Blame view

DOCUMENTATION/USER_GUIDE/Tex/creating_a_spice_cable_bundle_model.tex 24.1 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
\chapter{Creating a Spice Cable Bundle Model} \label{creating_a_spice_cable_bundle_model}

189467e4   Steve Greedy   First Public Release
3
This chapter describes the creation of a Spice cable bundle model from a previously defined cable bundle and additional specifications which are required to define the Spice model. This section also describes how a validation test case is defined which enables the performance of the model to be assessed in either an a.c. or transient analysis.
886c558b   Steve Greedy   SACAMOS Public Re...
4

189467e4   Steve Greedy   First Public Release
5
The format of the files relating to the Spice cable bundle model building process are described in 
886c558b   Steve Greedy   SACAMOS Public Re...
6
7
section \ref{Spice_cable_bundle_spec_file_formats}.

189467e4   Steve Greedy   First Public Release
8
\section{Incident field excitation}
886c558b   Steve Greedy   SACAMOS Public Re...
9

189467e4   Steve Greedy   First Public Release
10
The transmission line model may  incorporate an incident field excitation which takes the form of a plane wave. The plane wave incident field may be a continuous wave for a.c. analysis or a pulse for transient analysis. When a plane wave excitation is required the Spice sub-circuit model has an additional two nodes defined, the voltage between these nodes specifies the Electric field of the plane wave.
886c558b   Steve Greedy   SACAMOS Public Re...
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

For the purposes of incident field excitaton analysis the axis of the cable bundle is assumed to be in the z direction. The direction of the incident field plane wave is specified by its wave vector in polar coordinates (figure \ref{fig:Incident_field_1})
%
\begin{figure}[h]
\centering
\includegraphics[scale=0.75]{./Imgs/Incident_field_specificaton.eps}
\caption{Plane wave incident field excitation of a cable bundle}
\label{fig:Incident_field_1}
\end{figure}
%
\begin{equation}
\begin{array}{c}
k_{x}=\sin(k_{\theta})\cos(k_{\phi}) \\
k_{y}=\sin(k_{\theta})\sin(k_{\phi}) \\
k_{z}=\cos(k_{\phi}) \\
189467e4   Steve Greedy   First Public Release
26
\end{array}
886c558b   Steve Greedy   SACAMOS Public Re...
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
\end{equation}
%
where $k_{\theta}$ is the angle of the wave vector from the z axis and $k_{\phi}$ is the angle from the x axis as shown in figure \ref{fig:Incident_field_2}.

Given this k vector, unit vectors in the $\theta$ and $\phi$ directions can be identified. 
The Electric field polarisation direction is specified in terms of these vectors ($E_{\theta}$ and  $E_{\phi}$) as shown 
in figure \ref{fig:Incident_field_2}.
%
\begin{figure}[h]
\centering
\includegraphics[scale=1.5]{./Imgs/k_incident.eps}
\caption{Specification of the incident field polarisation}
\label{fig:Incident_field_2}
\end{figure}
% 
It is important to note that the angles $E_{\theta}$ and  $E_{\phi}$ specify the polarisation direction only, the amplitude of the Electric field is specified separately i.e. the polarisation vector is normalised to unit length and only the relative amplitudes of $E_{\theta}$ and  $E_{\phi}$ is significant in determining the polarisation direction so setting $E_{\theta}=1$ and  $E_{\phi}=1$ will give the polarisation vector as specifying $E_{\theta}=\frac{1}{\sqrt 2 }$ and  $E_{\phi}=\frac{1}{\sqrt 2 }$.
%

A wave in the +z direction with the Electric field polarised in the +x direction is therefore specified by
$k_{\theta}=0^{\circ}$  $k_{\phi}=0^{\circ}$  $E_{\theta}=1$  $E_{\phi}=0$  

A wave in the +z direction with the Electric field polarised in the +y direction is therefore specified by
$k_{\theta}=0^{\circ}$  $k_{\phi}=90^{\circ}$  $E_{\theta}=1$  $E_{\phi}=0$  

A wave in the +x direction with the Electric field polarised in the +z direction is therefore specified by
$k_{\theta}=90^{\circ}$  $k_{\phi}=0^{\circ}$  $E_{\theta}=-1$  $E_{\phi}=0$  

A wave in the -y direction with the Electric field polarised in the +z direction is therefore specified by
$k_{\theta}=90^{\circ}$  $k_{\phi}=-90^{\circ}$  $E_{\theta}=-1$  $E_{\phi}=0$  

A wave in the -y direction with the Electric field polarised in the +x direction is therefore specified by
$k_{\theta}=90^{\circ}$  $k_{\phi}=-90^{\circ}$  $E_{\theta}=0$  $E_{\phi}=1$  

189467e4   Steve Greedy   First Public Release
60
The derivation of the Spice cable bundle model for incident field excitation requires that $0^{\circ} \leq k_{\theta} \leq 90^{\circ}$ . If $k_{\theta}$  is out of this range then an error will occur. It should be noted that models for the situation $k_{\theta}>90^{\circ}$ can be simulated by swapping the ends to which the termination circuits are connnected.
886c558b   Steve Greedy   SACAMOS Public Re...
61

189467e4   Steve Greedy   First Public Release
62
\section{Transfer impedance model}
886c558b   Steve Greedy   SACAMOS Public Re...
63

189467e4   Steve Greedy   First Public Release
64
The Spice cable bundle model is based on a domain decomposition method where a domain is formed by the set of conductors within a shield separating them from a possible external domain (if it exists). 
886c558b   Steve Greedy   SACAMOS Public Re...
65

189467e4   Steve Greedy   First Public Release
66
The domains are modelled independently i.e. signals propagate within domains and do not couple between domains through cable shields unless specifically requested. The Spice cable bundle model uses a weak form of transfer impedance coupling thus a source and a victim domain must be specified for the inclusion of a transfer impedance model.
886c558b   Steve Greedy   SACAMOS Public Re...
67
68
69
70
71
72
73
74

The transfer impedance of cable shields and overshields will have been specified in the individual cable models as a conductor impedance model for a shield (section \ref{FD_transfer_impedance_model}  ). This will automatically be included as a loss in the propagation algorithm for signals propagating on the inside and outside of the shield.
The model extracts the d.c. resistance of conductors and includes this directly on each conductor therefore coupling between domains does exist in the model due to the d.c. transfer impedance.
 However as a default no coupling between the internal and external domains is included apart from that which results from the d.c. component of the transfer impedance. 

In order to include a transfer impedance model the conductor number of the shield of interest must be specified along with the direction of the coupling. The coupling direction is specified in the 
\textbf{name.spice\_model\_spec} file as either +1 or -1 where +1 indicates coupling direction from inside the shield to outside and -1 indicates coupling from the outside to the inside. 

189467e4   Steve Greedy   First Public Release
75
An example of the specification of transfer impedance coupling within a Spice cable bundle model is seen in section\ref{Spice_cable_bundle_spec_file_formats}
886c558b   Steve Greedy   SACAMOS Public Re...
76

189467e4   Steve Greedy   First Public Release
77
\section{Spice cable bundle subcircuit node numbering}
886c558b   Steve Greedy   SACAMOS Public Re...
78
79
80
81
82
83
84
85
86

The subcircuit node numbering is as follows:

\begin{enumerate}
\item End 1 (- z end) conductors in order of the conductors in the bundle specification
\item End 2 (+ z end) conductors in order of the conductors in the bundle specification
\item If an incident field excitation is required, there are two additional nodes to specify the incident (Electric) field excitation function. The incident electric field is equal to the voltage between these two nodes.
\end{enumerate}

886c558b   Steve Greedy   SACAMOS Public Re...
87
88
89

\section{Spice Cable Bundle Specification File Formats} \label{Spice_cable_bundle_spec_file_formats}

189467e4   Steve Greedy   First Public Release
90
91
This section describes the Spice cable bundle specification file formats used as the input to the Spice cable bundle model building process.
Spice cable bundle specification files have the extension \textbf{.spice\_model\_spec}.
886c558b   Steve Greedy   SACAMOS Public Re...
92

189467e4   Steve Greedy   First Public Release
93
94
95
The first lines of the \textbf{.spice\_model\_spec} file specifies the path to the cable models used in the cable bundle specification (i.e. the path to the cable models within MOD), then the path to the cable bundle models used in the Spice model  (i.e. the path to the cable bundle models within MOD) then the path and to the Spice model to be produced  (i.e. the path to the Spice cable bundle models within MOD) and finally the path to the Spice model circuit symbols.

The input file to the Spice cable bundle building processs then includes the bundle name, bundle length, incident field specification (if required) and the specification of the validation test configuration (if required).
886c558b   Steve Greedy   SACAMOS Public Re...
96
97
98
99
100
101
102
103

In addition information regarding the transfer impedance models to be included and also
information to control the transfer function fitting process can be specified. 

The validation test configuration is shown in figure \ref{fig_validation_test_case_config}

\begin{figure}[h]
\centering
189467e4   Steve Greedy   First Public Release
104
\includegraphics[scale=0.8]{./Imgs/V2_validation_test_case_configuration_portrait.eps}
886c558b   Steve Greedy   SACAMOS Public Re...
105
106
107
108
\caption{Validation test case configuration}
\label{fig_validation_test_case_config}
\end{figure}

189467e4   Steve Greedy   First Public Release
109
In addition to the data required to specify a Spice cable bundle model, additional flags may be specified to influence the operation of the software. These flags are as follows:
886c558b   Steve Greedy   SACAMOS Public Re...
110
111

\begin{enumerate}
189467e4   Steve Greedy   First Public Release
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
\item `verbose'    output detailed summary of the software operation and calculation results.\\
\item `use\_xie'    Include direct incident field to shielded domain coupling terms (Xie's model). This is the default.\\
\item `no\_xie'     Do not include direct incident field to shielded domain coupling terms\\
\item `use\_high\_freq\_zt\_model' Use a distributed model for the transfer resistance - this may give improved transfer 
                               impedance coupling results at high frequency for cases when the shield termination impedance 
                               is very small at the expense of low frequency accuracy. This is the default.\\
\item `no\_high\_freq\_zt\_model'  Use a lumped model for the transfer resistance - this may give poor transfer 
                               impedance coupling results at high frequency for cases when the shield termination impedance 
                               is very small however it will give good results at low frequency. 
                               This is the default state as it is expected
                               that once realistic bonding impedances are taken into account, the termination impedance will not be
                               small enough to cause a problem.\\
\item `use\_s\_xfer'           Use the s-domain transfer function to implement the frequency dependent transfer function
                               used in the propagation correction and transfer impedance implementation.\\
\item `no\_s\_xfer'            Use a lumped component model to implement the frequency dependent transfer function
                               used in the propagation correction and transfer impedance implementation. This is now
                               the default state of this flag following the development of the equivalent circuit model
                               for rational s-domain transfer functions of arbitrary order. This is the default.\\
\item `use\_LTRA'              Implement delay lines in the Spice models as LTRA transmission lines rather than 
                               simple delay lines (T elements). This is found to improve the robustness of the Spice
                               transmission line models, esepcially for transient analysis in Ngspice. This is the 
                               default state for this flag.\\
\item `no\_LTRA'               Implement delay lines in the Spice models as T elements rather than 
                               LTRA transmission lines. \\
\end{enumerate}

There are also a number of constants used in the development of the models which may be changed from their default values from within the \textbf{.spice\_model\_spec} file.
The format is a line with the constant name and the following line has the new value. The constants which may be specified by the user are:

\begin{enumerate}
\item `min\_delay'    . Minimum delay allowed for transmission lines in the sub-circuit models.
Transmission lines with delays less than this value are dealt with in a different manner. The default value is $10^{-12}$ s. \\

\item `Rsmall'   Minimum resistance value in the sub-circuit model. Resistances less than this value are replaced by this value. The default value is $10^{-8}\Omega$. \\
886c558b   Steve Greedy   SACAMOS Public Re...
146
147
148
149
\end{enumerate}

The file format with no transfer impdance models or transfer function fitting information is as follows:

189467e4   Steve Greedy   First Public Release
150
151
\clearpage

886c558b   Steve Greedy   SACAMOS Public Re...
152
\begin{center}
189467e4   Steve Greedy   First Public Release
153
    \begin{tabular}{ | p{1.25cm} | p{4.5cm} | p{1.75cm} | p{5.5cm} |}
886c558b   Steve Greedy   SACAMOS Public Re...
154
155
156
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
189467e4   Steve Greedy   First Public Release
157
2       & .             & -             & Directory to read the cable model file from \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
158
159
160
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to read the cable bundle model file from \\ \hline
5       & \#MOD\_spice\_bundle\_lib\_dir & -    & Comment line \\ \hline
189467e4   Steve Greedy   First Public Release
161
6       & .             & -             & Directory to write the Spice cable bundle model file to \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
162
163
164
165
166
167
168
169
7       & \# two wires over ground plane, crosstalk model  & -    & Comment line \\ \hline
8       & two\_wires\_over\_ground    & -              & Cable bundle name Note there should be nothing else on this line \\ \hline
9       & \# bundle length  & -    & Comment line \\ \hline
10       & 2.0    & metres              & Cable bundle length \\ \hline
11       & \# incident field specification  & -    & Comment line \\ \hline
12       & 0.0    & V/m          & Amplitude \\ \hline
13       & 90.0  0.0  & degrees          & Wave vector angle k$\theta$ k$\phi$ \\ \hline
14       & 1.0  0.0  & degrees          & Polarisation E$\theta$ E$\phi$ \\ \hline
189467e4   Steve Greedy   First Public Release
170
15       & \# End 1 termination model  & -    & Number of sources and resistances = number of conductors \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
171
172
173
174
175
176
16       & 1.0    & V          & End 1, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, conductor 2 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, reference conductor  voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 1, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 1, conductor 2 resistance \\ \hline
-       & 0.0    & $\Omega$          & End 1, reference conductor resistance \\ \hline
189467e4   Steve Greedy   First Public Release
177
-       & \# End 2 termination model  & -    & Number of sources and resistances = number of conductors \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
178
179
180
181
182
183
-       & 1.0    & V          & End 2, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, conductor 2 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, reference conductor  voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 2, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 2, conductor 2 resistance \\ \hline
-       & 0.0    & $\Omega$          & End 2, reference conductor resistance \\ \hline
189467e4   Steve Greedy   First Public Release
184
185
186
187
188
189
190
191
192
    \end{tabular}
\end{center}

% continue table on the next page

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{1.25cm} | p{5.5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
193
194
-       & \# Type of analysis  & -    & Comment line \\ \hline
-       & AC    & -          & AC or TRANS \\ \hline
189467e4   Steve Greedy   First Public Release
195
196
 \hline
 & For AC analysis  & & \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
197
198
-       & lin    & -          & logarithmic (log) or linear (lin) frequency scale \\ \hline
-       & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency  number of frequencies \\ \hline
189467e4   Steve Greedy   First Public Release
199
200
\hline
 & For TRANSIENT analysis & & \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
201
202
-       & 0.01E-9 100E-9  & seconds seconds & \# timestep runtime \\ \hline
-       & 1e-9 50e-9	  & seconds seconds & \# pulse risetime pulse width \\ \hline
189467e4   Steve Greedy   First Public Release
203
\hline
886c558b   Steve Greedy   SACAMOS Public Re...
204
205
206
-       & \# Output\_conductor1 output\_conductor2 and end number  & -    & Conductor\_2 can be left out in which case the voltage is relative to the reference conductor \\ \hline
-       & 1   1    & integer integer  & Output conductor number and end number \\ \hline
-       & lin    & -          &  For AC only: Output voltage scaling, linear or dB \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
207
208
209
    \end{tabular}
\end{center}

189467e4   Steve Greedy   First Public Release
210
\clearpage
886c558b   Steve Greedy   SACAMOS Public Re...
211
212
213
214

\vspace{5mm}
\textbf{\underline{AC example}}

189467e4   Steve Greedy   First Public Release
215
216
An example file for the AC analysis of two wires over a ground plane is shown below:

886c558b   Steve Greedy   SACAMOS Public Re...
217
218
219
220
221
\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
#MOD_bundle_lib_dir
LIBRARY_OF_BUNDLE_MODELS
189467e4   Steve Greedy   First Public Release
222
#MOD_spice_bundle_lib_dir
886c558b   Steve Greedy   SACAMOS Public Re...
223
224
225
./
#spice_symbol_dir
SYMBOL_DIR
189467e4   Steve Greedy   First Public Release
226
# Specification for Spice model of two wires over ground
886c558b   Steve Greedy   SACAMOS Public Re...
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
two_wires_over_ground
# cable bundle length (m)
2.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
# End 1 termination model 
1.0      End 1 voltage source list
0.0
0.0
100.0    End 1 impedance list
25.0
0.0
# End 2 termination model
0.0      End 2 voltage source list
0.0
0.0 
75.0  	 End 2 impedance list
50.0
0.0
# Type of analysis
AC
log          # frequency scale (log or lin)
1e3 1e8 1000 # fmin fmax number_of_frequencies
# Output conductor number and end number
1    1   
lin   # output type (lin or dB)
886c558b   Steve Greedy   SACAMOS Public Re...
255
256
257
\end{verbatim}


189467e4   Steve Greedy   First Public Release
258
259
\clearpage

886c558b   Steve Greedy   SACAMOS Public Re...
260
261
262
263

\vspace{5mm}
\textbf{\underline{Transient example}}

189467e4   Steve Greedy   First Public Release
264
An example file for the trasnsient analysis of two wires over a ground plane is shown below:
886c558b   Steve Greedy   SACAMOS Public Re...
265
266
267
268
269
270
271
272
273
274

\begin{verbatim}
#MOD_cable_lib_dir
.
#MOD_bundle_lib_dir
.
MOD_spice_bundle_lib_dir
.
#spice_symbol_dir
SYMBOL_DIR
189467e4   Steve Greedy   First Public Release
275
2   # number of conductors, n.
886c558b   Steve Greedy   SACAMOS Public Re...
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
2_wire
# cable bundle length (m)
2.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
# End 1 termination model
1.0      End 1 voltage source list
0.0
50.0  	End 1 impedance list
0.0
# End 2 termination model
0.0        End 2 voltage source list
0.0
50.0  	 End 2 impedance list
0.0
# Type of analysis
TRANS
0.01E-9 100E-9   # timestep runtime
1e-9 50e-9	# pulse_risetime pulse_width
# Output conductor number and end number
1  1     
\end{verbatim}

189467e4   Steve Greedy   First Public Release
301
302
\clearpage

886c558b   Steve Greedy   SACAMOS Public Re...
303
304
305
306
In the case of frequency dependent models and transfer impedance coupling models then the above file format can be
adapted to include additional information required to drive these models.

A weak form of the transfer impedance is implemented in this work hence the direction of coupling must be specified. 
189467e4   Steve Greedy   First Public Release
307
In order to include a transfer impedance model the conductor number for the shield whose transfer impedance is required. In addition to
886c558b   Steve Greedy   SACAMOS Public Re...
308
309
310
this the direction of the transfer impedance coupling must be specified. The direction is specified as an integer where +1 indicates 
coupling from inside the shield to outside and -1 indicates coupling from the outside to the inside.

189467e4   Steve Greedy   First Public Release
311
The frequency dependent propagation correction takes the form of a s-domain transfer function in the Spice model. These propagation
886c558b   Steve Greedy   SACAMOS Public Re...
312
313
314
315
316
317
318
correction transfer functions are derived using a rational function fitting process. This process provides a best fit model of
specified order over a specified frequency range. As a default the model order is 0 i.e. no frequency dependent propagation correction.
The model order can be specified in two ways:

\begin{enumerate}
\item The order is specified as a positive integer and this is the order used
\item A negative integer is specified. In this case the order is chosen using an automatic algorithm which
189467e4   Steve Greedy   First Public Release
319
attempts to choose the best order from 0 up to $|$specified order$|$
886c558b   Steve Greedy   SACAMOS Public Re...
320
321
322
323
324
325
326
\end{enumerate}

The frequency range for the model fit may also be specified as can the use of a log or linear frequency scale. If
the frequency range is not specified then it is derived from the definition of the validation test case. 

The format is descibed below followed by an example.

189467e4   Steve Greedy   First Public Release
327
328
\clearpage

886c558b   Steve Greedy   SACAMOS Public Re...
329
330
331
332
333
334
335
336
337
\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to read the cable bundle model file from \\ \hline
5       & \#MOD\_spice\_bundle\_lib\_dir & -    & Comment line \\ \hline
189467e4   Steve Greedy   First Public Release
338
6       & .             & -             & Directory to write the Spice cable bundle model file to \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
339
340
341
342
343
344
345
346
7       & \# two wires over ground plane, crosstalk model  & -    & Comment line \\ \hline
8       & two\_wires\_over\_ground    & -              & Cable bundle name Note there should be nothing else on this line \\ \hline
9       & \# bundle length  & -    & Comment line \\ \hline
10      & 2.0    & metres              & Cable bundle length \\ \hline
11      & \# incident field specification  & -    & Comment line \\ \hline
12      & 0.0    & V/m          & Amplitude \\ \hline
13      & 90.0  0.0  & degrees          & Wave vector angle k$\theta$ k$\phi$ \\ \hline
14      & 1.0  0.0  & relative amplitudes & Polarisation E$\theta$ E$\phi$ \\ \hline
189467e4   Steve Greedy   First Public Release
347
15      & \#Transfer impedance terms  & - & this line must inlcude the words `transfer impedance' 
886c558b   Steve Greedy   SACAMOS Public Re...
348
349
350
                                           to indicate that transfer impedance information follows \\ \hline
16      & 1 & integer  &    \# number of transfer impedances to include in the model \\ \hline
-       & 3 +1 & integer integer & \# shield conductor number and coupling direction for transfer impedance model 1 + is inside to out \\ \hline
189467e4   Steve Greedy   First Public Release
351
-       & \# End 1 termination model  & -    & Number of sources and resistances = number of conductors \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
352
353
354
355
356
357
-       & 1.0    & V          & End 1, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, conductor 2 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, reference conductor  voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 1, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 1, conductor 2 resistance \\ \hline
-       & 0.0    & $\Omega$          & End 1, reference conductor resistance \\ \hline
189467e4   Steve Greedy   First Public Release
358
359
360
361
362
363
364
365
366
367
368
    \end{tabular}
\end{center}

% continue on next page


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
-       & \# End 2 termination model  & -    & Number of sources and resistances = number of conductors \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
369
370
371
372
373
374
375
376
-       & 1.0    & V          & End 2, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, conductor 2 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, reference conductor  voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 2, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 2, conductor 2 resistance \\ \hline
-       & 0.0    & $\Omega$          & End 2, reference conductor resistance \\ \hline
-       & \# Type of analysis  & -    & Comment line \\ \hline
-       & AC    & -          & AC or TRANS \\ \hline
189467e4   Steve Greedy   First Public Release
377
378
 \hline
& For AC analysis: & & \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
379
380
-       & lin    & -          & logarithmic (log) or linear (lin) frequency scale \\ \hline
-       & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency  number of frequencies \\ \hline
189467e4   Steve Greedy   First Public Release
381
382
 \hline
& For TRANSIENT analysis & & \\ \hline
886c558b   Steve Greedy   SACAMOS Public Re...
383
384
-       & 0.01E-9 100E-9  & seconds seconds & \# timestep runtime \\ \hline
-       & 1e-9 50e-9	  & seconds seconds & \# pulse risetime pulse width \\ \hline
189467e4   Steve Greedy   First Public Release
385
 \hline
886c558b   Steve Greedy   SACAMOS Public Re...
386
387
388
389
390
391
392
393
394
395
-       & \# Output conductor number and end number  & -    & Comment line \\ \hline
-       & 1   1    & integer integer  & Output conductor number and end number \\ \hline
-       & lin    & -          &  For AC only: Output voltage scaling, linear or dB \\ \hline
-       & -10    & integer  &  \# order for transfer function fit model \\ \hline
-       & log   & -          & logarithmic (log) or linear (lin) frequency scale for transfer function fitting \\ \hline
-       & real real integer & 1e5 1e9 200 & \# fmin fmax number\_of\_frequencies for transfer function fitting \\ \hline
 \hline
    \end{tabular}
\end{center}

189467e4   Steve Greedy   First Public Release
396
\clearpage
886c558b   Steve Greedy   SACAMOS Public Re...
397
398

\vspace{5mm}
189467e4   Steve Greedy   First Public Release
399
\textbf{\underline{AC example with a transfer impedance model }}
886c558b   Steve Greedy   SACAMOS Public Re...
400

189467e4   Steve Greedy   First Public Release
401
402
This example demonstrates a model of coupling from a single wire to a coaxial cable. The bundle is defined such that conductor 1 is the single wire,
conductor 2 is the inner coax conductor and conductor 3 is the coaxial cable shield.
886c558b   Steve Greedy   SACAMOS Public Re...
403
404
405
406
407
408
409
410
411
412

\begin{verbatim}
#MOD_cable_lib_dir
./
#MOD_bundle_lib_dir
./
#MOD_spice_bundle_lib_dir
./
#spice_symbol_dir
./
189467e4   Steve Greedy   First Public Release
413
# Specification for Spice model of two wire transmission line, no loss
886c558b   Steve Greedy   SACAMOS Public Re...
414
415
416
417
418
419
420
421
422
zt_test
# cable bundle length (m)
1.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
#Transfer impedance terms
1    # number of transfer impedances to include in the model
189467e4   Steve Greedy   First Public Release
423
3 +1 # conductor number and coupling direction for transfer impedance model
886c558b   Steve Greedy   SACAMOS Public Re...
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# End 1 termination model
 0.02      End 1 voltage source list
 0.5
 0.0
300.0  	End 1 impedance list
20.0
0.0
# End 2 termination model
0.03        End 2 voltage source list
1.0
0.0
1000.0 	 End 2 impedance list
150.0
0.0
# Type of analysis
AC
log          # frequency scale (log or lin)
1e5 1e9 1000 # fmin fmax number_of_frequencies
# Output conductor number and end number
1    2
lin   # output type (lin or dB)
-10     # order for transfer function fit model 
log          # frequency scale for transfer function fit (log or lin)
1e5 1e9 200 # fmin fmax number_of_frequencies for transfer function fit
\end{verbatim}

189467e4   Steve Greedy   First Public Release
450
\clearpage
886c558b   Steve Greedy   SACAMOS Public Re...
451
452

\cleardoublepage