Blame view

SRC/CABLE_MODULES/conductor_impedance_model.F90 20.8 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
!
fe64b32b   Chris Smartt   Update file heade...
2
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
886c558b   Steve Greedy   SACAMOS Public Re...
3
4
5
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
fe64b32b   Chris Smartt   Update file heade...
6
! Copyright (C) 2016-2018 University of Nottingham
886c558b   Steve Greedy   SACAMOS Public Re...
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
fe64b32b   Chris Smartt   Update file heade...
28
!
886c558b   Steve Greedy   SACAMOS Public Re...
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
! OVERALL DESCRIPTION
!     These subroutines perform processes related to the conductor impedance models available
!
!     The subroutines operate on the conductor_impedance_model structure defined in cable_module.F90
! 
! Models are:
! 
! impedance_model_type_PEC                               
! impedance_model_type_cylindrical_with_conductivity     
! impedance_model_type_filter                            
! impedance_model_type_cylidrical_shell_with_conductivity
! impedance_model_type_cylindrical_shield                
! impedance_model_type_rectangular_with_conductivity    

! File Contents:
! SUBROUTINE read_conductor_impedance_model
! SUBROUTINE write_conductor_impedance_model
! SUBROUTINE evaluate_conductor_impedance_model
! SUBROUTINE calculate_Rdc
! SUBROUTINE calculate_internal_impedance
! SUBROUTINE ber_bei
! SUBROUTINE deallocate_conductor_impedance_model
!
! NAME
!     read_conductor_impedance_model
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!  Read the conductor_impedance_model structure from file
!  The impedance model type is read first then the parameters relating to that particular model type
!
! COMMENTS
!      
!
! HISTORY
!
!     started 12/5/2016 CJS 
!     24/8/2016 CJS          Include cylindrical shell model
!
!
SUBROUTINE read_conductor_impedance_model(conductor_impedance,unit)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

  type(conductor_impedance_model),intent(OUT) :: conductor_impedance   ! impedance model structure to read
  integer,intent(IN)                          :: unit                  ! file unit to read from

! local variables

! START

! reset to default values initially
  conductor_impedance%radius=0d0
  conductor_impedance%conductivity=0d0
  conductor_impedance%thickness=0d0
  conductor_impedance%width=0d0
  conductor_impedance%height=0d0
  conductor_impedance%Rdc=0d0
  conductor_impedance%Resistance_multiplication_factor=1d0

  read(unit,*,ERR=9000)conductor_impedance%impedance_model_type
  
  write(*,*)'MODEL TYPE ',conductor_impedance%impedance_model_type
  
  if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_PEC) then

    RETURN   ! no additional information required for PEC type

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylindrical_with_conductivity) then
  
    read(unit,*,ERR=9000)conductor_impedance%radius
    read(unit,*,ERR=9000)conductor_impedance%conductivity
    read(unit,*,ERR=9000)conductor_impedance%Resistance_multiplication_factor

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylidrical_shell_with_conductivity) then
  
    read(unit,*,ERR=9000)conductor_impedance%radius
    read(unit,*,ERR=9000)conductor_impedance%conductivity
    read(unit,*,ERR=9000)conductor_impedance%Resistance_multiplication_factor
    read(unit,*,ERR=9000)conductor_impedance%thickness
    
    write(*,*)'THICKNESS ',conductor_impedance%thickness

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_filter) then

    CALL read_Sfilter(conductor_impedance%ZT_filter,unit)
    
  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylindrical_shield) then
     
    read(unit,*,ERR=9000)conductor_impedance%radius
    read(unit,*,ERR=9000)conductor_impedance%conductivity
    read(unit,*,ERR=9000)conductor_impedance%Resistance_multiplication_factor
    read(unit,*,ERR=9000)conductor_impedance%thickness
    CALL read_Sfilter(conductor_impedance%ZT_filter,unit)
  
  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_rectangular_with_conductivity) then
  
    read(unit,*,ERR=9000)conductor_impedance%width
    read(unit,*,ERR=9000)conductor_impedance%height
    read(unit,*,ERR=9000)conductor_impedance%conductivity
    read(unit,*,ERR=9000)conductor_impedance%Resistance_multiplication_factor
    
  else
  
    write(run_status,*)'ERROR in read_conductor_impedance_model: Unknown impedance model type:' &
                       ,conductor_impedance%impedance_model_type
    CALL write_program_status()
    STOP 1
    end if
  
  RETURN
  
9000 run_status='ERROR in read_conductor_impedance_model'
  CALL write_program_status()
  STOP 1

END SUBROUTINE read_conductor_impedance_model

!
! NAME
!     write_conductor_impedance_model
!
! AUTHORS
!     Chris Smartt
!
!
! DESCRIPTION
!  Write the conductor_impedance_model structure from file
!  The impedance model type is written first then the parameters relating to that particular model type
!
! COMMENTS
!      
!
! HISTORY
!
!     started 12/5/2016 CJS 
!     24/8/2016 CJS          Include cylindrical shell model
!
!

SUBROUTINE write_conductor_impedance_model(conductor_impedance,unit)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

  type(conductor_impedance_model),intent(IN)    :: conductor_impedance  ! impedance model to write
  integer,intent(IN)                            :: unit                 ! unit to write to

! local variables

! START

  write(unit,*)conductor_impedance%impedance_model_type,' # Conductor impedance model type'
  
  if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_PEC) then

    RETURN   ! no additional information required for PEC type

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylindrical_with_conductivity) then
  
    write(unit,*)conductor_impedance%radius,' # conductor radius'
    write(unit,*)conductor_impedance%conductivity,' # conductivity'
    write(unit,*)conductor_impedance%Resistance_multiplication_factor,' # Resistance_multiplication_factor'
    
  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylidrical_shell_with_conductivity) then
  
    write(unit,*)conductor_impedance%radius,' # conductor radius'
    write(unit,*)conductor_impedance%conductivity,' # conductivity'
    write(unit,*)conductor_impedance%Resistance_multiplication_factor,' # Resistance_multiplication_factor'
    write(unit,*)conductor_impedance%thickness,' # shield thickness'

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_filter) then

    CALL write_Sfilter(conductor_impedance%ZT_filter,unit)
    
  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylindrical_shield) then
     
    write(unit,*)conductor_impedance%radius,' # conductor radius'
    write(unit,*)conductor_impedance%conductivity,' # conductivity'
    write(unit,*)conductor_impedance%Resistance_multiplication_factor,' # Resistance_multiplication_factor'
    write(unit,*)conductor_impedance%thickness,' # shield thickness'
    CALL write_Sfilter(conductor_impedance%ZT_filter,unit)

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_rectangular_with_conductivity) then
  
    write(unit,*)conductor_impedance%width,' # conductor width'
    write(unit,*)conductor_impedance%height,' # conductor height'
    write(unit,*)conductor_impedance%conductivity,' # conductivity'
    write(unit,*)conductor_impedance%Resistance_multiplication_factor,' # Resistance_multiplication_factor'
    
  end if
  
  RETURN

END SUBROUTINE write_conductor_impedance_model
!
! NAME
!     evaluate_conductor_impedance_model
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!  Given the parameters of a conductor impedance model and a frequency
!  evaluate: complex surface impedance, d.c. surface impedance
!          : complex transfer imedance, d.c. transfer impedance
!          as required.
!
! COMMENTS
!      
!
! HISTORY
!
!     started 12/5/2016 CJS 
!     24/8/2016 CJS          Include cylindrical shield model
!     24/8/2016 CJS          Include self (condcutor) and transfer impedances in the calculation
!
!

SUBROUTINE evaluate_conductor_impedance_model(conductor_impedance,f,Z_c,Rdc_c,Z_t,Rdc_t)

USE type_specifications
USE constants

IMPLICIT NONE

! variables passed to subroutine

  type(conductor_impedance_model),intent(IN) :: conductor_impedance  ! impedance model
  real(dp),intent(IN)      :: f                 ! frequency
  
  complex(dp),intent(OUT)   :: Z_c              ! Complex conductor surface impedance value to be returned
  real(dp),intent(OUT)      :: Rdc_c            ! d.c. conductor resistance to be returned
  complex(dp),intent(OUT)   :: Z_t              ! Complex transfer impedance value to be returned
  real(dp),intent(OUT)      :: Rdc_t            ! d.c. transfer resistance to be returned

! local variables

  real(dp)    :: sigma,rw,rs,t,w
  real(dp)    :: den
  
  real(dp)    :: f0

! START

  if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_PEC) then

    Z_c=(0d0,0d0)
    Rdc_c=0d0
    Z_t=(0d0,0d0)
    Rdc_t=0d0

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylindrical_with_conductivity) then
  
    sigma=conductor_impedance%conductivity
    rw=conductor_impedance%radius        
    CALL calculate_internal_impedance(sigma,rw,f,Z_c,Rdc_c)
            
    Z_t=(0d0,0d0)
    Rdc_t=0d0

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylidrical_shell_with_conductivity) then
  
    sigma=conductor_impedance%conductivity
    rs=conductor_impedance%radius        
    t=conductor_impedance%thickness
    CALL calculate_internal_impedance_shell(sigma,rs,t,f,Z_c,Rdc_c)

! set the transfer impedance to be zero
    Z_t=(0d0,0d0)
    Rdc_t=0d0

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_filter) then

! transfer impedance calculation  
    Z_t=evaluate_Sfilter_frequency_response(conductor_impedance%ZT_filter,f)
    Rdc_t=conductor_impedance%ZT_filter%a%coeff(0)/conductor_impedance%ZT_filter%b%coeff(0)

! Set the conductor impedance to be equal to the transfer impedance. This model is no longer used and may be removed
    Z_c=Z_t
    Rdc_c=Rdc_t
   
  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_cylindrical_shield) then

! transfer impedance calculation  
    Z_t=evaluate_Sfilter_frequency_response(conductor_impedance%ZT_filter,f)
    Rdc_t=conductor_impedance%ZT_filter%a%coeff(0)/conductor_impedance%ZT_filter%b%coeff(0)

! conductor impedance calculation
    sigma=conductor_impedance%conductivity
    rs=conductor_impedance%radius        

    t=conductor_impedance%thickness
    
    CALL calculate_internal_impedance_shell(sigma,rs,t,f,Z_c,Rdc_c)

  else if (conductor_impedance%impedance_model_type.EQ.impedance_model_type_rectangular_with_conductivity) then

! The rectangular conductor model assumes Z(jw)=(1+sqrt(f/f0)(1+j)) See C.R. Paul,
! "Analysis of Multiconductor Transmission Lines" 1st Edition, p 175-177 and p 320-323.

    Z_t=(0d0,0d0)
    Rdc_t=0d0
    
    sigma=conductor_impedance%conductivity
    w=conductor_impedance%width
    t=conductor_impedance%height
    
    CALL calculate_internal_impedance_rectangular(sigma,w,t,f,Z_c,Rdc_c)
    
  end if
  
  RETURN

END SUBROUTINE evaluate_conductor_impedance_model
!
! NAME
!     calculate_Rdc
!
! DESCRIPTION
!     Calculate the d.c.resistance of a cylindrical conductor given the
!     conductivity and radius 
!     If the conductivity is set to zero then return zero internal impedance i.e. for infinite conductivity
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 27/04/2016 CJS based on phase 1 work in 2015
!
!
SUBROUTINE calculate_Rdc(sigma,r,Rdc)

USE type_specifications
USE constants

IMPLICIT NONE

! variables passed to subroutine

real(dp),intent(IN) :: sigma       ! conductivity
real(dp),intent(IN) :: r           ! shell radius

real(dp),intent(OUT) :: Rdc        ! d.c. resistance

! START

  if ((r.EQ.0d0).OR.(sigma.eq.0d0)) then
! zero parameters - indicates a perfect conductor so return zero d.c. resistance
    Rdc=0d0
    RETURN
    
  end if

! Evaluate the d.c. resistance
  Rdc=1d0/(sigma*pi*(r**2))       ! #EQN_REFERENCE_REQUIRED

  RETURN
  
END SUBROUTINE calculate_Rdc
!
! NAME
!     calculate_internal_impedance
!
! DESCRIPTION
!     Calculate the internal impedance of a cylindrical conductor given the
!     conductivity, radius and frequency
!     This software uses an exact formula using Kelvin functions if the 
!     radius if the wire is less than a specified number of skin depths (10), otherwise we use
!     an approximate formula. This is due to convergence problems when rw >> delta
!     If the conductivity is set to zero then return zero internal impedance i.e. for infinite conductivity
!     
! COMMENTS
!     The equation references are from the theory manual
!     but more detail is found in C. R. Paul,"Analysis of Multiconductor Transmission Lines" 1st edition
!     and S.A.Schelkunoff, 'The Electromagnetic Theory of Coaxial Transmission Lines and Cylindrical Shields', 
!     Bell System Technical Journal,Vol 13, No 4, pp 532-579, 1934.
!
! HISTORY
!
!     started 27/04/2016 CJS based on phase 1 work in 2015
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE calculate_internal_impedance(sigma,r,f,Zint,Rdc)

USE type_specifications
USE constants

IMPLICIT NONE

! variables passed to subroutine

real(dp),intent(IN) :: sigma       ! conductivity
real(dp),intent(IN) :: r           ! shell radius
real(dp),intent(IN) :: f           ! frequency

complex(dp),intent(OUT) :: Zint    ! Condcutor impedance
real(dp),intent(OUT) :: Rdc        ! d.c. resistance

! local variables

real(dp) :: q,delta

! Kelvin function variables
real(dp) ber,bei,dber,dbei

! START 

  if (sigma.eq.0d0) then
! zero conductivity - indicates a perfect conductor so return zero internal impedance  
    zint=(0d0,0d0)
    Rdc=0d0
    RETURN
    
  end if
  
! special case for f=0. In this case return the d.c. resistance in both Rdc and zint
  if (f.eq.0d0) then
    CALL calculate_Rdc(sigma,r,Rdc)
    zint=Rdc
    RETURN
  end if

! skin depth
  delta=1d0/(sqrt(pi*f*mu0*sigma))    ! Theory_Manual_Eqn 3.63

  if (r.LT.10d0*delta) then
! use the Kelvin function form
! Q parameter equation          3.196b !  Theory_Manual_Eqn 3.64
    q=sqrt(2d0)*r/delta
  
    CALL ber_bei(q,ber,bei,dber,dbei)

! Evaluate the impedance, equation 3.196a !  Theory_Manual_Eqn 3.62
    zint=(1d0/(sqrt(2d0)*pi*r*sigma*delta))*(ber+j*bei)/(dbei-j*dber) 
  
  else
    
! Evaluate the impedance, equation 3.202b  !  C. R. Paul, Equation 3.202b
    zint=(1d0/(2d0*r))*sqrt(mu0/(pi*sigma))*sqrt(f)+j*2d0*pi*f*(1d0/(4d0*pi*r))*sqrt(mu0/(pi*sigma))/sqrt(f)
    
  end if  ! r greater than 10 skin depths
  
! Evaluate the d.c. resistance
  CALL calculate_Rdc(sigma,r,Rdc)

  RETURN
  
END SUBROUTINE calculate_internal_impedance
!
! NAME
!     calculate_internal_impedance_shell
!
! DESCRIPTION
!     Calculate the internal impedance of a cylindrical shell conductor given the
!     conductivity, radius, thickness and frequency
!     
! COMMENTS
!     The calculation is based on the Zaa calculation in equation 82 of:
! S. A. Schelkunoff, "The Electroomagnetic Theory of Coaxial Transmission 
! Lines and Cylindrical Shields" Bell Sys Tech J, vol 13, pp 532-579, Oct 1934.
!
! HISTORY
!
!     started 24/08/2016 CJS 
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE calculate_internal_impedance_shell(sigma,r,t,f,Zint,Rdc)

USE type_specifications
USE constants

IMPLICIT NONE

! variables passed to subroutine

real(dp),intent(IN) :: sigma       ! conductivity
real(dp),intent(IN) :: r           ! shell radius
real(dp),intent(IN) :: t           ! shell thickness
real(dp),intent(IN) :: f           ! frequency

complex(dp),intent(OUT) :: Zint    ! Condcutor impedance
real(dp),intent(OUT) :: Rdc        ! d.c. resistance

! local variables

real(dp)    :: delta    ! skin depth
complex(dp) :: gamma    ! complex propagation constant in conductor
complex(dp) :: sinh_gt
complex(dp) :: cosh_gt

! START 

  if (sigma.eq.0d0) then
! zero conductivity - indicates a perfect conductor so return zero internal impedance  
    zint=(0d0,0d0)
    Rdc=0d0
    RETURN
    
  end if
  
  Rdc=1d0/(2d0*pi*r*t*sigma) !  Theory_Manual_Eqn 3.65
 
  if (f.NE.0d0) then
! skin depth calculation

    delta=1d0/(sqrt(pi*f*mu0*sigma))          ! skin depth in conductor Theory_Manual_Eqn 3.63
    gamma=cmplx(1d0,1d0)/cmplx(delta)         ! complex propagation constant in shield Theory_Manual_Eqn 3.66
        
    sinh_gt=(exp(gamma*t)-exp(-gamma*t))/(2d0,0d0)
    cosh_gt=(exp(gamma*t)+exp(-gamma*t))/(2d0,0d0)

! Theory_Manual_Eqn 3.67 
    zint=Rdc*gamma*t*cosh_gt/sinh_gt 
    
  else
! at zero frequency Zint=Rdc
  
    Zint=Rdc
 
  end if
  
  RETURN
  
END SUBROUTINE calculate_internal_impedance_shell
!
! NAME
!     calculate_internal_impedance_rectangular
!
! DESCRIPTION
!     Calculate the internal impedance of a rectangular conductor given the
!     conductivity, width, thickness and frequency
!     The equation references are from the theory manual
!     but more detail is found in C. R. Paul,"Analysis of Multiconductor Transmission Lines" 1st edition
!     
! COMMENTS
!     
!
! HISTORY
!
!     started 10/10/2016 CJS 
!     8/5/2017         CJS: Include references to Theory_Manual
!
!
SUBROUTINE calculate_internal_impedance_rectangular(sigma,w,t,f,Zint,Rdc)

USE type_specifications
USE constants

IMPLICIT NONE

! variables passed to subroutine

real(dp),intent(IN) :: sigma       ! conductivity
real(dp),intent(IN) :: w           ! conductor width
real(dp),intent(IN) :: t           ! conductor thickness
real(dp),intent(IN) :: f           ! frequency

complex(dp),intent(OUT) :: Zint    ! Condcutor impedance
real(dp),intent(OUT) :: Rdc        ! d.c. resistance

! local variables

! START 

  if (sigma.eq.0d0) then
! zero conductivity - indicates a perfect conductor so return zero internal impedance  
    Zint=(0d0,0d0)
    Rdc=0d0
    RETURN
    
  end if
    
  Rdc=1d0/(w*t*sigma) ! Theory_Manual_Eqn 3.69

  if (f.NE.0d0) then

    Zint=Rdc+(0.5d0/(w+t))*sqrt(mu0/sigma)*sqrt(j*2d0*pi*f) !  Theory_Manual_Eqn 3.68 with 3.70
    
  else
! at zero frequency Zint=Rdc
  
    Zint=Rdc
 
  end if
  
  RETURN
  
END SUBROUTINE calculate_internal_impedance_rectangular
!
! NAME
!     ber_bei
!
! DESCRIPTION
!     Calculate Kelvin functions and their derivatives
!     using a series expansion method 
! 
! COMMENTS
!     may not be the most efficient way to do this...
!
! HISTORY
!
!     started 27/04/2016 CJS based on phase 1 work in 2015
!
!
SUBROUTINE ber_bei(x,ber,bei,dber,dbei)

! calculate Kelvin functions and derivatives
! See Abramowitz and Stegun, "Handbook of Mathematical Functions" equation 9.9.10

USE type_specifications
USE constants

IMPLICIT NONE

! variables passed to subroutine

real(dp),intent(IN)  :: x ! input argument

real(dp),intent(OUT) :: ber,bei,dber,dbei  ! output kelvin fuction and derivative values

! local variables

real(dp)        :: arg,sign,fac,term,last_term,p
integer         :: k

real(dp),parameter :: cvg_test=1d-12
integer,parameter  :: kmax=1000

! START

arg=x*x/4d0

ber=1d0
dber=0d0
last_term=ber
sign=-1d0

do k=2,kmax,2

  fac=dble(k*(k-1))
  term=last_term*sign*(arg/fac)*(arg/fac)
  ber=ber+term
  
  p=dble(k)*2d0
  dber=dber+term*p/x
    
  if (abs(term).LT.cvg_test) GOTO 100  
  
  last_term=term

end do

100 CONTINUE

bei=arg
last_term=bei
dbei=x/2d0
sign=-1d0

do k=3,kmax,2

  fac=dble(k*(k-1))
  term=last_term*sign*(arg/fac)*(arg/fac)
  bei=bei+term
  
  p=dble(k)*2d0
  dbei=dbei+term*p/x
  
  if (abs(term).LT.cvg_test) GOTO 200  
  
  last_term=term

end do

200 CONTINUE

RETURN

END SUBROUTINE ber_bei

!
! NAME
!     deallocate_conductor_impedance_model
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!  deallocate filters required for comnductor impedance models
!
! COMMENTS
!      
!
! HISTORY
!
!     started 12/5/2016 CJS 
!
!

SUBROUTINE deallocate_conductor_impedance_model(conductor_impedance)

USE type_specifications

IMPLICIT NONE

! variables passed to subroutine

  type(conductor_impedance_model),intent(INOUT)    :: conductor_impedance

! local variables

! START

  CALL deallocate_Sfilter(conductor_impedance%ZT_filter)

END SUBROUTINE deallocate_conductor_impedance_model