Blame view

SRC/NETWORK_SYNTHESIS/network_synthesis.F90 13.1 KB
189467e4   Steve Greedy   First Public Release
1
!
fe64b32b   Chris Smartt   Update file heade...
2
! This file is part of SACAMOS, State of the Art CAble MOdels for Spice. 
189467e4   Steve Greedy   First Public Release
3
4
5
! It was developed by the University of Nottingham and the Netherlands Aerospace 
! Centre (NLR) for ESA under contract number 4000112765/14/NL/HK.
! 
fe64b32b   Chris Smartt   Update file heade...
6
! Copyright (C) 2016-2018 University of Nottingham
189467e4   Steve Greedy   First Public Release
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
! 
! SACAMOS is free software: you can redistribute it and/or modify it under the 
! terms of the GNU General Public License as published by the Free Software 
! Foundation, either version 3 of the License, or (at your option) any later 
! version.
! 
! SACAMOS is distributed in the hope that it will be useful, but 
! WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
! or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
! for more details.
! 
! A copy of the GNU General Public License version 3 can be found in the 
! file GNU_GPL_v3 in the root or at <http://www.gnu.org/licenses/>.
! 
! SACAMOS uses the EISPACK library (in /SRC/EISPACK). EISPACK is subject to 
! the GNU Lesser General Public License. A copy of the GNU Lesser General Public 
! License version can be found in the file GNU_LGPL in the root of EISPACK 
! (/SRC/EISPACK ) or at <http://www.gnu.org/licenses/>.
! 
! The University of Nottingham can be contacted at: ggiemr@nottingham.ac.uk
!
fe64b32b   Chris Smartt   Update file heade...
28
!
189467e4   Steve Greedy   First Public Release
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
! File Contents:
! SUBROUTINE network_synthesis
!
! NAME
!     network_synthesis
!
! AUTHORS
!     Chris Smartt
!
! DESCRIPTION
!     testing some ideas for the implementation of rational transfer functions as
!     passive equivalent circuits
!
!     PROCESS:
!
!  1. Test that the rational function does constitute a physical impedance function
!  2. Generate a ladder network which synthesises this impedance function where the
!     elements of the ladder network consist of RLC elements
!  3. Evaluate the frequency response of the original function
!  4. Evaluate the frequency response of the continued fraction form
!  5. Write a Spice file for the network
!
!
! COMMENTS
!     The network synthesis algorithm is described in the Theory Manual, section 7.2.1
!
! HISTORY
!
!     started 22/08/2017 CJS 
!     14/9/2017 CJS Generalise the circuit elements to RLC combinations 
!                   using partial fraction expansions
!     10/2017 CJS include Brune synthesis method to complete the process
!
!
SUBROUTINE network_synthesis(Hin,gain_in,Hname,in1,in2,on1,on2,vref_node,next_free_node,unit)

USE type_specifications
USE general_module
USE constants
USE frequency_spec
USE filter_module
USE Sfilter_fit_module

IMPLICIT NONE

type(Sfilter),intent(IN)       :: Hin                     ! rational transfer function model 
real(dp),intent(IN)            :: gain_in
character(LEN=spice_name_length),intent(IN) :: Hname

integer,intent(IN)   :: in1,in2    ! controlling nodes
integer,intent(IN)   :: on1,on2    ! controlled (output) nodes
integer,intent(IN)   :: vref_node  ! local reference node
integer,intent(INOUT):: next_free_node  ! next free node node
integer,intent(IN)   :: unit       ! file unit for Spice sub-circuit

! local variables

type(Sfilter)    :: H                     ! rational transfer function model 
type(Sfilter)    :: HR                    ! rational transfer function model 
type(Sfilter_PR) :: H_PR                  ! pole-residue transfer function model 
type(Sfilter)    :: T1                    ! temporary filter function
type(Sfilter)    :: Rdc_filter            ! temporary filter function

integer        :: aorder,border,max_order,CF_dim
integer        :: n_branches

integer        :: test

integer        :: i,loop,type_loop                          ! loop variables

type(Polynomial)  :: num
type(Polynomial)  :: den

real(dp) :: value

real(dp),allocatable :: CFterm(:,:)
integer,allocatable  :: CFtype(:)

real(dp)    :: wmin,wmax,wstep
integer     :: nw
complex(dp) :: s,sn,num_fs,den_fs,CF_term,last_CF_term
complex(dp) :: H_rational,H_CF
real(dp)    :: R,L,C

real(dp)    :: R_min     ! minimum value of the resistance of the input function
real(dp)    :: w_R_min     ! angular frequency for minimum value of the resistance of the input function
real(dp)    :: R_add     ! additional resistance required to make the function positive real

logical :: stable
logical :: found
logical :: remainder_OK
logical :: remainder_zero
logical :: multiple_poles

integer           :: type,last_type
real(dp)          :: term

integer :: on,od
logical :: pole_at_zero
logical :: zero_at_zero

real(dp) :: ascale,bscale,scale
real(dp) :: gain

! START

  if (verbose) then
    write(*,*)'******************************'
    write(*,*)'CALLED Equivalent_Circuit_Test'
    write(*,*)'******************************'
  end if
!  verbose=.TRUE.
 
  if (verbose) then
    write(*,*)'CALLED with function:'
    CALL write_Sfilter(Hin,0)
  end if
 
! copy the input filter and renormalise it 
! Set an appropriate normalisation for the filter function 
! so that the coefficients don't get out of hand.

  H=renormalise_Sfilter(Hin)
  
  if (verbose) then
    write(*,*)'Renormalised filter:'
    CALL write_Sfilter(H,0)
  end if

!  CALL get_min_order_poly(H%a)
!  CALL get_min_order_poly(H%b)

! get a 'scale' for the filter function and include this in the gain term
! to prevent component values getting too big or small

  ascale=abs(H%a%coeff(H%a%order))
  bscale=abs(H%b%coeff(H%b%order))
    
  H%a%coeff(:)=H%a%coeff(:)/ascale
  H%b%coeff(:)=H%b%coeff(:)/bscale
  
  scale=ascale/bscale
  
  gain=gain_in*scale
  
  if (verbose) then
    write(*,*)'Scaled function:'
    CALL write_Sfilter(H,0)
    write(*,*)'Calculate minimum resistance of function:'
  end if
  
  CALL calculate_min_resistance_value(H,R_min,w_R_min)
  
  if (verbose) then
    write(*,*)'Minimum Resistance value is',R_min
    write(*,*)'at w=',w_R_min,' f=',w_R_min/(2d0*pi)
  end if
  
  if (R_min.LT.0d0) then
  
    if (verbose) write(*,*)'Adding 1.5*abs(Minimum Resistance value) to H'
  
    R_add=1.5d0*abs(R_min)
    Rdc_filter=allocate_Sfilter(0,0)
    Rdc_filter%wnorm=Hin%wnorm
    Rdc_filter%a%coeff(0)=R_add
    Rdc_filter%b%coeff(0)=1d0
  
    CALL deallocate_Sfilter(T1)
    T1=H+Rdc_filter
    CALL deallocate_Sfilter(H)
    H=T1
    CALL deallocate_Sfilter(T1)
    CALL deallocate_Sfilter(Rdc_filter)

  else
  
    R_add=0d0

  end if
  
  if (verbose) then
    write(*,*)'Revised H:'
    CALL write_Sfilter(H,0)
  end if
  
! now we have ensured that Re(H)>=0 at all frequencies, do the checks again.
! Check the transfer funcion for stability and for whether it is positive real

  CALL check_transfer_function(H,stable) 
  
  if (stable) then  
    if (verbose) write(*,*)'INPUT FUNCTION IS A STABLE, PHYSICAL IMPEDANCE'
  else  
    if (verbose) write(*,*)'INPUT FUNCTION IS NOT STABLE'
    run_status='INPUT FUNCTION IS NOT STABLE, even after adding a stabilising d.c. resistance'
    CALL write_program_status()
    STOP   
  end if
    
! Max_order is the maximum number of components, including  
! resistive and reactive components

  max_order=2*max(H%a%order,H%b%order) +1
  
  if (verbose) then
    write(*,*)'Maximum order is estimated to be ',max_order
  end if
  
! allocate the continued fraction data  
  CF_dim=max_order
  allocate( CFterm(1:max_order,1:5) ) ! note 5 terms
  CFterm(:,:)=0d0
  allocate( CFtype(1:max_order) )
  CFtype(:)=0
  
  n_branches=0
  type=type_impedance  ! H(s) is an impedance function to start with
  
  do loop=1,max_order
  
    remainder_OK=.FALSE.
    remainder_zero=.FALSE.

! Loop for trying both impedance and admittance functions   
    do type_loop=1,2
    
      if (verbose) then
        write(*,*)'Stage ',loop,' of ',max_order       
        if (type.EQ.type_impedance) then
          write(*,*)'TRYING TO CALCULATE AN IMPEDANCE'        
        else
          write(*,*)'TRYING TO CALCULATE AN ADMITTANCE'
         end if
      end if

! check the function for multiple poles. If there are no multiple poles then we can
! go on and look for viable branches

      CALL check_for_multiple_roots(H%b,multiple_poles,.TRUE.)
      
      if (.NOT.multiple_poles) then

! Calculate the partial fraction expansion of the function H(s)
        H_PR=Convert_filter_S_to_S_PR(H)
        if (verbose) CALL write_S_PR_filter(H_PR)
      
        do test=1,8
           
! Test number 1: looking for RLC branch
          select case (test)
        
          case(1)
! Test number 1: looking for RLC branch
            CALL RLC_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                          HR,remainder_OK,remainder_zero)
                              
          case(2)
! Test number 2: looking for LC branch
            CALL LC_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                          HR,remainder_OK,remainder_zero)
       
          case(3)
! Test number 3: looking for RC branch
            CALL RC_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                          HR,remainder_OK,remainder_zero)
      
          case(4)
! Test number 4: looking for RL branch
            CALL RL_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                         HR,remainder_OK,remainder_zero)
     
          case(5)
! Test number 5: looking for C branch
            CALL C_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                         HR,remainder_OK,remainder_zero)
     
          case(6)
! Test number 6: looking for L branch
            CALL L_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                         HR,remainder_OK,remainder_zero)
     
          case(7)
! Test number 7: looking for R branch
            CALL R_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                         HR,remainder_OK,remainder_zero)
     
          case(8)
! Test number 8: looking for R2 branch
            CALL R2_test(H_PR,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3),found, &
                         HR,remainder_OK,remainder_zero)

          end select
                    
          if (found.AND.remainder_OK) then ! Adopt this as a viable branch
            n_branches=n_branches+1
            if (remainder_zero) then
              GOTO 2000
            else
              GOTO 1000
            end if
          end if

        end do ! next test
      
      end if

! If we have been unsuccessful finding a circuit element
! change from impedance->admittance of vice vers    

      if (type.EQ.type_impedance) then
        type=type_admittance
      else
        type=type_impedance
      end if
      
! Calculate the reciprocal filter function

      num=H%a
      den=H%b
      CALL deallocate_poly(H%a)
      CALL deallocate_poly(H%b)
      H%a=den
      H%b=num
      CALL deallocate_poly(num)
      CALL deallocate_poly(den)
          
    end do ! next type_loop
    
! if we get here then we have not found a viable way to proceed with
! building the circuit
    if (verbose) write(*,*)'CANNOT FIND VIABLE COMPONENT'
    if (verbose) write(*,*)'TRYING BRUNE CYCLE'

! convert to an impedance function if required
    if (type.EQ.type_admittance) then
      type=type_impedance     
! Calculate the reciprocal filter function
      num=H%a
      den=H%b
      CALL deallocate_poly(H%a)
      CALL deallocate_poly(H%b)
      H%a=den
      H%b=num
      CALL deallocate_poly(num)
      CALL deallocate_poly(den)
    end if
    
    CALL BRUNE_test(H,type,CFtype(loop),CFterm(loop,1),CFterm(loop,2),CFterm(loop,3), &
                                           CFterm(loop,4),CFterm(loop,5),found,          &
                                           HR,remainder_OK,remainder_zero)
                                           
    if (found.AND.remainder_OK) then ! Adopt this as a viable branch
      n_branches=n_branches+1
      if (remainder_zero) then
        GOTO 2000
      else
        GOTO 1000
      end if
    end if
                       
    run_status='ERROR: CANNOT FIND VIABLE COMPONENT'
    CALL write_program_status()
    STOP
    
! jump here when we have found the next circuit element
1000 CONTINUE
        
    if (verbose) write(*,*)'Prepare for the next stage'
    
    CALL deallocate_Sfilter(H)
    H=HR
               
  end do  ! next circuit element
  
! If we end up here then there is a problem because the remainder is not zero
! and we are supposed to have worked out all the circuit elements by now.


! jump here when the continued fraction truncates with a zero remainder
2000 continue

!  CALL write_CF_local(CFterm,CFtype,CF_dim,n_branches)

  if (verbose) write(*,*)''
  
  if (verbose) then

INCLUDE 'include_write_frequency_response.F90'

  end if

! Write a spice circuit model for the ladder network derived from the
! continued fraction expansion

  CALL write_ladder_network(Hname,gain,CFterm,CFtype,CF_dim,n_branches,R_add,nw,wmin,wmax, &
                            in1,in2,on1,on2,vref_node,next_free_node,unit)

! deallocate memory and finish up
  
  CALL deallocate_poly(num)
  CALL deallocate_poly(den)

  CALL deallocate_Sfilter(H)
  CALL deallocate_Sfilter(HR)
  CALL deallocate_Sfilter(T1)
  CALL deallocate_Sfilter(Rdc_filter)
  deallocate( CFterm )
   
  RETURN
  
9000 write(*,*)'Error reading transfer function file'
  STOP
  
END SUBROUTINE network_synthesis