Blame view

SRC/shield_conductor_and_transfer_impedance_model_builder.F90 16.5 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
!
! This file is part of SACAMOS, State of the Art CAble MOdels in Spice. 
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
! Copyright (C) 2016-2017 University of Nottingham
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
! File Contents:
! PROGRAM shield_conductor_and_transfer_impedance_model_builder
!
! NAME
!     shield_conductor_and_transfer_impedance_model_builder
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     Calculate the transfer impedance and conductor impedance of a shield 
!     based on the geometrical and electrical properties of the braid forming
!     the shield. The calculations are based on the NLR theory presented in the Theory Manual
!
! Example input file:
!0.002           ! braid diameter, D (m)
!8               ! Number of carriers, C
!10              ! Number of wires in a carrier, N
!0.000025        ! diameter of a single wire, d (m)
!5E7             ! conductivity of wires (S/m)
!50.0            ! pitch angle of the braid (degrees)
!4               ! order of transfer impedance model
!log             ! frequency range type
!1E5   1E9  1000 ! fmin, fmax, number of frequencies
!
! COMMENTS
!     The braid equivalent thickness is calculated from the d.c. resistance of the braid and the braid conductivity
!
! HISTORY
!
!     started 22/08/2016 CJS 
!
!
PROGRAM shield_conductor_and_transfer_impedance_model_builder

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

! local variables

character(len=filename_length)    :: braid_name     ! name of the braid model
character(len=filename_length)    :: filename       ! filename for the braid model specification
    
logical        :: file_exists

real(dp) :: D                      ! braid diameter, D (m)
integer  :: C                      ! Number of carriers, C
integer  :: N                      ! Number of wires in a carrier, N
real(dp) :: dw                     ! diameter of a single wire, d (m)
real(dp) :: sigma                  ! conductivity of wires (S/m)
real(dp) :: alpha                  ! pitch angle of the braid (degrees)
integer  :: order                  ! order of transfer impedance and conductor impedance model

type(frequency_specification) :: frequency_data  ! frequency range data for transfer impedance and conductor impedance model

complex(dp),allocatable  :: Zd(:)      ! Frequency dependent diffusion impedance data
complex(dp),allocatable  :: Zt(:)      ! Frequency dependent transfer impedance data
complex(dp),allocatable  :: Zc(:)      ! Frequency dependent shield conductor impedance data
complex(dp)  :: Zt_fit       ! Vector fit model Frequency dependent transfer impedance data
complex(dp)  :: Zc_fit       ! Vector fit model Frequency dependent shield conductor impedance data

type(Sfilter)  :: Zd_filter      ! Frequency dependent diffusion impedance rational function model
type(Sfilter)  :: Zt_filter      ! Frequency dependent transfer impedance rational function model
type(Sfilter)  :: Zc_filter      ! Frequency dependent shield conductor impedance rational function model

complex(dp)              :: M          ! Total contribution originating from braid magnetic field leakage 
complex(dp)              :: M12        ! per-unit-length hole inductance 
complex(dp)              :: Mb         ! braid inductance
complex(dp)              :: Ms         ! skin inductance

real(dp)                 :: w          ! angular frequency

real(dp)    :: R0       ! d.c. resistance of shield
complex(dp) :: gamma    ! complex propagation constant in shield
real(dp)    :: delta    ! skin depth in shield
real(dp)    :: T        ! shield conductor thickness
real(dp)    :: lh       ! hole length
real(dp)    :: wh       ! hole width
real(dp)    :: S        ! hole area
real(dp)    :: req      ! equivalent hole radius

real(dp)    :: b       ! width between holes
real(dp)    :: hh      ! average height for braid inductance calculation
real(dp)    :: Dm      ! Mean diameter of braid for braid inductance calculation

real(dp)    :: v     ! Number of holes per unit length
real(dp)    :: gc    ! constant used in hole inductance calculation
real(dp)    :: F     ! Fill factor of braid
real(dp)    :: K     ! Optical coverage of braid
real(dp)    :: Ck    ! constant used in hole inductance calculation

! variables for intermediate quantities used in the calculations
real(dp)    :: P     
real(dp)    :: kappa 
complex(dp) :: sinh_gT  
complex(dp) :: cosh_gT
complex(dp) :: u
complex(dp) :: nu

integer        :: floop  ! frequency loop variable

integer        :: Zt_aorder,Zt_border  ! order of transfer impedance model

integer        :: i      

integer        :: ierr  ! integer to return error codes from file reads

! START

! Open the input file describing the braid parameters
! This file could be created by the associated GUI or otherwise generated

  verbose=.TRUE.

  program_name="shield_conductor_and_transfer_impedance_model_builder"
  run_status='Started'
  CALL write_program_status()
  
  CALL read_version()
    
  CALL write_license()

  write(*,*)'Enter the name of the shield braid specification data (without .braid_spec extension)'

  read(*,'(A)')braid_name
  filename=trim(braid_name)//braid_spec_file_extn

  inquire(file=trim(filename),exist=file_exists)
  if (.NOT.file_exists) then
    run_status='ERROR in shield_conductor_and_transfer_impedance_model_builder, Cannot find the file:'//trim(filename)
    CALL write_program_status()
    STOP 1
  end if 
  
! open and read the file
  
  OPEN(unit=braid_spec_file_unit,file=filename)

  if(verbose) write(*,*)'Opened file:',trim(filename)
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)D
  if (ierr.NE.0) then 
    run_status='ERROR reading shield diameter'
    CALL write_program_status()
    STOP 1
  end if
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)C
  if (ierr.NE.0) then 
    run_status='ERROR reading number of carriers'
    CALL write_program_status()
    STOP 1
  end if
  
  read(braid_spec_file_unit,*,IOSTAT=ierr)N
  if (ierr.NE.0) then 
    run_status='ERROR reading number of number of wires in a carrier'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)dw
  if (ierr.NE.0) then 
    run_status='ERROR reading wire diameter'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)sigma
  if (ierr.NE.0) then 
    run_status='ERROR reading wire conductivity'
    CALL write_program_status()
    STOP 1
  end if
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)alpha
  if (ierr.NE.0) then 
    run_status='ERROR reading pitch angle of the braid'
    CALL write_program_status()
    STOP 1
  end if
! convert alpha to radians
  alpha=alpha*pi/180d0
   
  read(braid_spec_file_unit,*,IOSTAT=ierr)order
  if (ierr.NE.0) then 
    run_status='ERROR reading the model order for the transfer impedance and conductor impedance models'
    CALL write_program_status()
    STOP 1
  end if
  
  CALL read_and_set_up_frequency_specification(frequency_data,braid_spec_file_unit)

! close the file with the cable data
  CLOSE(unit=braid_spec_file_unit)
  
! Evaluate the shield transfer impedance and conductor impedance over the specified frequency range

  ALLOCATE(Zd(1:frequency_data%n_frequencies))
  ALLOCATE(Zt(1:frequency_data%n_frequencies))
  ALLOCATE(Zc(1:frequency_data%n_frequencies))

! Calculate the solution parameters which are frequency independent  

  gc=(2d0/pi)**(3d0/2d0)
  P=C*tan(alpha)/(2d0*pi*D)
  v=P*C
  F=N*C*dw/(2d0*pi*D*cos(alpha))   ! fill factor
  K=2d0*F-F*F   ! optical coverage
  
  lh=(1d0-F)*N*dw/(F*sin(alpha))
  wh=(1d0-F)*N*dw/(F*cos(alpha))
  
  R0=4d0/(pi*dw*dw*N*C*sigma*cos(alpha))    ! d.c. resistance. equation 5.63 of D1
  
  S=pi*wh*lh/4d0   ! hole area
  req=sqrt(S/pi)
  kappa=1.84d0/req  

! Calculate an equivalent shield thickness from R0, D and sigma

  T=1d0/(2d0*pi*sigma*(D/2d0)*R0)
  
  Ck=0.875d0*exp(-j*kappa*T)

  Dm=D+2d0*dw
  b=(2d0*pi*Dm/C)*cos(alpha)-N*dw
  if (b.GT.dw) then
    hh=2d0*dw/(1d0+b/dw)
  else
    hh=dw
  end if
    
! Hole inductance term  ! equation 5.82 of D1
        
  M12=1.08D0*gc*(pi*mu0/(6d0*C))*((1-K)**(3d0/3d0))*(2d0-cos(alpha))*Ck
    
! Braid inductance term
    
  Mb=-mu0*(hh/(4d0*pi*Dm))*(1d0-(tan(alpha))**2)
    
! Skin inductance term. Assumed to be zero here.

  Ms=0d0

! Total field leakage contributions

  M=M12+Mb+Ms
  
  if (verbose) then
   
    write(*,*)'braid circummference, cb=',pi*D
    write(*,*)'C=',C,' Number of carriers'
    write(*,*)'N=',N,' Number of conductors in each carrier'
    write(*,*)'W=',N*dw,' Width of each carrier'
    write(*,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
    write(*,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
    write(*,*)'P=',P
    write(*,*)'v=',v,'  Number of holes per unit length in braid'
    write(*,*)'F=',F,'  Fill factor'
    write(*,*)'K=',K,'  Optical coverage'
    write(*,*)'l=',lh,'  hole length'
    write(*,*)'w=',wh,'  hole width'
    write(*,*)'S=',S, '  hole area'
    write(*,*)'req=',req,'  hole equivalent radius'
    write(*,*)'k=',kappa,'  hole cutoff k value'
    write(*,*)'Ck=',Ck,'  hole inductance factor'
    
    write(*,*)'Ro',R0,'  braid d.c. resistance'
    write(*,*)'T ',T,'  braid equivalent thickness'
    write(*,*)'mean braid diameter, Dm=',Dm
    write(*,*)'Width between holes,  b=',b
    write(*,*)'Average height for braid inductance,  hh=',hh
    
    write(*,*)'M12=',M12,' Hole inductance'
    write(*,*)'Mb =',Mb,' Braid inductance'
    write(*,*)'Ms=',Ms,' Skin inductance'
    write(*,*)'M=',M,' Total transfer inductance'
 
  end if ! verbose
  
  open(unit=83,file='Zt_Zc.dat')
  
  do floop=1,frequency_data%n_frequencies
  
    w=2d0*pi*frequency_data%freq_list(floop)

! Diffusion impedance term
    delta=sqrt(2d0/(w*mu0*sigma))             ! skin depth in conductor
    gamma=cmplx(1d0,1d0)/cmplx(delta)         ! complex propagation constant in shield
        
    sinh_gT=(exp(gamma*T)-exp(-gamma*T))/(2d0,0d0)
    cosh_gT=(exp(gamma*T)+exp(-gamma*T))/(2d0,0d0)
    
    Zd(floop)=R0*gamma*T/sinh_gT      ! equation 5.62 of D1
    
! Terms for calculation in Schelkunoff's notation
    nu=j*w*mu0/gamma
    u=t*sqrt(2d0*sigma*w*mu0)

! Transfer impedance is the sum of the diffusion impedance and the transfer inductance
    Zt(floop)=Zd(floop)+j*w*M
    
! Conductor impedance term
    Zc(floop)=R0*gamma*T*cosh_gT/sinh_gT
    
    write(83,8000)frequency_data%freq_list(floop),real(Zt(floop)),aimag(Zt(floop)),real(Zc(floop)),aimag(Zc(floop))
8000 format(5ES16.6)

  end do ! next frequency
  
  close(unit=83)

! Create a rational function model of the transfer impedance data in two stages
! First, create a rational function model of the frequency dependent diffusion impedance
! Then add the transfer inductance term jwM

! call calculate_Sfilter with border=aorder+1 and with fit_type=0 i.e. Zd->0 as f-> infinity

  if (verbose) write(*,*)'Calculate_Sfilter for diffusion impedance, Zd'
  CALL Calculate_Sfilter(Zd,frequency_data%freq_list,frequency_data%n_frequencies,Zd_filter,order,1,0) ! call with fit_type=0
  
! Add the transfer inductance term to the diffusion impedance filter i.e. Zt=Zd+j*w*M

  Zt_aorder=max(Zd_filter%a%order,Zd_filter%b%order+1)
  Zt_border=Zd_filter%b%order
  
  Zt_filter=allocate_Sfilter(Zt_aorder,Zt_border)
  
  Zt_filter%wnorm=Zd_filter%wnorm
  if (verbose) write(*,*)'Zt_filter%wnorm=',Zt_filter%wnorm
  
! copy a coefficients from Zd_filter to Zt_filter

  do i=0,Zd_filter%a%order
    Zt_filter%a%coeff(i)=Zd_filter%a%coeff(i)
  end do
  
! copy b coefficients from Zd_filter to Zt_filter

  do i=0,Zd_filter%b%order
    Zt_filter%b%coeff(i)=Zd_filter%b%coeff(i)
  end do

! add the jwM term  

  do i=0,Zd_filter%b%order
    Zt_filter%a%coeff(i+1)=Zt_filter%a%coeff(i+1)+(M*Zt_filter%wnorm)*Zd_filter%b%coeff(i)
  end do
  
! Create a rational function model of the shield conductor impedance data

! call calculate_Sfilter with border=aorder and with fit_type=0
  if (verbose) write(*,*)'Calculate_Sfilter for surface impedance, Zc'
  CALL Calculate_Sfilter(Zc,frequency_data%freq_list,frequency_data%n_frequencies,Zc_filter,order,0,0) ! call with fit_type=0

! Write vector fit models to file
  open(unit=84,file='Zt_fit.fout')
  open(unit=85,file='Zc_fit.fout')
  do floop=1,frequency_data%n_frequencies
  
    Zt_fit=evaluate_Sfilter_frequency_response(Zt_filter,frequency_data%freq_list(floop))
    Zc_fit=evaluate_Sfilter_frequency_response(Zc_filter,frequency_data%freq_list(floop))
    
    write(84,8000)frequency_data%freq_list(floop),real(Zt_fit),aimag(Zt_fit)
    write(85,8000)frequency_data%freq_list(floop),real(Zc_fit),aimag(Zc_fit)
    
  end do
  
  close(unit=84)
  close(unit=85)

! Open a file for the shield model
  
  filename=trim(braid_name)//shield_model_file_extn
  open(unit=shield_model_file_unit,file=filename)

! Write the shield equivalent thickness and conductivity 

  write(shield_model_file_unit,*)D/2d0,' # Parameter Shield radius (m)'
  write(shield_model_file_unit,*)T,    ' # Parameter Equivalent shield thickness (m)'
  write(shield_model_file_unit,*)sigma,' # Parameter Shield conductivity (S/m)'

! Write the transfer impedance model to the shield model file

  write(shield_model_file_unit,*)'# Transfer impedance model'
  CALL Write_Sfilter(Zt_filter,shield_model_file_unit)

! Write the shield conductor model to the shield model file

  write(shield_model_file_unit,*)'Conductor surface impedance model'
  CALL Write_Sfilter(Zc_filter,shield_model_file_unit)

! Write the solution parameters to the shield model file  
   
  write(shield_model_file_unit,*)'# Shield parameters used in the shield model calculation'
  write(shield_model_file_unit,*)'braid circummference, cb=',pi*D
  write(shield_model_file_unit,*)'C=',C,' Number of carriers'
  write(shield_model_file_unit,*)'N=',N,' Number of conductors in each carrier'
  write(shield_model_file_unit,*)'W=',N*dw,' Width of each carrier'
  write(shield_model_file_unit,*)'W=',N*dw/cos(alpha),' Width of each carrier in circumferential direction'
  write(shield_model_file_unit,*)'cb/(C/2)=',2d0*pi*D/C,' circumferential dimension for each carrier (note overlap)'
  write(shield_model_file_unit,*)'P=',P
  write(shield_model_file_unit,*)'v=',v,'  Number of holes per unit length in braid'
  write(shield_model_file_unit,*)'F=',F,'  Fill factor'
  write(shield_model_file_unit,*)'K=',K,'  Optical coverage'
  write(shield_model_file_unit,*)'l=',lh,'  hole length'
  write(shield_model_file_unit,*)'w=',wh,'  hole width'
  write(shield_model_file_unit,*)'S=',S, '  hole area'
  write(shield_model_file_unit,*)'req=',req,'  hole equivalent radius'
  write(shield_model_file_unit,*)'k=',kappa,'  hole cutoff k value'
  write(shield_model_file_unit,*)'Ck=',Ck,'  hole inductance factor'
  
  write(shield_model_file_unit,*)'Ro',R0,'  braid d.c. resistance'
  write(shield_model_file_unit,*)'T ',T,'  braid equivalent thickness'
  write(shield_model_file_unit,*)'mean braid diameter, Dm=',Dm
  write(shield_model_file_unit,*)'Width between holes,  b=',b
  write(shield_model_file_unit,*)'Average height for braid inductance,  hh=',hh
  
  write(shield_model_file_unit,*)'M12=',M12,' Hole inductance'
  write(shield_model_file_unit,*)'Mb =',Mb,' Braid inductance'
  write(shield_model_file_unit,*)'Ms=',Ms,' Skin inductance'
  write(shield_model_file_unit,*)'M=',M,' Total transfer inductance'

! Close the shield model file

  close(unit=shield_model_file_unit)

! deallocate memory and finish up
  DEALLOCATE(Zd)
  DEALLOCATE(Zt)
  DEALLOCATE(Zc)

  run_status='Finished_Correctly'
  CALL write_program_status()
  
END PROGRAM shield_conductor_and_transfer_impedance_model_builder