat(:,:)=mu0*eps0*PUL%C%mat(:,:)

! Conductance matrix is set to zero
  PUL%G%mat(:,:)=0d0
  
! calculate the impedance and admittance filters

  CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
   
  if (verbose) then
    write(*,*)'Inductance matrix, L'
    CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
    write(*,*)'Capacitance matrix, C'
    CALL dwrite_matrix(PUL%C%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
  end if
  
  END SUBROUTINE PUL_LC_calc_wide_separation_approximation

!
! NAME
!     SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
!
!     Calculation of PUL_parameters for cylindrical conductors within a cylindrical return conductor (overshield)
!     using a wide separation approximation
! 
! The calculation is based on the theory in:
! C.R.Paul, "Analysis of Multiconductor Transmission Lines" John Wiley and Sons
!     
! COMMENTS
!     
!
! HISTORY
!    started 18/04/2016 CJS
!    24/04/2016 CJS Fix problem with off diagonal inductance matrix calculation due to problem with cos_theta_row_col calculation.
!    26/10/2016 CJS Fix 0/0 error when d_col=0 for off diagonal elements
!     8/5/2017         CJS: Include references to Theory_Manual
!
SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation(PUL)

  USE type_specifications
  USE constants
  USE general_module
  USE maths

  IMPLICIT NONE

! variables passed to subroutine

  type(PUL_type),intent(INOUT)    :: PUL    ! per-unit-length parameter calculation structure
  
! local variables

  integer    :: nc                 ! number of conductors
  integer    :: matrix_dimension
  
  integer    :: row,col
  
  real(dp)    :: xs,ys         ! x and y of reference conductor
  real(dp)    :: rs            ! radius of reference conductor
  
  real(dp)    :: x_row,y_row   ! x and y of row conductor
  real(dp)    :: d_row         ! distance from row conductor to centre of reference conductor
  real(dp)    :: r_row         ! radius of row conductor 

  real(dp)    :: x_col,y_col   ! x and y of col conductor
  real(dp)    :: d_col         ! distance from col conductor to centre of reference conductor
  real(dp)    :: r_col         ! radius of col conductor 
  
  real(dp)    :: d_row_col         ! distance from row conductor to col conductor
  real(dp)    :: theta_row         ! angular of row conductor
  real(dp)    :: theta_col         ! angular of row conductor
  real(dp)    :: cos_theta_row_col ! angular separation of conductors
   
  real(dp)    :: num
  real(dp)    :: den
  
  integer :: ierr
    
! START

  if (verbose) then
    write(*,*)'CALLED: PUL_LC_calc_overshield_wide_separation_approximation'
    write(*,*)'n_conductors (including overshield)=',PUL%n_conductors
  end if

! Work out the dimension of the per-unit-length matrices  

  nc=PUL%n_conductors
  matrix_dimension=nc-1  ! the conductor list includes the oversheild
  
! Allocate the per-unit-length matrices  
  PUL%L%dim=matrix_dimension
  ALLOCATE( PUL%L%mat(1:PUL%L%dim,1:PUL%L%dim) )
  PUL%C%dim=matrix_dimension
  ALLOCATE( PUL%C%mat(1:PUL%C%dim,1:PUL%C%dim) )
  PUL%G%dim=matrix_dimension
  ALLOCATE( PUL%G%mat(1:PUL%G%dim,1:PUL%G%dim) )

! Allocate the impedance and admittance filter matrices  
  PUL%Zfilter%dim=matrix_dimension
  ALLOCATE(PUL%Zfilter%sfilter_mat(1:PUL%Zfilter%dim,1:PUL%Zfilter%dim))
  PUL%Yfilter%dim=matrix_dimension
  ALLOCATE(PUL%Yfilter%sfilter_mat(1:PUL%Yfilter%dim,1:PUL%Yfilter%dim))

! Calculate the inductance matrix first
    
  xs=PUL%overshield_x
  ys=PUL%overshield_y
  rs=PUL%overshield_r
  
  do row=1,nc-1
    
! calculate the diagonal element here    
    x_row=PUL%x(row)
    y_row=PUL%y(row)
    r_row=PUL%r(row)
    d_row=sqrt((x_row-xs)**2+(y_row-ys)**2)
    theta_row=atan2((y_row-ys),(x_row-xs))

! Check we have a valid conductor system   
    if ((d_row+r_row).GE.rs) then
      if (verbose) then
        write(*,*)'ERROR in PUL_LC_calc_overshield_wide_separation_approximation'
        write(*,*)'Conductor lies outside or intersects the reference shield conductor'
        write(*,*)'Shield radius=',rs
        write(*,*)'di =',d_row
        write(*,*)'rwi=',r_row
      end if
      run_status='ERROR in PUL_LC_calc_overshield_wide_separation_approximation,'// &
                 ' Conductor lies outside or intersects the reference shield conductor'
      CALL write_program_status()
      STOP 1
    end if
    
    PUL%L%mat(row,row)=(mu0/(2d0*pi))*log( (rs**2-d_row**2)/(rs*r_row) )  ! Paul equation 3.67a Theory_Manual_Eqn 2.27
    
    if(verbose) then
      write(*,*)'row=',row
      write(*,*)'xs=',xs
      write(*,*)'ys=',ys
      write(*,*)'rs=',rs
      write(*,*)'x_row=',x_row
      write(*,*)'y_row=',y_row     
      write(*,*)'r_row=',r_row     
      write(*,*)'d_row=',d_row  
      write(*,*)'L=', PUL%L%mat(row,row)
    end if
    
    do col=row+1,nc-1
! calculate the off diagonal elements here    

      x_col=PUL%x(col)
      y_col=PUL%y(col)
      d_col=sqrt((x_col-xs)**2+(y_col-ys)**2)
      d_row_col=sqrt((x_row-x_col)**2+(y_row-y_col)**2)
      
      theta_col=atan2((y_col-ys),(x_col-xs))

      cos_theta_row_col=cos(theta_row-theta_col)
 
! Check we have a valid conductor system   
      if ((d_col+r_col).GE.rs) then
        if (verbose) then
          write(*,*)'ERROR in PUL_LC_calc_overshield_wide_separation_approximation'
          write(*,*)'Conductor lies outside or intersects the reference shield conductor'
          write(*,*)'Shield radius=',rs
          write(*,*)'di =',d_col
          write(*,*)'rwi=',r_col
        end if
        
        run_status='ERROR in PUL_LC_calc_overshield_wide_separation_approximation,'// &
                   ' Conductor lies outside or intersects the reference shield conductor'
        CALL write_program_status()
        STOP 1
 
      end if
    
      num=(d_row*d_col)**2+rs**4-2d0*d_row*d_col*(rs**2)*cos_theta_row_col

! divide den by d_col**2
      den=(d_row)**2+d_col**2-2d0*d_row*d_col*cos_theta_row_col

! Divide by d_col
      PUL%L%mat(row,col)=(mu0/(2d0*pi))*log( (1d0/rs)*sqrt(num/den) )   ! C.R.Paul equation 367b (revised) ! Theory_Manual_Eqn 2.28
    
! The matrix is symmetric so we can set L[col,row]=L[row,col]
      PUL%L%mat(col,row)=PUL%L%mat(row,col)
      
    end do ! next col
      
  end do ! next row
  
! The capacitance matrix is calculated as mu0*eps0*[L_inverse] Theory_Manual_Eqn 2.29

  if (verbose) then
    write(*,*)'L:'
    CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
  end if
  
  ierr=0   ! set ierr=0 on input to matrix inverse to cause the program to stop if we have a singular matrix
  CALL dinvert_Gauss_Jordan(PUL%L%mat,matrix_dimension,PUL%C%mat,matrix_dimension,ierr)
  
  PUL%C%mat(:,:)=mu0*eps0*PUL%C%mat(:,:)

! Conductance matrix is set to zero
  PUL%G%mat(:,:)=0d0
  
! calculate the impedance and admittance filters

  CALL Z_Y_from_L_C(PUL%L,PUL%C,PUL%Zfilter,PUL%Yfilter)
  
  if (verbose) then
    write(*,*)'Inductance matrix, L'
    CALL dwrite_matrix(PUL%L%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
    write(*,*)'Capacitance matrix, C'
    CALL dwrite_matrix(PUL%C%mat,matrix_dimension,matrix_dimension,matrix_dimension,0)
  end if
  
  END SUBROUTINE PUL_LC_calc_overshield_wide_separation_approximation
!
! NAME
!     SUBROUTINE calculate_height_over_ground_plane
!
!     
! COMMENTS
!     
!
! HISTORY
!    started 2/12/2015 CJS
!
  
  SUBROUTINE calculate_height_over_ground_plane(x,y,r,theta,d,h)

  USE type_specifications
  USE general_module

  IMPLICIT NONE

! variables passed to subroutine

  real(dp),intent(IN)    :: x,y     ! coordinates of point in the x-y plane
  real(dp),intent(IN)    :: r       ! radius of the wire (to check that wire doesn't intersect the ground)
  real(dp),intent(IN)    :: theta   ! angle of the ground plane normal to the x axis (radians)
  real(dp),intent(IN)    :: d       ! distance from the origin to the ground plane along the normal direction

  real(dp),intent(OUT)   :: h       ! distance from the point to the ground plane 
  
! local variables

  real(dp)    :: nx,ny  ! unit normal to ground plane in x-y plane

! START

  nx=cos(theta)
  ny=sin(theta)
  
! projecting a vector from the origin to the wire position gives 
! the distance from the origin in the normal direction. Subtracting
! the distance from the origin to the ground plane in this direction 
! gives the height of the point above the ground
  
  h=x*nx+y*ny-d
  
! Do some checks to make sure that we have a physical situation (wires above ground, no wire-ground intersections)
  
  if (h.LT.0d0) then
    
    if (verbose) then
      write(*,*)'wire x,y,r',x,y,r
      write(*,*)'ground plane theta,d',theta*57.2957795d0,d
    end if
  
    run_status='ERROR in calculate_height_over_ground_plane, the wire is below the ground plane'
    CALL write_program_status()
    STOP 1
    
  else if (h.LE.r) then
    
    if (verbose) then
      write(*,*)'wire x,y,r',x,y,r
      write(*,*)'ground plane theta,d',theta*57.2957795d0,d
    end if
    
    run_status='ERROR in calculate_height_over_ground_plane, the wire intersects the ground plane'
    CALL write_program_status()
    STOP 1
    
  end if

! passed the checks so continue...

  RETURN

  END SUBROUTINE calculate_height_over_ground_plane