Blame view

DOCUMENTATION/USER_GUIDE/Tex/file_formats.tex 93.9 KB
886c558b   Steve Greedy   SACAMOS Public Re...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824

\chapter{File Formats} \label{file_formats}

This chapter describes the file formats used as the input to the spice cable bundle model building process.
There are three processes in the creation of a spice cable bundle model. These are:

\begin{enumerate}
\item cable model building process
\item cable bundle model building process
\item spice cable bundle model building process
\end{enumerate}
Frequency dependent parameters

The file formats used to drive each of these processes are described in the following sections.

\section{Cable Specification File Formats} \label{Cable_spec_file_formats}

This section describes the cable specification file formats used as the input to the cable model building process.
Cable specification files have the extension \textbf{name.cable\_spec}.

Models of the following cable types have been developed:

\begin{enumerate}
\item Cylindrical conductor
\item Cylindrical conductor with dielectric
\item Frequency Dependent Cylindrical conductor with dielectric
\item Coaxial cable
\item Frequency Dependent Coaxial cable
\item Frequency Dependent Coaxial cable including shield surface impedance loss
\item Frequency Dependent Coaxial cable with transfer impedance - low frequency model
\item Frequency Dependent Coaxial cable with transfer impedance - high frequency model including shield surface impedance loss
\item Twinax cable
\item Frequency Dependent Twinax cable with transfer impedance - low frequency model
\item Frequency Dependent Twinax cable with transfer impedance - high frequency model including shield surface impedance loss
\item Twisted pair
\item Frequency Dependent Twisted pair
\item Shielded twisted pair
\item Frequency Dependent Shielded twisted pair with transfer impedance - low frequency model
\item Frequency Dependent Shielded twisted pair with transfer impedance - high frequency model including shield surface impedance loss
\item Spacewire
\item Frequency Dependent Spacewire with transfer impedance - low frequency model
\item Frequency Dependent Spacewire with transfer impedance - high frequency model including shield surface impedance loss
\item Frequency Dependent Overshield with transfer impedance
\item Rectangular conductor
\item Frequency Dependent flex cable
\item D connector
\end{enumerate}


Frequency dependent parameters may be defined using a rational function form for example a frequency dependent dielectric may
be represented using the following form
\begin{equation} \label{eq:rational_permittivity}
\epsilon_{r}=\frac{a_0+ a_1 \left( \frac{j\omega}{\omega_0} \right) +a_2 \left( \frac{j\omega}{\omega_0} \right)^2 + \cdots}{b_0+ b_1 \left( \frac{j\omega}{\omega_0} \right) +b_2 \left( \frac{j\omega}{\omega_0} \right)^2 + \cdots}
\end{equation}

The cable\_model\_builder process calculates the per-unit-length inductance and capacitance matrices of all internal domains. 
This may be achieved using an analytic solution in the case of coaxial cables for example. For domains with 
inhomogeneous dielectric then a numerical Laplace solver may be used to calculate the per-unit-length parameters.

Within a cable specification file this frequency dependent data is specified in the following format:

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{5cm} |}
    \hline
    Line number & Typical value   & Description \\ \hline
1       & \# dielectric model  & Comment line \\ \hline
2       & 1E8             & $\omega_{0}$ (rad/second)   \\ \hline
3       &  1  & order of numerator \\ \hline
4       &    2.60        2.25  & list of numerator (a) coefficients \\ \hline
5       &  1  & order of numerator \\ \hline
6       &    1.0        1.0  & list of denominator (b) coefficients \\ \hline
    \end{tabular}
\end{center}

In addition to the information required to specifiy a cable, additional flags to control the operation of the software can be
included. These flags consist of text commands. The available flags and their effect are as follows

\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\item 'use\_laplace'    use the numerical Laplace solver to calculate inductance and capacitance matrices where 
appropriate (i.e. where an exact analytic solution is not available.) By default, approximate analytic formulae are used. \\
\item 'plot\_mesh'    output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\
\end{enumerate}

If the Laplace solver is used then the mesh generation is be controlled by the paramter

'Laplace\_surface\_mesh\_constant'  This parameter determines the number of finite element edges on a conductor surface
                                       The number of elements on a cylindrical conductor of radius r is
                                       $\frac{r}{Laplace_surface_mesh_constant}$. The default value is 3.
                                       
(As the Laplace solver is only applied to internal domains at this stage then the parameter Laplace\_boundary\_constant is not used.

The default parameters are a compromise between accuracy and computation time for the Laplace solution. 
The default values may be overridden by the user by appending the following to the end of the .cable\_spec file:

\begin{verbatim}
Laplace_surface_mesh_constant
4
\end{verbatim}


The file formats required to specify each of these cable types is described in the folllowing sub-sections together with an example.

\subsection{Cylindrical conductor format} \label{Cylindrical_conductor_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & cylindrical   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for cylindrical cables \\ \hline
5       & 1             & integer 	& Number of parameters, always 1 for cylindrical cables \\ \hline
6       & 0.25e-3       & metre         & parameter 1: conductor radius \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
cylindrical
1		# number of conductors
1		# number of parameters
1.905e-4  	# parameter 1: conductor radius
\end{verbatim}


\subsection{Cylindrical conductor with dielectric format} \label{Cylindrical_conductor_dielectric_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & cylindrical\_with\_dielectric   & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for cylindrical cables with dielectric \\ \hline
5       & 3             & integer 	& Number of parameters, always 3 for cylindrical cables with dielectric \\ \hline
6       & 0.25e-3       & metre         & parameter 1: conductor radius \\ \hline
7       & 0.65e-3       & metre         & parameter 2: outer dielectric radius \\ \hline
8       & 2.25          & -             & parameter 3: realtive permittivity of dielectric \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
cylindrical_with_dielectric
1		# number of conductors
3		# number of parameters
1.905e-4  	# parameter 1: conductor radius
0.5e-3  	# parameter 2: dielectric radius
2.25  	        # parameter 3: dielectric relative permittivity
\end{verbatim}


\subsection{Frequency dependent cylindrical conductor with dielectric coating format} \label{FD_Cylindrical_conductor_dielectric_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_cylindrical\_with\_dielectric   & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for cylindrical cables with dielectric \\ \hline
5       & 3             & integer 	& Number of parameters, always 3 for frequency dependent cylindrical cables with dielectric \\ \hline
6       & 0.25e-3       & metre         & parameter 1: conductor radius \\ \hline
6       & 0.5e-3       & metre          & parameter 2: dielectric radius \\ \hline
7       & 5e7           & Siemens/metre & parameter 3: electric conductivity \\ \hline
8       & 1             & integer 	& Number of frequency dependent parameters, always 1 for frequency dependent cylindrical cables with dielectric \\ \hline
9      & \# Dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
10      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
11      & 1 & integer & order of numerator model \\ \hline
12      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
13      & 1 & integer & order of denominator model \\ \hline
14      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
FD_cylindrical_with_dielectric
1		# number of conductors
3		# number of parameters
1.905e-4  	# parameter 1: conductor radius
0.5e-3  	# parameter 2: dielectric radius
5E7  	        # parameter 3: conductivity
1		# number of frequency dependent parameters
# dielectric relative permittivity model follows
   1E8        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.60        2.25           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}


\subsection{Coaxial cable format} \label{coaxial_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & coaxial   & -                 & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for coaxial cables \\ \hline
5       & 5             & integer 	& Number of parameters, always 5 for coaxial cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3       & metre          & parameter 2: shield radius \\ \hline
8       & 2.25          &   -           & parameter 3: relative permittivity of inner dielectric \\ \hline
9       & 2.5e-3       & metre          & parameter 4: outer insulation radius \\ \hline
10      & 2.5           &   -           & parameter 5: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
coaxial         # cable type
2		# number of conductors
5		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
2.25   		# parameter 3: relative permittivity of inner dielectric
0.0025 	        # parameter 4: outer insulation radius (m)
2.50  		# parameter 5: relative permittivity of outer dielectric
\end{verbatim}

\subsection{Frequency dependent coaxial cable - low frequency model format format} \label{FD_coaxial_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_coaxial   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for FD\_coaxial cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10      & 2		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
17      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
18      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
19      & 1 & integer & order of numerator model \\ \hline
20      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
21      & 1 & integer & order of denominator model \\ \hline
22      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
FD_coaxial         # cable type
2		# number of conductors
4		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}

\subsection{Frequency dependent coaxial cable - high frequency model including shield surface impedance loss format} \label{FD_coaxial_cable2_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_coaxial2  & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial2 cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for FD\_coaxial2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
8       & 0.1e-3        & metre         & parameter 5: shield thickness \\ \hline
9       & 5e7           & Siemens/metre & parameter 6: shield electric conductivity \\ \hline
10      & 2		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
17      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
18      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
19      & 1 & integer & order of numerator model \\ \hline
20      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
21      & 1 & integer & order of denominator model \\ \hline
22      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
FD_coaxial2         # cable type
2		# number of conductors
6		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
0.0001          # parameter 5: shield conductor thickness (m)
5e7             # parameter 6: shield electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}

\subsection{Frequency dependent coaxial cable with transfer impedance - low frequency model format} \label{ZT_FD_coaxial_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_coaxial   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for FD\_coaxial cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10      & 2		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
17      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
18      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
19      & 1 & integer & order of numerator model \\ \hline
20      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
21      & 1 & integer & order of denominator model \\ \hline
22      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
23      & 1		& integer       & number of frequency dependent transfer ipedance models \\ \hline
24      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
25      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
26      & 1 & integer & order of numerator model \\ \hline
27      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
28      & 0 & integer & order of denominator model \\ \hline
29      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
ZT_FD_coaxial         # cable type
2		# number of conductors
5		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}

\subsection{Frequency dependent coaxial cable with transfer impedance - high frequency model including shield surface impedance loss format} \label{ZT_FD_coaxial_cable2_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_coaxial2   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for FD\_coaxial2 cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for FD\_coaxial2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 1.5e-3        & metre         & parameter 2: shield radius \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer insulation radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10      & 0.2e-3        & metre         & parameter 5: shield conductor thickness \\ \hline
11      & 5e7           & Siemens/metre & parameter 6: shield conductor electric conductivity \\ \hline
12      & 2             & integer       & number of frequency dependent parameters \\ \hline
13    & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14    & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15    & 1 & integer & order of numerator model \\ \hline
16    &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
17    & 1 & integer & order of denominator model \\ \hline
18    &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
19    & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
20    & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
21    & 1 & integer & order of numerator model \\ \hline
22    &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
23    & 1 & integer & order of denominator model \\ \hline
24    &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
25    & 1             & integer       & number of frequency dependent transfer ipedance models \\ \hline
26    & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
27    & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
28    & 1 & integer & order of numerator model \\ \hline
29    &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
30    & 0 & integer & order of denominator model \\ \hline
31    &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
ZT_FD_coaxial2  # cable type
2		# number of conductors
6		# NUMBER OF PARAMETERS
0.00042  	# parameter 1: inner conductor radius (m)
0.00147 	# parameter 2: shield radius (m)
0.0025 	        # parameter 3: outer insulation radius (m)
5e7             # parameter 4: inner conductor electric conductivity
0.0002          # parameter 5: shield conductor thickness
5e7             # parameter 6: shield electric conductivity
2               # number of frequency dependent parameters
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}

\subsection{Twinax cable} \label{twinax_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & twinax   & -                  & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for twinax cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for twinax cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 1.5e-3        & metre         & parameter 3: shield radius \\ \hline
9       & 2.25          &   -           & parameter 4: relative permittivity of inner dielectric \\ \hline
10      & 2.5e-3        & metre         & parameter 5: outer dielectric radius \\ \hline
11      & 2.5           &   -           & parameter 6: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
twinax
3		# number of conductors
6		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
2.0e-3  	# parameter 3: shield radius
1.00     	# parameter 4: inner dielectric relative permittivity
3.0e-3     	# parameter 5: outer dielectric radius
1.00     	# parameter 6: outer dielectric relative permittivity
\end{verbatim}


\subsection{Frequency dependent twinax cable with transfer impedance - low frequency model} \label{ZT_FD_twinax_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_twinax   & -            & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent twinax cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for frequency dependent twinax cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 2.5e-3        & metre         & parameter 5: outer dielectric radius \\ \hline
11      & 5e7           & Siemens/metre & parameter 6: inner conductor electric conductivity \\ \hline
12      & 2		& integer       & number of frequency dependent parameters \\ \hline
13      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15      & 1 & integer & order of numerator model \\ \hline
16      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
17      & 1 & integer & order of denominator model \\ \hline
18      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
19      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
20      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
21      & 1 & integer & order of numerator model \\ \hline
22      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
23      & 1 & integer & order of denominator model \\ \hline
24      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
25      & 1		& integer       & number of frequency dependent transfer ipedance models \\ \hline
26      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
27      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
28      & 1 & integer & order of numerator model \\ \hline
29      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
29      & 0 & integer & order of denominator model \\ \hline
30      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_twinax
3              Number of conductors 
6              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
2.5e-3         parameter 5: outer dielectric radius 
5e7            parameter 6: inner conductor electric conductivity 
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}


\subsection{Frequency dependent twinax cable with transfer impedance - high frequency model} \label{ZT_FD_twinax_formats2}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_twinax2   & -            & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent twinax2 cables \\ \hline
5       & 8             & integer 	& Number of parameters, always 8 for frequency dependent twinax2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 0.1e-3        & metre         & parameter 5: shield thickness \\ \hline
11      & 2.5e-3        & metre         & parameter 6: outer dielectric radius \\ \hline
12      & 5e7           & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline
13      & 5e7           & Siemens/metre & parameter 8: shield electric conductivity \\ \hline
14      & 2             & integer       & number of frequency dependent parameters \\ \hline
15      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
16      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
16      & 1 & integer & order of numerator model \\ \hline
17      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
18      & 1 & integer & order of denominator model \\ \hline
19      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
20      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
21      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
22      & 1 & integer & order of numerator model \\ \hline
23      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
24      & 1 & integer & order of denominator model \\ \hline
25      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
26      & 1             & integer       & number of frequency dependent transfer ipedance models \\ \hline
27      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
28      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
29      & 1 & integer & order of numerator model \\ \hline
30      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
31      & 0 & integer & order of denominator model \\ \hline
32      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_twinax2
3              Number of conductors 
6              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
0.1e-3         parameter 5: shield thickness
2.5e-3         parameter 6: outer dielectric radius 
5e7            parameter 7: inner conductor electric conductivity
5e7            parameter 8: shield electric conductivity
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}


\subsection{Twisted pair} \label{twisted_pair_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & twisted\_pair & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for twisted pair cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 2.5e-3       & metre          & parameter 3: outer dielectric radius \\ \hline
9       & 2.5           &   -           & parameter 4: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
twisted_pair
2		# number of conductors
4		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
0.45e-3  	# parameter 3: dielectric radius
2.5     	# parameter 4: dielectric relative permittivity
\end{verbatim}

\subsection{Frequency Dependent Twisted pair} \label{FD_twisted_pair_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & FD\_twisted\_pair & -         & Cable type. Note there should be nothing else on this line \\ \hline
4       & 2             & integer 	& Number of conductors, always 2 for frequency dependent twisted pair cables \\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for frequency dependent twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 2.5e-3        & metre         & parameter 3: outer dielectric radius \\ \hline
9       & 5e7           & Siemens/metre & parameter 4: inner conductor electric conductivity \\ \hline
10       & 1		& integer       & number of frequency dependent parameters \\ \hline
11      & \# Dielectric & - & Comment line Frequency dependent dielectric relative permittivity model \\ \hline
12      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 1 & integer & order of denominator model \\ \hline
16      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
FD_twisted_pair
2		# number of conductors
4		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
0.45e-3  	# parameter 3: dielectric radius
5e7             # parameter 4: inner conductor electric conductivity
# Dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
\end{verbatim}

\subsection{Shielded twisted pair} \label{shielded_twisted_pair_formats}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & shielded\_twisted\_pair & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for shielded twisted pair cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for shielded twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.4e-3        & metre         & parameter 2: conductor separation \\ \hline
8       & 1.5e-3        & metre         & parameter 3: shield radius \\ \hline
9       & 2.25          &   -           & parameter 4: relative permittivity of inner dielectric \\ \hline
10      & 2.5e-3       & metre          & parameter 5: outer dielectric radius \\ \hline
11      & 2.5           &   -           & parameter 6: relative permittivity of outer dielectric \\ \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
shielded_twisted_pair
3		# number of conductors
6		# number of parameters
0.25e-3  	# parameter 1: conductor radius
1.0e-3  	# parameter 2: conductor separation
2.0e-3  	# parameter 3: shield radius
2.25     	# parameter 4: inner dielectric relative permittivity
3.0e-3     	# parameter 5: outer dielectric radius
2.5     	# parameter 6: outer dielectric relative permittivity
\end{verbatim}




\subsection{Frequency dependent shielded twisted pair cable with transfer impedance - low frequency model} \label{ZT_FD_shielded_twisted_pair_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_shielded\_twisted\_pair & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent shielded twisted pair cables \\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for frequency dependent shielded twisted pair cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 2.5e-3        & metre         & parameter 5: outer dielectric radius \\ \hline
11       & 5e7           & Siemens/metre & parameter 6: inner conductor electric conductivity \\ \hline
12      & 2		& integer       & number of frequency dependent parameters \\ \hline
13      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15      & 1 & integer & order of numerator model \\ \hline
16      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
16      & 1 & integer & order of denominator model \\ \hline
17      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
18      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
19      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
20      & 1 & integer & order of numerator model \\ \hline
21      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
22      & 1 & integer & order of denominator model \\ \hline
23      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
24      & 1		& integer       & number of frequency dependent transfer ipedance models \\ \hline
25      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
26      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
27      & 1 & integer & order of numerator model \\ \hline
28      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
29      & 0 & integer & order of denominator model \\ \hline
30      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_shielded_twisted_pair
3              Number of conductors 
6              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
2.5e-3         parameter 5: outer dielectric radius 
5e7            parameter 6: inner conductor electric conductivity
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}



\subsection{Frequency dependent shielded twisted pair cable with transfer impedance - high frequency model including shield surface impedance loss} \label{ZT_FD_shielded_twisted_pair2_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_shielded\_twisted\_pair2 & -   & Cable type. Note there should be nothing else on this line \\ \hline
4       & 3             & integer 	& Number of conductors, always 3 for frequency dependent shielded twisted pair2 cables \\ \hline
5       & 8             & integer 	& Number of parameters, always 8 for frequency dependent shielded twisted pair2 cables \\ \hline
6       & 0.1e-3        & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3       & metre         & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3        & metre         & parameter 3: conductor separation \\ \hline
9       & 1.5e-3        & metre         & parameter 4: shield radius \\ \hline
10      & 0.1e-3        & metre         & parameter 5: shield thickness \\ \hline
11      & 2.5e-3        & metre         & parameter 6: outer dielectric radius \\ \hline
12      & 5e7           & Siemens/metre & parameter 7: inner conductor electric conductivity \\ \hline
13      & 5e7           & Siemens/metre & parameter 8: shield electric conductivity \\ \hline
14      & 2             & integer       & number of frequency dependent parameters \\ \hline
15      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
16      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
16      & 1 & integer & order of numerator model \\ \hline
17      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
18      & 1 & integer & order of denominator model \\ \hline
19      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
20      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
21      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
22      & 1 & integer & order of numerator model \\ \hline
23      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
24      & 1 & integer & order of denominator model \\ \hline
25      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
26      & 1             & integer       & number of frequency dependent transfer ipedance models \\ \hline
27      & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
28      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
29      & 1 & integer & order of numerator model \\ \hline
30      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
31      & 0 & integer & order of denominator model \\ \hline
32      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
ZT_FD_shielded_twisted_pair2
3              Number of conductors 
8              Number of parameters
0.25e-3        parameter 1: inner conductor radius 
0.40e-3        parameter 2: inner dielectric radius 
1.0e-3         parameter 3: inner conductor separation 
2.0e-3         parameter 4: shield radius 
0.1e-3         parameter 5: shield thickness
2.5e-3         parameter 6: outer dielectric radius 
5e7            parameter 7: inner conductor electric conductivity
5e7            parameter 8: shield electric conductivity
2	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
1             & integer       & number of frequency dependent transfer ipedance models 
# Transfer impedance model 
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}



\subsection{Spacewire} \label{spacewire_formats}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .              & -             & Directory to write the cable model file to \\ \hline
3       & spacewire & -  & Cable type. Note there should be nothing else on this line \\ \hline
4       & 13             & integer 	& Number of conductors, always 13 for spacewire \\ \hline
5       & 10             & integer 	& Number of parameters, always 10 for spacewire \\ \hline
6       & 0.1e-3         & metre         & parameter 1: inner conductor radius \\ \hline
7       & 0.4e-3         & metre         & parameter 2: conductor separation \\ \hline
8       & 0.8e-3         & metre         & parameter 3: inner sheild radius \\ \hline
9       & 2.25           &   -           & parameter 4: inner dielectric relative permittivity\\ \hline
10       & 1.0e-3         & metre         & parameter 5: inner shield jacket radius \\ \hline
11       & 2.25           &   -           & parameter 6: inner shield jacket relative permittivity\\ \hline
12      & 2.0e-3         & metre          & parameter 7: shielded twisted pair radius \\ \hline
13      & 4.5e-3         & metre          & parameter 8: outer shield radius \\ \hline
14      & 5.0e-3         & metre          & parameter 9: outer dielectric radius \\ \hline
15      & 2.5            &   -           & parameter 10: outer dielectric relative permittivity\\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
spacewire
13		# number of conductors
10		# number of parameters
0.25e-3  	# parameter 1: inner conductor radius
1.0e-3  	# parameter 2: inner conductor separation
2.0e-3  	# parameter 3: inner shield radius
2.2     	# parameter 4: inner dielectric relative permittivity
2.2e-3  	# parameter 5: inner shield jacket radius
2.5      	# parameter 6: inner shield jacket relative permittivity
4.0e-3     	# parameter 7: shielded twisted pair radius
8.0e-3     	# parameter 8: outer shield radius
9.0e-3     	# parameter 9: outer dielectric radius
2.25     	# parameter 10: outer dielectric relative permittivity
\end{verbatim}



\subsection{Frequency dependent spacewire with transfer impedance - low frequency model} \label{ZT_FD_spacewire_formats}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .              & -            & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_spacewire & -         & Cable type. Note there should be nothing else on this line \\ \hline
4       & 13             & integer 	& Number of conductors, always 13 for ZT\_FD\_spacewire \\ \hline
5       & 9              & integer 	& Number of parameters, always 9 for ZT\_FD\_spacewire \\ \hline
6       & 0.1e-3         & metre        & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3        & metre        & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3         & metre        & parameter 3: conductor separation \\ \hline
9       & 0.8e-3         & metre        & parameter 4: inner sheild radius \\ \hline
10      & 1.0e-3         & metre        & parameter 5: inner shield jacket radius \\ \hline
11      & 2.0e-3         & metre        & parameter 6: shielded twisted pair radius \\ \hline
12      & 4.5e-3         & metre        & parameter 7: outer shield radius \\ \hline
13      & 5.0e-3         & metre        & parameter 8: outer dielectric radius \\ \hline
14      & 5e7           & Siemens/metre & parameter 9: inner conductor electric conductivity \\ \hline
15      & 3		& integer       & number of frequency dependent parameters \\ \hline
16      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
17      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
18      & 1 & integer & order of numerator model \\ \hline
19      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
20      & 1 & integer & order of denominator model \\ \hline
21      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
22      & \# Inner shield dielectric & - & Comment line Frequency dependent inner shield dielectric relative permittivity model \\ \hline
23      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
24      & 1 & integer & order of numerator model \\ \hline
25      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
26      & 1 & integer & order of denominator model \\ \hline
27      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
28      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
29      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
30      & 1 & integer & order of numerator model \\ \hline
31      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
32      & 1 & integer & order of denominator model \\ \hline
33      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
34      & 2		& integer       & number of frequency dependent transfer ipedance models \\ \hline
35      & \# Inner shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
36      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
37      & 1 & integer & order of numerator model \\ \hline
38      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
39      & 0 & integer & order of denominator model \\ \hline
40      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
41      & \# Outer shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
42      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
43      & 1 & integer & order of numerator model \\ \hline
44      &  0.02  1.9E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
45      & 0 & integer & order of denominator model \\ \hline
46      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
spacewire
13		# number of conductors
9               # Number of parameters
0.25e-3         # parameter 1: inner conductor radius
0.40e-3         # parameter 2: inner dielectric radius
1.0e-3          # parameter 3: inner conductor separation
2.0e-3          # parameter 4: inner shield radius
2.25e-3         # parameter 5: inner shield jacket radius 
3.25e-3         # parameter 6: shielded twisted pair radius 
5.5e-3          # parameter 7: outer shield radius 
6.25e-3         # parameter 8: outer dielectric radius
5e7             # parameter 9: inner conductor electric conductivity
3	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Inner shield dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
2             & integer       & number of frequency dependent transfer ipedance models 
# Inner shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
# Outer shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.002  2.8E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}


\subsection{Frequency dependent spacewire with transfer impedance - high frequency model including shield surface impedance loss} \label{ZT_FD_spacewire_formats2}


\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .              & -            & Directory to write the cable model file to \\ \hline
3       & ZT\_FD\_spacewire2 & -         & Cable type. Note there should be nothing else on this line \\ \hline
4       & 13             & integer 	& Number of conductors, always 13 for ZT\_FD\_spacewire2 \\ \hline
5       & 13              & integer 	& Number of parameters, always 13 for ZT\_FD\_spacewire2 \\ \hline
6       & 0.1e-3         & metre        & parameter 1: inner conductor radius \\ \hline
7       & 0.18e-3        & metre        & parameter 2: inner dielectric radius \\ \hline
8       & 0.4e-3         & metre        & parameter 3: conductor separation \\ \hline
9       & 0.8e-3         & metre        & parameter 4: inner sheild radius \\ \hline
10      & 0.1e-3         & metre        & parameter 5: inner shield thickness \\ \hline
11      & 1.0e-3         & metre        & parameter 6: inner shield jacket radius \\ \hline
12      & 2.0e-3         & metre        & parameter 7: shielded twisted pair radius \\ \hline
13      & 4.5e-3         & metre        & parameter 8: outer shield radius \\ \hline
14      & 0.1e-3         & metre        & parameter 9: outer shield thickness \\ \hline
15      & 5.0e-3         & metre        & parameter 10: outer dielectric radius \\ \hline
16      & 5e7           & Siemens/metre & parameter 11: inner conductor electric conductivity \\ \hline
17      & 5e7           & Siemens/metre & parameter 12: inner shield electric conductivity \\ \hline
18      & 5e7           & Siemens/metre & parameter 13: outer shield electric conductivity \\ \hline
19      & 3		& integer       & number of frequency dependent parameters \\ \hline
20      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
21      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
22      & 1 & integer & order of numerator model \\ \hline
23      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
24      & 1 & integer & order of denominator model \\ \hline
25      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
26      & \# Inner shield dielectric & - & Comment line Frequency dependent inner shield dielectric relative permittivity model \\ \hline
27      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
28      & 1 & integer & order of numerator model \\ \hline
29      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
30      & 1 & integer & order of denominator model \\ \hline
31      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
32      & \# Outer dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
33      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
34      & 1 & integer & order of numerator model \\ \hline
35      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
36      & 1 & integer & order of denominator model \\ \hline
37     &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
38      & 2		& integer       & number of frequency dependent transfer ipedance models \\ \hline
39      & \# Inner shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
40      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
41      & 1 & integer & order of numerator model \\ \hline
42      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
43      & 0 & integer & order of denominator model \\ \hline
44      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
45      & \# Outer shield transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
46      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
47      & 1 & integer & order of numerator model \\ \hline
48      &  0.02  1.9E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
49      & 0 & integer & order of denominator model \\ \hline
50      &  1.0   & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
spacewire
13		# number of conductors
13               # Number of parameters
0.25e-3         # parameter 1: inner conductor radius
0.40e-3         # parameter 2: inner dielectric radius
1.0e-3          # parameter 3: inner conductor separation
2.0e-3          # parameter 4: inner shield radius
0.1e-3          # parameter 5: inner shield thickness
2.25e-3         # parameter 6: inner shield jacket radius 
3.25e-3         # parameter 7: shielded twisted pair radius 
5.5e-3          # parameter 8: outer shield radius 
0.1e-3          # parameter 9: outer shield thickness
6.25e-3         # parameter 10: outer dielectric radius
5e7             # parameter 11: inner conductor electric conductivity
5e7             # parameter 12: inner shield electric conductivity
5e7             # parameter 13: outer shield electric conductivity
3	       number of frequency dependent parameters 
# Inner dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Inner shield dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.6        2.0           
           1   # b order, b coefficients follow below:
  1.0         1.0    
# Outer dielectric relative permittivity model follows
   1E7        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.40        2.20           
           1   # b order, b coefficients follow below:
  1.0         1.0    
2             & integer       & number of frequency dependent transfer ipedance models 
# Inner shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.05  1.6E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
# Outer shield Transfer impedance model
1.0           # angular frequency normalisation
1             # order of numerator model 
0.002  2.8E-9  # list of numerator coefficients a0 a1 a2... 
0             # order of denominator model
1.0           # list of denominator coefficients b0 b1 b2...
\end{verbatim}

\subsection{Overshield format} \label{overshield_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & overshield    & -              & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for an overshield \\ \hline
5       & 3             & integer 	& Number of parameters, always 3 for an overshield \\ \hline
6       & 0.005	        & m             & \# parameter 1: overshield radius \\ \hline
7       & 0.0001	& m             & \# parameter 2: overshield thickness \\ \hline
8       & 5E7	        & Siemens/m             & \# parameter 3: overshield conductivity \\ \hline
9       & 0		& integer       & number of frequency dependent parameters \\ \hline
10       & 1		& integer       & number of frequency dependent transfer impedance models \\ \hline
11       & \# Transfer impedance & - & Comment line Frequency dependent transfer impedance model follows\\ \hline
12      & 1.0 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
13      & 1 & integer & order of numerator model \\ \hline
14      &  0.05  1.6E-9 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
15      & 0 & integer & order of denominator model \\ \hline
16      &  1.0  & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
overshield  # cable type
1	       # number of conductors
3	       # number of parameters
0.005	       # parameter 1: overshield radius
0.0001	       # parameter 2: overshield thickness
5E7	       # parameter 3: overshield conductivity
0              # number of frequency dependent parameters
1              # number of frequency dependent transfer impedance models
# Transfer impedance model 
1.0            #  angular frequency normalisation
1              #  order of numerator model
0.05  1.6E-9   #  list of numerator coefficients a0 a1 a2... 
0              #  order of denominator model 
1.0            #  list of denominator coefficients b0 b1 b2... 
\end{verbatim}



\subsection{Rectangular conductor format} \label{rectangular_conductor_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & rectangular   & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors, always 1 for rectangular cables \\ \hline
5       & 1             & integer 	& Number of parameters, always 2 for rectangular cables \\ \hline
6       & 1.5e-3        & metre         & parameter 1: conductor width \\ \hline
7       & 0.25e-3       & metre         & parameter 2: conductor height \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
rectangular
1		# number of conductors
2		# number of parameters
1.1e-4  	# parameter 1: conductor width
1.0e-3  	# parameter 1: conductor height
\end{verbatim}


\subsection{flex cable format} \label{flex_cable_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & flex\_cable    & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 1             & integer 	& Number of conductors - can be any number of conductors in a flex cable model\\ \hline
5       & 6             & integer 	& Number of parameters, always 6 for flex cables \\ \hline
6       & 1.5e-3        & metre         & parameter 1: conductor width (x) \\ \hline
7       & 0.25e-3       & metre         & parameter 2: conductor height (y)\\ \hline
8       & 0.25e-3       & metre         & parameter 3: conductor separation (x) \\ \hline
9       & 0.25e-3       & metre         & parameter 4: dielectric offset in x \\ \hline
10       & 0.25e-3       & metre         & parameter 5: dielectric offset in y  \\ \hline
11       & 5E7           & Siemens/metre & parameter 6: conductivity \\ \hline
12      & 1		& integer       & number of frequency dependent parameters \\ \hline
13      & \# Inner dielectric & - & Comment line Frequency dependent inner dielectric relative permittivity model \\ \hline
14      & 1E8 & rad/second & angular frequency normalisation, $\omega_{0}$ \\ \hline
15      & 1 & integer & order of numerator model \\ \hline
16      &  2.6  2.0 & (order+1) reals & list of numerator coefficients a0 a1 a2... \\ \hline
17      & 1 & integer & order of denominator model \\ \hline
18      &  1.0  1.0 & (order+1) reals & list of denominator coefficients b0 b1 b2... \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
flex_cable
3		# number of conductors
6		# number of parameters
1.0e-3  	# parameter 1: conductor width (x dimension)
0.25e-3  	# parameter 2: conductor height (y dimension)
0.5e-3  	# parameter 3: conductor separation (x dimension)
0.2e-3  	# parameter 4: dielectric offset x
0.1e-3  	# parameter 5: dielectric offset y
5E7  	        # parameter 6: conductivity
1		# number of frequency dependent parameters
# dielectric relative permittivity model follows
   1E9        # w normalisation constant
           1   # a order, a coefficients follow below:
  2.2      2.0     
           1   # b order, b coefficients follow below:
  1.0      1.0
\end{verbatim}


\subsection{Dconnector format} \label{Dconnector_file_formats}

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to write the cable model file to \\ \hline
3       & Dconnector    & -             & Cable type. Note there should be nothing else on this line \\ \hline
4       & 10             & integer 	& Number of conductors must be at least 5 for a Dconnector model\\ \hline
5       & 4             & integer 	& Number of parameters, always 4 for a D connector \\ \hline
6       & 0.45e-3        & metre         & parameter 1: conductor radius \\ \hline
7       & 0.25e-3       & metre         & parameter 2: conductor pitch (separation in x) \\ \hline
8       & 0.25e-3       & metre         & parameter 3: conductor separation in y \\ \hline
9       & 0.25e-3       & metre         & parameter 4: offset from conductors to shell \\ \hline
10      & 0		& integer       & number of frequency dependent parameters \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

\begin{verbatim}
#MOD_cable_lib_dir
.
Dconnector
10		# number of conductors
4		# number of parameters
0.5e-3  	# parameter 1: conductor radius
1.5e-3  	# parameter 2: conductor pitch (separation in x)
1.5e-3  	# parameter 3: conductor separation in y
1.0e-3  	# parameter 4: offset from conductors to shell
0		# number of frequency dependent parameters
0		# number of transfer impedance models
use_laplace
plot_mesh
\end{verbatim}


\section{Cable Bundle Specification File Formats} \label{Cable_bundle_spec_file_formats}

This section describes the cable bundle specification file formats used as the input to the cable bundle model building process.
Cable bundle specification files have the extension \textbf{name.bundle\_spec}. The inputs required are the cables which constitute the bundle and their configuration in the bundle cross section, an indication of the presence or absence of a ground plane and if a ground plane is present, its configuration in the bundle cross section.

In addition to the data required to specify a cable bundle, additional flags may be specified to influence the operation of the software. These flags are as follows:

\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\item 'use\_laplace'    use the numerical Laplace solver to calculate inductance and capacitance matrices for the external domain and any overshielded domains. By default, approximate analytic formulae are used. \\
\item 'plot\_mesh'    output a vtk file which shows the mesh used in Finite Element Laplace calculations.\\
\end{enumerate}

If the Laplace solver is used then the mesh generation is be controlled by the paramters

\begin{enumerate}

\item 'Laplace\_boundary\_constant'  This parameter determines the distance to the outer boundary in open boundary domains.
                                   The distance to the outer boundary is calculated by first determining the largest dimension 
                                   of the conductor system (including the ground plane point), bundle\_size. The outer boundary is 
                                   defined as a circle of radius  $bundle_size*Laplace_boundary_constant$. The default value is 3. \\
                                   
\item 'Laplace\_surface\_mesh\_constant'  This parameter determines the number of finite element edges on a conductor surface.
                                       The number of elements on a cylindrical conductor of radius r is
                                       $\frac{r}{Laplace_surface_mesh_constant}$. The default value is 3. \\
                                   
\end{enumerate}

The default parameters are a compromise between accuracy and computation time for the Laplace solution. 
The default values may be overridden by the user by appending the following to the end of the .bundle\_spec file:

\begin{verbatim}
Laplace_boundary_constant
4
Laplace_surface_mesh_constant
5
\end{verbatim}

A ground plane may be included in the bundle as shown in figure \ref{fig_ground_plane_specification}


\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/ground_plane_specification.eps}
\caption{Specification of the ground plane position in the bundle cross section}
\label{fig_ground_plane_specification}
\end{figure}

The .bundle\_spec file format is shown below, along with an example.

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to write the cable bundle model file to \\ \hline
5       & 2             & integer 	& Number of cables in the cable bundle \\ \hline
\\ \hline
For each cable: & & & \\ \hline
-       & cable name           & - 	& Name of cable in the cable model directory \\ \hline
-       & 0.02 0.045           & metres metres & x and y coordinates of the centre of the cable in the bundle cross section \\ \hline
\\ \hline
-       & ground\_plane  & - 	& ground\_plane or no\_ground\_plane as required for the bundlle\\ \hline
-       & $\theta$ d           & degrees metres & If a ground plane is specified then propvide the angle of the ground plane normal measured from the x axis and offset from the origin along the normal direction figure \ref{fig_ground_plane_specification} \\ \hline
    \end{tabular}
\end{center}

\vspace{5mm}
\textbf{\underline{Example}}

Bundle model name: two\_wires\_over\_ground 

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
#MOD_bundle_lib_dir
LIBRARY_OF_BUNDLE_MODELS
2    # Number of cables in bundle, cable list follows
single_wire
6.35e-4     -0.001
single_wire
6.35e-4     0.001
ground_plane
0.0  0.0  ! angle and offset of ground plane
use_laplace
plot_mesh
Laplace_boundary_constant
4
Laplace_surface_mesh_constant
5
\end{verbatim}

\section{Spice Cable Bundle Specification File Formats} \label{Spice_cable_bundle_spec_file_formats}

This section describes the spice cable bundle specification file formats used as the input to the spice cable bundle model building process.
Spice cable bundle specification files have the extension \textbf{name.spice\_model\_spec}.

The input file to the spice cable bundle building processs includes the bundle name, bundle length, incident field specification (if required) and the specification of the validation test configuration.

In addition information regarding the transfer impedance models to be included and also
information to control the transfer function fitting process can be specified. 

The validation test configuration is shown in figure \ref{fig_validation_test_case_config}

\begin{figure}[h]
\centering
\includegraphics[scale=1]{./Imgs/validation_test_case_configuration_portrait.eps}
\caption{Validation test case configuration}
\label{fig_validation_test_case_config}
\end{figure}

In addition to the data required to specify a cable bundle, additional flags may be specified to influence the operation of the software. These flags are as follows:

\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\item 'use\_xie'   use Xie's model for incident field excitation of shielded cables.\\
\item 'no\_s\_xfer' For first order frequency dependent models (transfer impedance, propagation correction) we may 
                    use a passive circuit implementation for frequency dependent transfer functions instead of s-domain
                    transfer functions. This may be of use in Ngspice models which fail to run.\\
\end{enumerate}

The file format with no transfer impdance models or transfer function fitting information is as follows:

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to read the cable bundle model file from \\ \hline
5       & \#MOD\_spice\_bundle\_lib\_dir & -    & Comment line \\ \hline
6       & .             & -             & Directory to write the spice cable bundle model file to \\ \hline
7       & \# two wires over ground plane, crosstalk model  & -    & Comment line \\ \hline
8       & two\_wires\_over\_ground    & -              & Cable bundle name Note there should be nothing else on this line \\ \hline
9       & \# bundle length  & -    & Comment line \\ \hline
10       & 2.0    & metres              & Cable bundle length \\ \hline
11       & \# incident field specification  & -    & Comment line \\ \hline
12       & 0.0    & V/m          & Amplitude \\ \hline
13       & 90.0  0.0  & degrees          & Wave vector angle k$\theta$ k$\phi$ \\ \hline
14       & 1.0  0.0  & degrees          & Polarisation E$\theta$ E$\phi$ \\ \hline
15       & \# End 1 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
16       & 1.0    & V          & End 1, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 1, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 1, conductor 2 resistance \\ \hline
-       & \# End 2 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
-       & 1.0    & V          & End 2, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 2, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 2, conductor 2 resistance \\ \hline
-       & \# Type of analysis  & -    & Comment line \\ \hline
-       & AC    & -          & AC or TRANS \\ \hline
\\ \hline
For AC analysis: & & & \\ \hline
-       & lin    & -          & logarithmic (log) or linear (lin) frequency scale \\ \hline
-       & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency  number of frequencies \\ \hline
\\ \hline
For TRANSIENT analysis & & & \\ \hline
-       & 0.01E-9 100E-9  & seconds seconds & \# timestep runtime \\ \hline
-       & 1e-9 50e-9	  & seconds seconds & \# pulse risetime pulse width \\ \hline
\\ \hline
-       & \# Output conductor number and end number  & -    & Comment line \\ \hline
-       & 1   1    & integer integer  & Output conductor number and end number \\ \hline
-       & lin    & -          &  For AC only: Output voltage scaling, linear or dB \\ \hline
 \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{AC example}}

\begin{verbatim}
#MOD_cable_lib_dir
LIBRARY_OF_CABLE_MODELS
#MOD_bundle_lib_dir
LIBRARY_OF_BUNDLE_MODELS
#MOD_spice_bundle_lib_dir #LIBRARY_OF_BUNDLE_MODELS/two_wires_over_ground
./
#spice_symbol_dir
SYMBOL_DIR
# Specification for spice model of single wire over ground, no loss
two_wires_over_ground
# cable bundle length (m)
2.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
# End 1 termination model 
1.0      End 1 voltage source list
0.0
100.0    End 1 impedance list
25.0
# End 2 termination model
0.0      End 2 voltage source list
0.0 
75.0  	 End 2 impedance list
50.0
# Type of analysis
AC
log          # frequency scale (log or lin)
1e3 1e8 1000 # fmin fmax number_of_frequencies
# Output conductor number and end number
1    1   
lin   # output type (lin or dB)

\end{verbatim}



\vspace{5mm}
\textbf{\underline{Transient example}}


\begin{verbatim}
#MOD_cable_lib_dir
.
#MOD_bundle_lib_dir
.
MOD_spice_bundle_lib_dir
.
#spice_symbol_dir
SYMBOL_DIR
2   # number of conductors, n. Conductor n is always the reference conductor
2_wire
# cable bundle length (m)
2.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
# End 1 termination model
 1      End 1 voltage source list
50.0  	End 1 impedance list
# End 2 termination model
0        End 2 voltage source list
50.0  	 End 2 impedance list
# Type of analysis
TRANS
0.01E-9 100E-9   # timestep runtime
1e-9 50e-9	# pulse_risetime pulse_width
# Output conductor number and end number
1  1     
\end{verbatim}

In the case of frequency dependent models and transfer impedance coupling models then the above file format can be
adapted to include additional information required to drive these models.

A weak form of the transfer impedance is implemented in this work hence the direction of coupling must be specified. 
In order to include a transfer impedance model the conductor number for the shield whose transfer impdeance is required. In addition to
this the direction of the transfer impedance coupling must be specified. The direction is specified as an integer where +1 indicates 
coupling from inside the shield to outside and -1 indicates coupling from the outside to the inside.

The frequency dependent propagation correction takes the form of a s-domain transfer function in the spice model. These propagation
correction transfer functions are derived using a rational function fitting process. This process provides a best fit model of
specified order over a specified frequency range. As a default the model order is 0 i.e. no frequency dependent propagation correction.
The model order can be specified in two ways:

\begin{enumerate}
\item The order is specified as a positive integer and this is the order used
\item A negative integer is specified. In this case the order is chosen using an automatic algorithm which
attempts to choose the best order from 0 up to |specified order|
\end{enumerate}

The frequency range for the model fit may also be specified as can the use of a log or linear frequency scale. If
the frequency range is not specified then it is derived from the definition of the validation test case. 

The format is descibed below followed by an example.

\begin{center}
    \begin{tabular}{ | p{1.5cm} | p{4.5cm} | p{2.5cm} | p{5cm} |}
    \hline
    Line number & Typical value & Unit  & Description \\ \hline
1       & \#MOD\_cable\_lib\_dir & -    & Comment line \\ \hline
2       & .             & -             & Directory to read the cable model file to \\ \hline
3       & \#MOD\_bundle\_lib\_dir & -    & Comment line \\ \hline
4       & .             & -             & Directory to read the cable bundle model file from \\ \hline
5       & \#MOD\_spice\_bundle\_lib\_dir & -    & Comment line \\ \hline
6       & .             & -             & Directory to write the spice cable bundle model file to \\ \hline
7       & \# two wires over ground plane, crosstalk model  & -    & Comment line \\ \hline
8       & two\_wires\_over\_ground    & -              & Cable bundle name Note there should be nothing else on this line \\ \hline
9       & \# bundle length  & -    & Comment line \\ \hline
10      & 2.0    & metres              & Cable bundle length \\ \hline
11      & \# incident field specification  & -    & Comment line \\ \hline
12      & 0.0    & V/m          & Amplitude \\ \hline
13      & 90.0  0.0  & degrees          & Wave vector angle k$\theta$ k$\phi$ \\ \hline
14      & 1.0  0.0  & relative amplitudes & Polarisation E$\theta$ E$\phi$ \\ \hline
15      & \#Transfer impedance terms  & - & this line must inlcude the words 'transfer impedance' 
                                           to indicate that transfer impedance information follows \\ \hline
16      & 1 & integer  &    \# number of transfer impedances to include in the model \\ \hline
-       & 3 +1 & integer integer & \# shield conductor number and coupling direction for transfer impedance model 1 + is inside to out \\ \hline
-       & \# End 1 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
-       & 1.0    & V          & End 1, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 1, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 1, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 1, conductor 2 resistance \\ \hline
-       & \# End 2 termination model  & -    & Number of sources and resistances = number of conductors-1 \\ \hline
-       & 1.0    & V          & End 2, conductor 1 voltage source amplitude \\ \hline
-       & 0.0    & V          & End 2, conductor 2 voltage source amplitude \\ \hline
-       & 50.0    & $\Omega$          & End 2, conductor 1 resistance \\ \hline
-       & 25.0    & $\Omega$          & End 2, conductor 2 resistance \\ \hline
-       & \# Type of analysis  & -    & Comment line \\ \hline
-       & AC    & -          & AC or TRANS \\ \hline
\\ \hline
For AC analysis: & & & \\ \hline
-       & lin    & -          & logarithmic (log) or linear (lin) frequency scale \\ \hline
-       & 1e3 1e8 1000 & Hz Hz integer & min frequency, max frequency  number of frequencies \\ \hline
\\ \hline
For TRANSIENT analysis & & & \\ \hline
-       & 0.01E-9 100E-9  & seconds seconds & \# timestep runtime \\ \hline
-       & 1e-9 50e-9	  & seconds seconds & \# pulse risetime pulse width \\ \hline
\\ \hline
-       & \# Output conductor number and end number  & -    & Comment line \\ \hline
-       & 1   1    & integer integer  & Output conductor number and end number \\ \hline
-       & lin    & -          &  For AC only: Output voltage scaling, linear or dB \\ \hline
-       & -10    & integer  &  \# order for transfer function fit model \\ \hline
-       & log   & -          & logarithmic (log) or linear (lin) frequency scale for transfer function fitting \\ \hline
-       & real real integer & 1e5 1e9 200 & \# fmin fmax number\_of\_frequencies for transfer function fitting \\ \hline
 \hline
    \end{tabular}
\end{center}


\vspace{5mm}
\textbf{\underline{AC example for a frequency dependent coaxial cable with a transfer impedance model plus a single wire}}


\begin{verbatim}
#MOD_cable_lib_dir
./
#MOD_bundle_lib_dir
./
#MOD_spice_bundle_lib_dir
./
#spice_symbol_dir
./
# Specification for spice model of two wire transmission line, no loss
zt_test
# cable bundle length (m)
1.0
#Incident field specification
0.0	amplitude (V/m)
90.0 0.0	ktheta kphi (degrees)
-1.0  0.0	Etheta Ephi
#Transfer impedance terms
1    # number of transfer impedances to include in the model
3 +1 # conductor number and coupling direction for transfer impedance model 1 + is inside to out
# End 1 termination model
 0.02      End 1 voltage source list
 0.5
300.0  	End 1 impedance list
20.0
# End 2 termination model
0.03        End 2 voltage source list
1.0
1000.0 	 End 2 impedance list
150.0
# Type of analysis
AC
log          # frequency scale (log or lin)
1e5 1e9 1000 # fmin fmax number_of_frequencies
# Output conductor number and end number
1    2
lin   # output type (lin or dB)
-10     # order for transfer function fit model 
log          # frequency scale for transfer function fit (log or lin)
1e5 1e9 200 # fmin fmax number_of_frequencies for transfer function fit
\end{verbatim}


In addition to the data required to specify a spice cable bundle model, additional flags may be specified to influence the operation of the software. These flags are as follows:
\begin{enumerate}
\item 'verbose'    output detailed summary of the software operation and calculation results.\\
\end{enumerate}



\cleardoublepage