Blame view

SRC/NETWORK_SYNTHESIS/include_RC_test.F90 6.9 KB
189467e4   Steve Greedy   First Public Release
1
!
fe64b32b   Chris Smartt   Update file heade...
2
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
189467e4   Steve Greedy   First Public Release
3
4
5
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
fe64b32b   Chris Smartt   Update file heade...
6
! Copyright (C) 2016-2018 University of Nottingham
189467e4   Steve Greedy   First Public Release
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
!
fe64b32b   Chris Smartt   Update file heade...
29
!
189467e4   Steve Greedy   First Public Release
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
! SUBROUTINE RC_test(H_PR,type,CFtype,R,L,C,found,HR,remainder_OK,remainder_zero)
!
!
! NAME
!     RC_test
!
! DESCRIPTION
!       look for a viable RC branch in a given impedance/admittance function
!       See sections 7.2.2 and 7.2.3 of the Theory manual
!
! SEE ALSO
!
!
! HISTORY
!
!     started 14/09/17 CJS
!
  SUBROUTINE RC_test(H_PR,type,CFtype,R,L,C,found,HR,remainder_OK,remainder_zero)

USE type_specifications
USE general_module
USE constants
USE filter_module

IMPLICIT NONE
  
  type(Sfilter_PR),INTENT(IN) :: H_PR
  integer :: type
  integer :: CFtype
  real(dp):: R,L,C
  logical :: found
  type(Sfilter),INTENT(INOUT) :: HR
  logical :: remainder_OK,remainder_zero

! local variables
  
  integer :: pole,pole1,pole2
  type(Sfilter_PR) :: HR_PR_local
  logical :: stable
  
  integer :: i,ii
  
  logical  :: positive_residue,non_zero_pole
  
! function types
  logical :: conjugate_pair
  logical :: imaginary_pair
  logical :: complex_pair

!START

  if (verbose) write(*,*)'CALLED: RC_test'

  found=.FALSE.
  
! loop over real poles
  do i=1,H_PR%n_real_poles
  
    pole=i
    
! test for whether we have an RC branch here...
    
    positive_residue=(dble(H_PR%residues(pole)).GT.0d0)
    non_zero_pole=(abs(H_PR%poles(pole)).GT.zero_test_small)
    
    if (verbose) then
      write(*,*)'Testing pole ',i
      write(*,*)'Tests:'
      write(*,*)'positive residue test  : ',positive_residue,' ',H_PR%residues(pole)
      write(*,*)'non zero pole test     : ',non_zero_pole,' ',H_PR%poles(pole)
    end if
    
! check for stable poles which are not on the imaginary s=jw axis AND positive residues
    if (positive_residue.AND.non_zero_pole) then
    
      if (verbose) write(*,*)'Found possible RC branch'

! this could be a viable RC branch - calculate the remainder when this pole is removed

      CALL deallocate_Sfilter(HR)
      
! Test whether the remainder is zero
      
! build a local pole-residue filter without the test pole

! allocate the structure for the local pole-residue form function and copy the 
! required information across            
      HR_PR_local%wnorm=H_PR%wnorm
      HR_PR_local%order=H_PR%order-1
      HR_PR_local%n_real_poles=H_PR%n_real_poles-1
      HR_PR_local%n_complex_poles=H_PR%n_complex_poles
      HR_PR_local%n_complex_pole_pairs=H_PR%n_complex_pole_pairs
      HR_PR_local%n_real_poles=H_PR%n_real_poles

! constant term and sL term
      
      HR_PR_local%R=H_PR%R
      HR_PR_local%L=H_PR%L
      
! Test whether the remainder is zero
     if ( (HR_PR_local%order.EQ.0).AND.              &
           (abs(HR_PR_local%R).LT.zero_test_R).AND.   &
           (abs(HR_PR_local%L).LT.zero_test_L) ) then
        remainder_zero=.TRUE.
        GOTO 8000    
      end if

! copy any poles/ residues in the remainder
      
      ALLOCATE( HR_PR_local%complex_pole(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%poles(HR_PR_local%order) )
      ALLOCATE( HR_PR_local%residues(HR_PR_local%order) )

! copy real poles      
      pole1=0
      pole2=0
      do ii=1,HR_PR_local%n_real_poles
        if (ii.NE.i) then
          pole1=pole1+1
          pole2=pole2+1
          HR_PR_local%complex_pole(pole1)=.FALSE.
          HR_PR_local%poles(pole1)   =H_PR%poles(pole2)
          HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        else
! this is the pole we wish to remove so just increase the pole2 counter by 2. 
          pole2=pole2+1
        end if
      end do ! next real pole

! copy complex poles in pairs 
      do ii=1,H_PR%n_complex_pole_pairs
      
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.TRUE.
        HR_PR_local%poles(pole1)=H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        pole1=pole1+1
        pole2=pole2+1
        HR_PR_local%complex_pole(pole1)=.TRUE.
        HR_PR_local%poles(pole1)=H_PR%poles(pole2)
        HR_PR_local%residues(pole1)=H_PR%residues(pole2)
        
      end do ! next real pole

! convert to a rational function form      
      HR=Convert_filter_S_PR_to_S(HR_PR_local)

! Check the transfer funcion for stability and for whether it is positive real

      CALL check_transfer_function(HR,stable)
      
      CALL deallocate_Sfilter_PR(HR_PR_local)
      
      if (verbose) then
        if (stable) then
          write(*,*)'Remainder is stable'
        else
          write(*,*)'Remainder is unstable'        
        end if
      end if  
      
      if (stable) then
        remainder_zero=.FALSE.
        GOTO 8000
      end if
    
! Test whether the remainder is positive real    
    
    end if ! positive residue for this pole 
  
  end do ! next real pole
  
! we only get here if we have not found a viable RC branch

  remainder_OK=.FALSE.
  found=.FALSE.
  remainder_zero=.FALSE.
  
  RETURN
  
8000 CONTINUE
! jump here if we have found a viable RRC branch

  remainder_OK=.TRUE.
  found=.TRUE.
  CALL deallocate_Sfilter_PR(HR_PR_local)
  
  pole=i
  
  if (type.EQ.type_impedance) then
    CFtype=series_RC
    C=1d0/dble(H_PR%residues(pole))
    C=C/H_PR%wnorm
    R=-dble(H_PR%residues(pole))/dble(H_PR%poles(pole))
    L=0d0
    if (verbose) then
      write(*,*)'FOUND VIABLE SERIES RC BRANCH'
      write(*,*)'R=',R
      write(*,*)'C=',C
      write(*,*)'remainder_OK   :',remainder_OK
      write(*,*)'remainder_zero :',remainder_zero
    end if
  else
    CFtype=shunt_RL
    L=1d0/dble(H_PR%residues(pole))
    R=-dble(H_PR%poles(pole))/dble(H_PR%residues(pole))
    C=0d0
    if (verbose) then
      write(*,*)'FOUND VIABLE SHUNT RL BRANCH'
      write(*,*)'R=',R
      write(*,*)'L=',L
      write(*,*)'remainder_OK   :',remainder_OK
      write(*,*)'remainder_zero :',remainder_zero
    end if
  end if
  
  RETURN

  END SUBROUTINE RC_test